bors 71a6c7c803 Auto merge of #87381 - Aaron1011:note-semi-trailing-macro, r=petrochenkov
Display an extra note for trailing semicolon lint with trailing macro

Currently, we parse macros at the end of a block
(e.g. `fn foo() { my_macro!() }`) as expressions, rather than
statements. This means that a macro invoked in this position
cannot expand to items or semicolon-terminated expressions.

In the future, we might want to start parsing these kinds of macros
as statements. This would make expansion more 'token-based'
(i.e. macro expansion behaves (almost) as if you just textually
replaced the macro invocation with its output). However,
this is a breaking change (see PR #78991), so it will require
further discussion.

Since the current behavior will not be changing any time soon,
we need to address the interaction with the
`SEMICOLON_IN_EXPRESSIONS_FROM_MACROS` lint. Since we are parsing
the result of macro expansion as an expression, we will emit a lint
if there's a trailing semicolon in the macro output. However, this
results in a somewhat confusing message for users, since it visually
looks like there should be no problem with having a semicolon
at the end of a block
(e.g. `fn foo() { my_macro!() }` => `fn foo() { produced_expr; }`)

To help reduce confusion, this commit adds a note explaining
that the macro is being interpreted as an expression. Additionally,
we suggest adding a semicolon after the macro *invocation* - this
will cause us to parse the macro call as a statement. We do *not*
use a structured suggestion for this, since the user may actually
want to remove the semicolon from the macro definition (allowing
the block to evaluate to the expression produced by the macro).
2021-07-25 04:34:58 +00:00

1362 lines
45 KiB
Rust

use crate::expand::{self, AstFragment, Invocation};
use crate::module::DirOwnership;
use rustc_ast::attr::MarkedAttrs;
use rustc_ast::ptr::P;
use rustc_ast::token::{self, Nonterminal};
use rustc_ast::tokenstream::{CanSynthesizeMissingTokens, TokenStream};
use rustc_ast::visit::{AssocCtxt, Visitor};
use rustc_ast::{self as ast, AstLike, Attribute, Item, NodeId, PatKind};
use rustc_attr::{self as attr, Deprecation, Stability};
use rustc_data_structures::fx::FxHashMap;
use rustc_data_structures::sync::{self, Lrc};
use rustc_errors::{DiagnosticBuilder, ErrorReported};
use rustc_lint_defs::builtin::PROC_MACRO_BACK_COMPAT;
use rustc_lint_defs::BuiltinLintDiagnostics;
use rustc_parse::{self, nt_to_tokenstream, parser, MACRO_ARGUMENTS};
use rustc_session::{parse::ParseSess, Limit, Session};
use rustc_span::def_id::{CrateNum, DefId};
use rustc_span::edition::Edition;
use rustc_span::hygiene::{AstPass, ExpnData, ExpnKind, LocalExpnId};
use rustc_span::source_map::SourceMap;
use rustc_span::symbol::{kw, sym, Ident, Symbol};
use rustc_span::{FileName, MultiSpan, Span, DUMMY_SP};
use smallvec::{smallvec, SmallVec};
use std::default::Default;
use std::iter;
use std::path::PathBuf;
use std::rc::Rc;
crate use rustc_span::hygiene::MacroKind;
// When adding new variants, make sure to
// adjust the `visit_*` / `flat_map_*` calls in `InvocationCollector`
// to use `assign_id!`
#[derive(Debug, Clone)]
pub enum Annotatable {
Item(P<ast::Item>),
TraitItem(P<ast::AssocItem>),
ImplItem(P<ast::AssocItem>),
ForeignItem(P<ast::ForeignItem>),
Stmt(P<ast::Stmt>),
Expr(P<ast::Expr>),
Arm(ast::Arm),
ExprField(ast::ExprField),
PatField(ast::PatField),
GenericParam(ast::GenericParam),
Param(ast::Param),
FieldDef(ast::FieldDef),
Variant(ast::Variant),
}
impl Annotatable {
pub fn span(&self) -> Span {
match *self {
Annotatable::Item(ref item) => item.span,
Annotatable::TraitItem(ref trait_item) => trait_item.span,
Annotatable::ImplItem(ref impl_item) => impl_item.span,
Annotatable::ForeignItem(ref foreign_item) => foreign_item.span,
Annotatable::Stmt(ref stmt) => stmt.span,
Annotatable::Expr(ref expr) => expr.span,
Annotatable::Arm(ref arm) => arm.span,
Annotatable::ExprField(ref field) => field.span,
Annotatable::PatField(ref fp) => fp.pat.span,
Annotatable::GenericParam(ref gp) => gp.ident.span,
Annotatable::Param(ref p) => p.span,
Annotatable::FieldDef(ref sf) => sf.span,
Annotatable::Variant(ref v) => v.span,
}
}
pub fn visit_attrs(&mut self, f: impl FnOnce(&mut Vec<Attribute>)) {
match self {
Annotatable::Item(item) => item.visit_attrs(f),
Annotatable::TraitItem(trait_item) => trait_item.visit_attrs(f),
Annotatable::ImplItem(impl_item) => impl_item.visit_attrs(f),
Annotatable::ForeignItem(foreign_item) => foreign_item.visit_attrs(f),
Annotatable::Stmt(stmt) => stmt.visit_attrs(f),
Annotatable::Expr(expr) => expr.visit_attrs(f),
Annotatable::Arm(arm) => arm.visit_attrs(f),
Annotatable::ExprField(field) => field.visit_attrs(f),
Annotatable::PatField(fp) => fp.visit_attrs(f),
Annotatable::GenericParam(gp) => gp.visit_attrs(f),
Annotatable::Param(p) => p.visit_attrs(f),
Annotatable::FieldDef(sf) => sf.visit_attrs(f),
Annotatable::Variant(v) => v.visit_attrs(f),
}
}
pub fn visit_with<'a, V: Visitor<'a>>(&'a self, visitor: &mut V) {
match self {
Annotatable::Item(item) => visitor.visit_item(item),
Annotatable::TraitItem(item) => visitor.visit_assoc_item(item, AssocCtxt::Trait),
Annotatable::ImplItem(item) => visitor.visit_assoc_item(item, AssocCtxt::Impl),
Annotatable::ForeignItem(foreign_item) => visitor.visit_foreign_item(foreign_item),
Annotatable::Stmt(stmt) => visitor.visit_stmt(stmt),
Annotatable::Expr(expr) => visitor.visit_expr(expr),
Annotatable::Arm(arm) => visitor.visit_arm(arm),
Annotatable::ExprField(field) => visitor.visit_expr_field(field),
Annotatable::PatField(fp) => visitor.visit_pat_field(fp),
Annotatable::GenericParam(gp) => visitor.visit_generic_param(gp),
Annotatable::Param(p) => visitor.visit_param(p),
Annotatable::FieldDef(sf) => visitor.visit_field_def(sf),
Annotatable::Variant(v) => visitor.visit_variant(v),
}
}
pub fn into_nonterminal(self) -> Nonterminal {
match self {
Annotatable::Item(item) => token::NtItem(item),
Annotatable::TraitItem(item) | Annotatable::ImplItem(item) => {
token::NtItem(P(item.and_then(ast::AssocItem::into_item)))
}
Annotatable::ForeignItem(item) => {
token::NtItem(P(item.and_then(ast::ForeignItem::into_item)))
}
Annotatable::Stmt(stmt) => token::NtStmt(stmt.into_inner()),
Annotatable::Expr(expr) => token::NtExpr(expr),
Annotatable::Arm(..)
| Annotatable::ExprField(..)
| Annotatable::PatField(..)
| Annotatable::GenericParam(..)
| Annotatable::Param(..)
| Annotatable::FieldDef(..)
| Annotatable::Variant(..) => panic!("unexpected annotatable"),
}
}
crate fn into_tokens(self, sess: &ParseSess) -> TokenStream {
nt_to_tokenstream(&self.into_nonterminal(), sess, CanSynthesizeMissingTokens::No)
}
pub fn expect_item(self) -> P<ast::Item> {
match self {
Annotatable::Item(i) => i,
_ => panic!("expected Item"),
}
}
pub fn expect_trait_item(self) -> P<ast::AssocItem> {
match self {
Annotatable::TraitItem(i) => i,
_ => panic!("expected Item"),
}
}
pub fn expect_impl_item(self) -> P<ast::AssocItem> {
match self {
Annotatable::ImplItem(i) => i,
_ => panic!("expected Item"),
}
}
pub fn expect_foreign_item(self) -> P<ast::ForeignItem> {
match self {
Annotatable::ForeignItem(i) => i,
_ => panic!("expected foreign item"),
}
}
pub fn expect_stmt(self) -> ast::Stmt {
match self {
Annotatable::Stmt(stmt) => stmt.into_inner(),
_ => panic!("expected statement"),
}
}
pub fn expect_expr(self) -> P<ast::Expr> {
match self {
Annotatable::Expr(expr) => expr,
_ => panic!("expected expression"),
}
}
pub fn expect_arm(self) -> ast::Arm {
match self {
Annotatable::Arm(arm) => arm,
_ => panic!("expected match arm"),
}
}
pub fn expect_expr_field(self) -> ast::ExprField {
match self {
Annotatable::ExprField(field) => field,
_ => panic!("expected field"),
}
}
pub fn expect_pat_field(self) -> ast::PatField {
match self {
Annotatable::PatField(fp) => fp,
_ => panic!("expected field pattern"),
}
}
pub fn expect_generic_param(self) -> ast::GenericParam {
match self {
Annotatable::GenericParam(gp) => gp,
_ => panic!("expected generic parameter"),
}
}
pub fn expect_param(self) -> ast::Param {
match self {
Annotatable::Param(param) => param,
_ => panic!("expected parameter"),
}
}
pub fn expect_field_def(self) -> ast::FieldDef {
match self {
Annotatable::FieldDef(sf) => sf,
_ => panic!("expected struct field"),
}
}
pub fn expect_variant(self) -> ast::Variant {
match self {
Annotatable::Variant(v) => v,
_ => panic!("expected variant"),
}
}
}
/// Result of an expansion that may need to be retried.
/// Consider using this for non-`MultiItemModifier` expanders as well.
pub enum ExpandResult<T, U> {
/// Expansion produced a result (possibly dummy).
Ready(T),
/// Expansion could not produce a result and needs to be retried.
Retry(U),
}
// `meta_item` is the attribute, and `item` is the item being modified.
pub trait MultiItemModifier {
fn expand(
&self,
ecx: &mut ExtCtxt<'_>,
span: Span,
meta_item: &ast::MetaItem,
item: Annotatable,
) -> ExpandResult<Vec<Annotatable>, Annotatable>;
}
impl<F> MultiItemModifier for F
where
F: Fn(&mut ExtCtxt<'_>, Span, &ast::MetaItem, Annotatable) -> Vec<Annotatable>,
{
fn expand(
&self,
ecx: &mut ExtCtxt<'_>,
span: Span,
meta_item: &ast::MetaItem,
item: Annotatable,
) -> ExpandResult<Vec<Annotatable>, Annotatable> {
ExpandResult::Ready(self(ecx, span, meta_item, item))
}
}
pub trait ProcMacro {
fn expand<'cx>(
&self,
ecx: &'cx mut ExtCtxt<'_>,
span: Span,
ts: TokenStream,
) -> Result<TokenStream, ErrorReported>;
}
impl<F> ProcMacro for F
where
F: Fn(TokenStream) -> TokenStream,
{
fn expand<'cx>(
&self,
_ecx: &'cx mut ExtCtxt<'_>,
_span: Span,
ts: TokenStream,
) -> Result<TokenStream, ErrorReported> {
// FIXME setup implicit context in TLS before calling self.
Ok(self(ts))
}
}
pub trait AttrProcMacro {
fn expand<'cx>(
&self,
ecx: &'cx mut ExtCtxt<'_>,
span: Span,
annotation: TokenStream,
annotated: TokenStream,
) -> Result<TokenStream, ErrorReported>;
}
impl<F> AttrProcMacro for F
where
F: Fn(TokenStream, TokenStream) -> TokenStream,
{
fn expand<'cx>(
&self,
_ecx: &'cx mut ExtCtxt<'_>,
_span: Span,
annotation: TokenStream,
annotated: TokenStream,
) -> Result<TokenStream, ErrorReported> {
// FIXME setup implicit context in TLS before calling self.
Ok(self(annotation, annotated))
}
}
/// Represents a thing that maps token trees to Macro Results
pub trait TTMacroExpander {
fn expand<'cx>(
&self,
ecx: &'cx mut ExtCtxt<'_>,
span: Span,
input: TokenStream,
) -> Box<dyn MacResult + 'cx>;
}
pub type MacroExpanderFn =
for<'cx> fn(&'cx mut ExtCtxt<'_>, Span, TokenStream) -> Box<dyn MacResult + 'cx>;
impl<F> TTMacroExpander for F
where
F: for<'cx> Fn(&'cx mut ExtCtxt<'_>, Span, TokenStream) -> Box<dyn MacResult + 'cx>,
{
fn expand<'cx>(
&self,
ecx: &'cx mut ExtCtxt<'_>,
span: Span,
input: TokenStream,
) -> Box<dyn MacResult + 'cx> {
self(ecx, span, input)
}
}
// Use a macro because forwarding to a simple function has type system issues
macro_rules! make_stmts_default {
($me:expr) => {
$me.make_expr().map(|e| {
smallvec![ast::Stmt {
id: ast::DUMMY_NODE_ID,
span: e.span,
kind: ast::StmtKind::Expr(e),
}]
})
};
}
/// The result of a macro expansion. The return values of the various
/// methods are spliced into the AST at the callsite of the macro.
pub trait MacResult {
/// Creates an expression.
fn make_expr(self: Box<Self>) -> Option<P<ast::Expr>> {
None
}
/// Creates zero or more items.
fn make_items(self: Box<Self>) -> Option<SmallVec<[P<ast::Item>; 1]>> {
None
}
/// Creates zero or more impl items.
fn make_impl_items(self: Box<Self>) -> Option<SmallVec<[P<ast::AssocItem>; 1]>> {
None
}
/// Creates zero or more trait items.
fn make_trait_items(self: Box<Self>) -> Option<SmallVec<[P<ast::AssocItem>; 1]>> {
None
}
/// Creates zero or more items in an `extern {}` block
fn make_foreign_items(self: Box<Self>) -> Option<SmallVec<[P<ast::ForeignItem>; 1]>> {
None
}
/// Creates a pattern.
fn make_pat(self: Box<Self>) -> Option<P<ast::Pat>> {
None
}
/// Creates zero or more statements.
///
/// By default this attempts to create an expression statement,
/// returning None if that fails.
fn make_stmts(self: Box<Self>) -> Option<SmallVec<[ast::Stmt; 1]>> {
make_stmts_default!(self)
}
fn make_ty(self: Box<Self>) -> Option<P<ast::Ty>> {
None
}
fn make_arms(self: Box<Self>) -> Option<SmallVec<[ast::Arm; 1]>> {
None
}
fn make_expr_fields(self: Box<Self>) -> Option<SmallVec<[ast::ExprField; 1]>> {
None
}
fn make_pat_fields(self: Box<Self>) -> Option<SmallVec<[ast::PatField; 1]>> {
None
}
fn make_generic_params(self: Box<Self>) -> Option<SmallVec<[ast::GenericParam; 1]>> {
None
}
fn make_params(self: Box<Self>) -> Option<SmallVec<[ast::Param; 1]>> {
None
}
fn make_field_defs(self: Box<Self>) -> Option<SmallVec<[ast::FieldDef; 1]>> {
None
}
fn make_variants(self: Box<Self>) -> Option<SmallVec<[ast::Variant; 1]>> {
None
}
}
macro_rules! make_MacEager {
( $( $fld:ident: $t:ty, )* ) => {
/// `MacResult` implementation for the common case where you've already
/// built each form of AST that you might return.
#[derive(Default)]
pub struct MacEager {
$(
pub $fld: Option<$t>,
)*
}
impl MacEager {
$(
pub fn $fld(v: $t) -> Box<dyn MacResult> {
Box::new(MacEager {
$fld: Some(v),
..Default::default()
})
}
)*
}
}
}
make_MacEager! {
expr: P<ast::Expr>,
pat: P<ast::Pat>,
items: SmallVec<[P<ast::Item>; 1]>,
impl_items: SmallVec<[P<ast::AssocItem>; 1]>,
trait_items: SmallVec<[P<ast::AssocItem>; 1]>,
foreign_items: SmallVec<[P<ast::ForeignItem>; 1]>,
stmts: SmallVec<[ast::Stmt; 1]>,
ty: P<ast::Ty>,
}
impl MacResult for MacEager {
fn make_expr(self: Box<Self>) -> Option<P<ast::Expr>> {
self.expr
}
fn make_items(self: Box<Self>) -> Option<SmallVec<[P<ast::Item>; 1]>> {
self.items
}
fn make_impl_items(self: Box<Self>) -> Option<SmallVec<[P<ast::AssocItem>; 1]>> {
self.impl_items
}
fn make_trait_items(self: Box<Self>) -> Option<SmallVec<[P<ast::AssocItem>; 1]>> {
self.trait_items
}
fn make_foreign_items(self: Box<Self>) -> Option<SmallVec<[P<ast::ForeignItem>; 1]>> {
self.foreign_items
}
fn make_stmts(self: Box<Self>) -> Option<SmallVec<[ast::Stmt; 1]>> {
match self.stmts.as_ref().map_or(0, |s| s.len()) {
0 => make_stmts_default!(self),
_ => self.stmts,
}
}
fn make_pat(self: Box<Self>) -> Option<P<ast::Pat>> {
if let Some(p) = self.pat {
return Some(p);
}
if let Some(e) = self.expr {
if let ast::ExprKind::Lit(_) = e.kind {
return Some(P(ast::Pat {
id: ast::DUMMY_NODE_ID,
span: e.span,
kind: PatKind::Lit(e),
tokens: None,
}));
}
}
None
}
fn make_ty(self: Box<Self>) -> Option<P<ast::Ty>> {
self.ty
}
}
/// Fill-in macro expansion result, to allow compilation to continue
/// after hitting errors.
#[derive(Copy, Clone)]
pub struct DummyResult {
is_error: bool,
span: Span,
}
impl DummyResult {
/// Creates a default MacResult that can be anything.
///
/// Use this as a return value after hitting any errors and
/// calling `span_err`.
pub fn any(span: Span) -> Box<dyn MacResult + 'static> {
Box::new(DummyResult { is_error: true, span })
}
/// Same as `any`, but must be a valid fragment, not error.
pub fn any_valid(span: Span) -> Box<dyn MacResult + 'static> {
Box::new(DummyResult { is_error: false, span })
}
/// A plain dummy expression.
pub fn raw_expr(sp: Span, is_error: bool) -> P<ast::Expr> {
P(ast::Expr {
id: ast::DUMMY_NODE_ID,
kind: if is_error { ast::ExprKind::Err } else { ast::ExprKind::Tup(Vec::new()) },
span: sp,
attrs: ast::AttrVec::new(),
tokens: None,
})
}
/// A plain dummy pattern.
pub fn raw_pat(sp: Span) -> ast::Pat {
ast::Pat { id: ast::DUMMY_NODE_ID, kind: PatKind::Wild, span: sp, tokens: None }
}
/// A plain dummy type.
pub fn raw_ty(sp: Span, is_error: bool) -> P<ast::Ty> {
P(ast::Ty {
id: ast::DUMMY_NODE_ID,
kind: if is_error { ast::TyKind::Err } else { ast::TyKind::Tup(Vec::new()) },
span: sp,
tokens: None,
})
}
}
impl MacResult for DummyResult {
fn make_expr(self: Box<DummyResult>) -> Option<P<ast::Expr>> {
Some(DummyResult::raw_expr(self.span, self.is_error))
}
fn make_pat(self: Box<DummyResult>) -> Option<P<ast::Pat>> {
Some(P(DummyResult::raw_pat(self.span)))
}
fn make_items(self: Box<DummyResult>) -> Option<SmallVec<[P<ast::Item>; 1]>> {
Some(SmallVec::new())
}
fn make_impl_items(self: Box<DummyResult>) -> Option<SmallVec<[P<ast::AssocItem>; 1]>> {
Some(SmallVec::new())
}
fn make_trait_items(self: Box<DummyResult>) -> Option<SmallVec<[P<ast::AssocItem>; 1]>> {
Some(SmallVec::new())
}
fn make_foreign_items(self: Box<Self>) -> Option<SmallVec<[P<ast::ForeignItem>; 1]>> {
Some(SmallVec::new())
}
fn make_stmts(self: Box<DummyResult>) -> Option<SmallVec<[ast::Stmt; 1]>> {
Some(smallvec![ast::Stmt {
id: ast::DUMMY_NODE_ID,
kind: ast::StmtKind::Expr(DummyResult::raw_expr(self.span, self.is_error)),
span: self.span,
}])
}
fn make_ty(self: Box<DummyResult>) -> Option<P<ast::Ty>> {
Some(DummyResult::raw_ty(self.span, self.is_error))
}
fn make_arms(self: Box<DummyResult>) -> Option<SmallVec<[ast::Arm; 1]>> {
Some(SmallVec::new())
}
fn make_expr_fields(self: Box<DummyResult>) -> Option<SmallVec<[ast::ExprField; 1]>> {
Some(SmallVec::new())
}
fn make_pat_fields(self: Box<DummyResult>) -> Option<SmallVec<[ast::PatField; 1]>> {
Some(SmallVec::new())
}
fn make_generic_params(self: Box<DummyResult>) -> Option<SmallVec<[ast::GenericParam; 1]>> {
Some(SmallVec::new())
}
fn make_params(self: Box<DummyResult>) -> Option<SmallVec<[ast::Param; 1]>> {
Some(SmallVec::new())
}
fn make_field_defs(self: Box<DummyResult>) -> Option<SmallVec<[ast::FieldDef; 1]>> {
Some(SmallVec::new())
}
fn make_variants(self: Box<DummyResult>) -> Option<SmallVec<[ast::Variant; 1]>> {
Some(SmallVec::new())
}
}
/// A syntax extension kind.
pub enum SyntaxExtensionKind {
/// A token-based function-like macro.
Bang(
/// An expander with signature TokenStream -> TokenStream.
Box<dyn ProcMacro + sync::Sync + sync::Send>,
),
/// An AST-based function-like macro.
LegacyBang(
/// An expander with signature TokenStream -> AST.
Box<dyn TTMacroExpander + sync::Sync + sync::Send>,
),
/// A token-based attribute macro.
Attr(
/// An expander with signature (TokenStream, TokenStream) -> TokenStream.
/// The first TokenSteam is the attribute itself, the second is the annotated item.
/// The produced TokenSteam replaces the input TokenSteam.
Box<dyn AttrProcMacro + sync::Sync + sync::Send>,
),
/// An AST-based attribute macro.
LegacyAttr(
/// An expander with signature (AST, AST) -> AST.
/// The first AST fragment is the attribute itself, the second is the annotated item.
/// The produced AST fragment replaces the input AST fragment.
Box<dyn MultiItemModifier + sync::Sync + sync::Send>,
),
/// A trivial attribute "macro" that does nothing,
/// only keeps the attribute and marks it as inert,
/// thus making it ineligible for further expansion.
NonMacroAttr {
/// Suppresses the `unused_attributes` lint for this attribute.
mark_used: bool,
},
/// A token-based derive macro.
Derive(
/// An expander with signature TokenStream -> TokenStream (not yet).
/// The produced TokenSteam is appended to the input TokenSteam.
Box<dyn MultiItemModifier + sync::Sync + sync::Send>,
),
/// An AST-based derive macro.
LegacyDerive(
/// An expander with signature AST -> AST.
/// The produced AST fragment is appended to the input AST fragment.
Box<dyn MultiItemModifier + sync::Sync + sync::Send>,
),
}
/// A struct representing a macro definition in "lowered" form ready for expansion.
pub struct SyntaxExtension {
/// A syntax extension kind.
pub kind: SyntaxExtensionKind,
/// Span of the macro definition.
pub span: Span,
/// List of unstable features that are treated as stable inside this macro.
pub allow_internal_unstable: Option<Lrc<[Symbol]>>,
/// Suppresses the `unsafe_code` lint for code produced by this macro.
pub allow_internal_unsafe: bool,
/// Enables the macro helper hack (`ident!(...)` -> `$crate::ident!(...)`) for this macro.
pub local_inner_macros: bool,
/// The macro's stability info.
pub stability: Option<Stability>,
/// The macro's deprecation info.
pub deprecation: Option<Deprecation>,
/// Names of helper attributes registered by this macro.
pub helper_attrs: Vec<Symbol>,
/// Edition of the crate in which this macro is defined.
pub edition: Edition,
/// Built-in macros have a couple of special properties like availability
/// in `#[no_implicit_prelude]` modules, so we have to keep this flag.
pub builtin_name: Option<Symbol>,
}
impl SyntaxExtension {
/// Returns which kind of macro calls this syntax extension.
pub fn macro_kind(&self) -> MacroKind {
match self.kind {
SyntaxExtensionKind::Bang(..) | SyntaxExtensionKind::LegacyBang(..) => MacroKind::Bang,
SyntaxExtensionKind::Attr(..)
| SyntaxExtensionKind::LegacyAttr(..)
| SyntaxExtensionKind::NonMacroAttr { .. } => MacroKind::Attr,
SyntaxExtensionKind::Derive(..) | SyntaxExtensionKind::LegacyDerive(..) => {
MacroKind::Derive
}
}
}
/// Constructs a syntax extension with default properties.
pub fn default(kind: SyntaxExtensionKind, edition: Edition) -> SyntaxExtension {
SyntaxExtension {
span: DUMMY_SP,
allow_internal_unstable: None,
allow_internal_unsafe: false,
local_inner_macros: false,
stability: None,
deprecation: None,
helper_attrs: Vec::new(),
edition,
builtin_name: None,
kind,
}
}
/// Constructs a syntax extension with the given properties
/// and other properties converted from attributes.
pub fn new(
sess: &Session,
kind: SyntaxExtensionKind,
span: Span,
helper_attrs: Vec<Symbol>,
edition: Edition,
name: Symbol,
attrs: &[ast::Attribute],
) -> SyntaxExtension {
let allow_internal_unstable =
attr::allow_internal_unstable(sess, &attrs).collect::<Vec<Symbol>>();
let mut local_inner_macros = false;
if let Some(macro_export) = sess.find_by_name(attrs, sym::macro_export) {
if let Some(l) = macro_export.meta_item_list() {
local_inner_macros = attr::list_contains_name(&l, sym::local_inner_macros);
}
}
let (builtin_name, helper_attrs) = sess
.find_by_name(attrs, sym::rustc_builtin_macro)
.map(|attr| {
// Override `helper_attrs` passed above if it's a built-in macro,
// marking `proc_macro_derive` macros as built-in is not a realistic use case.
parse_macro_name_and_helper_attrs(sess.diagnostic(), attr, "built-in").map_or_else(
|| (Some(name), Vec::new()),
|(name, helper_attrs)| (Some(name), helper_attrs),
)
})
.unwrap_or_else(|| (None, helper_attrs));
let (stability, const_stability) = attr::find_stability(&sess, attrs, span);
if let Some((_, sp)) = const_stability {
sess.parse_sess
.span_diagnostic
.struct_span_err(sp, "macros cannot have const stability attributes")
.span_label(sp, "invalid const stability attribute")
.span_label(
sess.source_map().guess_head_span(span),
"const stability attribute affects this macro",
)
.emit();
}
SyntaxExtension {
kind,
span,
allow_internal_unstable: (!allow_internal_unstable.is_empty())
.then(|| allow_internal_unstable.into()),
allow_internal_unsafe: sess.contains_name(attrs, sym::allow_internal_unsafe),
local_inner_macros,
stability: stability.map(|(s, _)| s),
deprecation: attr::find_deprecation(&sess, attrs).map(|(d, _)| d),
helper_attrs,
edition,
builtin_name,
}
}
pub fn dummy_bang(edition: Edition) -> SyntaxExtension {
fn expander<'cx>(
_: &'cx mut ExtCtxt<'_>,
span: Span,
_: TokenStream,
) -> Box<dyn MacResult + 'cx> {
DummyResult::any(span)
}
SyntaxExtension::default(SyntaxExtensionKind::LegacyBang(Box::new(expander)), edition)
}
pub fn dummy_derive(edition: Edition) -> SyntaxExtension {
fn expander(
_: &mut ExtCtxt<'_>,
_: Span,
_: &ast::MetaItem,
_: Annotatable,
) -> Vec<Annotatable> {
Vec::new()
}
SyntaxExtension::default(SyntaxExtensionKind::Derive(Box::new(expander)), edition)
}
pub fn non_macro_attr(mark_used: bool, edition: Edition) -> SyntaxExtension {
SyntaxExtension::default(SyntaxExtensionKind::NonMacroAttr { mark_used }, edition)
}
pub fn expn_data(
&self,
parent: LocalExpnId,
call_site: Span,
descr: Symbol,
macro_def_id: Option<DefId>,
parent_module: Option<DefId>,
) -> ExpnData {
ExpnData::new(
ExpnKind::Macro(self.macro_kind(), descr),
parent.to_expn_id(),
call_site,
self.span,
self.allow_internal_unstable.clone(),
self.allow_internal_unsafe,
self.local_inner_macros,
self.edition,
macro_def_id,
parent_module,
)
}
}
/// Error type that denotes indeterminacy.
pub struct Indeterminate;
pub type DeriveResolutions = Vec<(ast::Path, Annotatable, Option<Lrc<SyntaxExtension>>)>;
pub trait ResolverExpand {
fn next_node_id(&mut self) -> NodeId;
fn resolve_dollar_crates(&mut self);
fn visit_ast_fragment_with_placeholders(
&mut self,
expn_id: LocalExpnId,
fragment: &AstFragment,
);
fn register_builtin_macro(&mut self, name: Symbol, ext: SyntaxExtensionKind);
fn expansion_for_ast_pass(
&mut self,
call_site: Span,
pass: AstPass,
features: &[Symbol],
parent_module_id: Option<NodeId>,
) -> LocalExpnId;
fn resolve_imports(&mut self);
fn resolve_macro_invocation(
&mut self,
invoc: &Invocation,
eager_expansion_root: LocalExpnId,
force: bool,
) -> Result<Lrc<SyntaxExtension>, Indeterminate>;
fn check_unused_macros(&mut self);
// Resolver interfaces for specific built-in macros.
/// Does `#[derive(...)]` attribute with the given `ExpnId` have built-in `Copy` inside it?
fn has_derive_copy(&self, expn_id: LocalExpnId) -> bool;
/// Resolve paths inside the `#[derive(...)]` attribute with the given `ExpnId`.
fn resolve_derives(
&mut self,
expn_id: LocalExpnId,
force: bool,
derive_paths: &dyn Fn() -> DeriveResolutions,
) -> Result<(), Indeterminate>;
/// Take resolutions for paths inside the `#[derive(...)]` attribute with the given `ExpnId`
/// back from resolver.
fn take_derive_resolutions(&mut self, expn_id: LocalExpnId) -> Option<DeriveResolutions>;
/// Path resolution logic for `#[cfg_accessible(path)]`.
fn cfg_accessible(
&mut self,
expn_id: LocalExpnId,
path: &ast::Path,
) -> Result<bool, Indeterminate>;
/// Decodes the proc-macro quoted span in the specified crate, with the specified id.
/// No caching is performed.
fn get_proc_macro_quoted_span(&self, krate: CrateNum, id: usize) -> Span;
}
#[derive(Clone, Default)]
pub struct ModuleData {
/// Path to the module starting from the crate name, like `my_crate::foo::bar`.
pub mod_path: Vec<Ident>,
/// Stack of paths to files loaded by out-of-line module items,
/// used to detect and report recursive module inclusions.
pub file_path_stack: Vec<PathBuf>,
/// Directory to search child module files in,
/// often (but not necessarily) the parent of the top file path on the `file_path_stack`.
pub dir_path: PathBuf,
}
impl ModuleData {
pub fn with_dir_path(&self, dir_path: PathBuf) -> ModuleData {
ModuleData {
mod_path: self.mod_path.clone(),
file_path_stack: self.file_path_stack.clone(),
dir_path,
}
}
}
#[derive(Clone)]
pub struct ExpansionData {
pub id: LocalExpnId,
pub depth: usize,
pub module: Rc<ModuleData>,
pub dir_ownership: DirOwnership,
pub prior_type_ascription: Option<(Span, bool)>,
/// Some parent node that is close to this macro call
pub lint_node_id: NodeId,
pub is_trailing_mac: bool,
}
type OnExternModLoaded<'a> =
Option<&'a dyn Fn(Ident, Vec<Attribute>, Vec<P<Item>>, Span) -> (Vec<Attribute>, Vec<P<Item>>)>;
/// One of these is made during expansion and incrementally updated as we go;
/// when a macro expansion occurs, the resulting nodes have the `backtrace()
/// -> expn_data` of their expansion context stored into their span.
pub struct ExtCtxt<'a> {
pub sess: &'a Session,
pub ecfg: expand::ExpansionConfig<'a>,
pub reduced_recursion_limit: Option<Limit>,
pub root_path: PathBuf,
pub resolver: &'a mut dyn ResolverExpand,
pub current_expansion: ExpansionData,
/// Error recovery mode entered when expansion is stuck
/// (or during eager expansion, but that's a hack).
pub force_mode: bool,
pub expansions: FxHashMap<Span, Vec<String>>,
/// Called directly after having parsed an external `mod foo;` in expansion.
///
/// `Ident` is the module name.
pub(super) extern_mod_loaded: OnExternModLoaded<'a>,
/// When we 'expand' an inert attribute, we leave it
/// in the AST, but insert it here so that we know
/// not to expand it again.
pub(super) expanded_inert_attrs: MarkedAttrs,
}
impl<'a> ExtCtxt<'a> {
pub fn new(
sess: &'a Session,
ecfg: expand::ExpansionConfig<'a>,
resolver: &'a mut dyn ResolverExpand,
extern_mod_loaded: OnExternModLoaded<'a>,
) -> ExtCtxt<'a> {
ExtCtxt {
sess,
ecfg,
reduced_recursion_limit: None,
resolver,
extern_mod_loaded,
root_path: PathBuf::new(),
current_expansion: ExpansionData {
id: LocalExpnId::ROOT,
depth: 0,
module: Default::default(),
dir_ownership: DirOwnership::Owned { relative: None },
prior_type_ascription: None,
lint_node_id: ast::CRATE_NODE_ID,
is_trailing_mac: false,
},
force_mode: false,
expansions: FxHashMap::default(),
expanded_inert_attrs: MarkedAttrs::new(),
}
}
/// Returns a `Folder` for deeply expanding all macros in an AST node.
pub fn expander<'b>(&'b mut self) -> expand::MacroExpander<'b, 'a> {
expand::MacroExpander::new(self, false)
}
/// Returns a `Folder` that deeply expands all macros and assigns all `NodeId`s in an AST node.
/// Once `NodeId`s are assigned, the node may not be expanded, removed, or otherwise modified.
pub fn monotonic_expander<'b>(&'b mut self) -> expand::MacroExpander<'b, 'a> {
expand::MacroExpander::new(self, true)
}
pub fn new_parser_from_tts(&self, stream: TokenStream) -> parser::Parser<'a> {
rustc_parse::stream_to_parser(&self.sess.parse_sess, stream, MACRO_ARGUMENTS)
}
pub fn source_map(&self) -> &'a SourceMap {
self.sess.parse_sess.source_map()
}
pub fn parse_sess(&self) -> &'a ParseSess {
&self.sess.parse_sess
}
pub fn call_site(&self) -> Span {
self.current_expansion.id.expn_data().call_site
}
/// Equivalent of `Span::def_site` from the proc macro API,
/// except that the location is taken from the span passed as an argument.
pub fn with_def_site_ctxt(&self, span: Span) -> Span {
span.with_def_site_ctxt(self.current_expansion.id.to_expn_id())
}
/// Equivalent of `Span::call_site` from the proc macro API,
/// except that the location is taken from the span passed as an argument.
pub fn with_call_site_ctxt(&self, span: Span) -> Span {
span.with_call_site_ctxt(self.current_expansion.id.to_expn_id())
}
/// Equivalent of `Span::mixed_site` from the proc macro API,
/// except that the location is taken from the span passed as an argument.
pub fn with_mixed_site_ctxt(&self, span: Span) -> Span {
span.with_mixed_site_ctxt(self.current_expansion.id.to_expn_id())
}
/// Returns span for the macro which originally caused the current expansion to happen.
///
/// Stops backtracing at include! boundary.
pub fn expansion_cause(&self) -> Option<Span> {
self.current_expansion.id.expansion_cause()
}
pub fn struct_span_err<S: Into<MultiSpan>>(&self, sp: S, msg: &str) -> DiagnosticBuilder<'a> {
self.sess.parse_sess.span_diagnostic.struct_span_err(sp, msg)
}
/// Emit `msg` attached to `sp`, without immediately stopping
/// compilation.
///
/// Compilation will be stopped in the near future (at the end of
/// the macro expansion phase).
pub fn span_err<S: Into<MultiSpan>>(&self, sp: S, msg: &str) {
self.sess.parse_sess.span_diagnostic.span_err(sp, msg);
}
pub fn span_warn<S: Into<MultiSpan>>(&self, sp: S, msg: &str) {
self.sess.parse_sess.span_diagnostic.span_warn(sp, msg);
}
pub fn span_bug<S: Into<MultiSpan>>(&self, sp: S, msg: &str) -> ! {
self.sess.parse_sess.span_diagnostic.span_bug(sp, msg);
}
pub fn trace_macros_diag(&mut self) {
for (sp, notes) in self.expansions.iter() {
let mut db = self.sess.parse_sess.span_diagnostic.span_note_diag(*sp, "trace_macro");
for note in notes {
db.note(note);
}
db.emit();
}
// Fixme: does this result in errors?
self.expansions.clear();
}
pub fn bug(&self, msg: &str) -> ! {
self.sess.parse_sess.span_diagnostic.bug(msg);
}
pub fn trace_macros(&self) -> bool {
self.ecfg.trace_mac
}
pub fn set_trace_macros(&mut self, x: bool) {
self.ecfg.trace_mac = x
}
pub fn std_path(&self, components: &[Symbol]) -> Vec<Ident> {
let def_site = self.with_def_site_ctxt(DUMMY_SP);
iter::once(Ident::new(kw::DollarCrate, def_site))
.chain(components.iter().map(|&s| Ident::with_dummy_span(s)))
.collect()
}
pub fn def_site_path(&self, components: &[Symbol]) -> Vec<Ident> {
let def_site = self.with_def_site_ctxt(DUMMY_SP);
components.iter().map(|&s| Ident::new(s, def_site)).collect()
}
pub fn check_unused_macros(&mut self) {
self.resolver.check_unused_macros();
}
/// Resolves a `path` mentioned inside Rust code, returning an absolute path.
///
/// This unifies the logic used for resolving `include_X!`.
///
/// FIXME: move this to `rustc_builtin_macros` and make it private.
pub fn resolve_path(
&self,
path: impl Into<PathBuf>,
span: Span,
) -> Result<PathBuf, DiagnosticBuilder<'a>> {
let path = path.into();
// Relative paths are resolved relative to the file in which they are found
// after macro expansion (that is, they are unhygienic).
if !path.is_absolute() {
let callsite = span.source_callsite();
let mut result = match self.source_map().span_to_filename(callsite) {
FileName::Real(name) => name
.into_local_path()
.expect("attempting to resolve a file path in an external file"),
FileName::DocTest(path, _) => path,
other => {
return Err(self.struct_span_err(
span,
&format!(
"cannot resolve relative path in non-file source `{}`",
other.prefer_local()
),
));
}
};
result.pop();
result.push(path);
Ok(result)
} else {
Ok(path)
}
}
}
/// Extracts a string literal from the macro expanded version of `expr`,
/// emitting `err_msg` if `expr` is not a string literal. This does not stop
/// compilation on error, merely emits a non-fatal error and returns `None`.
pub fn expr_to_spanned_string<'a>(
cx: &'a mut ExtCtxt<'_>,
expr: P<ast::Expr>,
err_msg: &str,
) -> Result<(Symbol, ast::StrStyle, Span), Option<DiagnosticBuilder<'a>>> {
// Perform eager expansion on the expression.
// We want to be able to handle e.g., `concat!("foo", "bar")`.
let expr = cx.expander().fully_expand_fragment(AstFragment::Expr(expr)).make_expr();
Err(match expr.kind {
ast::ExprKind::Lit(ref l) => match l.kind {
ast::LitKind::Str(s, style) => return Ok((s, style, expr.span)),
ast::LitKind::Err(_) => None,
_ => Some(cx.struct_span_err(l.span, err_msg)),
},
ast::ExprKind::Err => None,
_ => Some(cx.struct_span_err(expr.span, err_msg)),
})
}
pub fn expr_to_string(
cx: &mut ExtCtxt<'_>,
expr: P<ast::Expr>,
err_msg: &str,
) -> Option<(Symbol, ast::StrStyle)> {
expr_to_spanned_string(cx, expr, err_msg)
.map_err(|err| {
err.map(|mut err| {
err.emit();
})
})
.ok()
.map(|(symbol, style, _)| (symbol, style))
}
/// Non-fatally assert that `tts` is empty. Note that this function
/// returns even when `tts` is non-empty, macros that *need* to stop
/// compilation should call
/// `cx.parse_sess.span_diagnostic.abort_if_errors()` (this should be
/// done as rarely as possible).
pub fn check_zero_tts(cx: &ExtCtxt<'_>, sp: Span, tts: TokenStream, name: &str) {
if !tts.is_empty() {
cx.span_err(sp, &format!("{} takes no arguments", name));
}
}
/// Parse an expression. On error, emit it, advancing to `Eof`, and return `None`.
pub fn parse_expr(p: &mut parser::Parser<'_>) -> Option<P<ast::Expr>> {
match p.parse_expr() {
Ok(e) => return Some(e),
Err(mut err) => err.emit(),
}
while p.token != token::Eof {
p.bump();
}
None
}
/// Interpreting `tts` as a comma-separated sequence of expressions,
/// expect exactly one string literal, or emit an error and return `None`.
pub fn get_single_str_from_tts(
cx: &mut ExtCtxt<'_>,
sp: Span,
tts: TokenStream,
name: &str,
) -> Option<String> {
let mut p = cx.new_parser_from_tts(tts);
if p.token == token::Eof {
cx.span_err(sp, &format!("{} takes 1 argument", name));
return None;
}
let ret = parse_expr(&mut p)?;
let _ = p.eat(&token::Comma);
if p.token != token::Eof {
cx.span_err(sp, &format!("{} takes 1 argument", name));
}
expr_to_string(cx, ret, "argument must be a string literal").map(|(s, _)| s.to_string())
}
/// Extracts comma-separated expressions from `tts`.
/// On error, emit it, and return `None`.
pub fn get_exprs_from_tts(
cx: &mut ExtCtxt<'_>,
sp: Span,
tts: TokenStream,
) -> Option<Vec<P<ast::Expr>>> {
let mut p = cx.new_parser_from_tts(tts);
let mut es = Vec::new();
while p.token != token::Eof {
let expr = parse_expr(&mut p)?;
// Perform eager expansion on the expression.
// We want to be able to handle e.g., `concat!("foo", "bar")`.
let expr = cx.expander().fully_expand_fragment(AstFragment::Expr(expr)).make_expr();
es.push(expr);
if p.eat(&token::Comma) {
continue;
}
if p.token != token::Eof {
cx.span_err(sp, "expected token: `,`");
return None;
}
}
Some(es)
}
pub fn parse_macro_name_and_helper_attrs(
diag: &rustc_errors::Handler,
attr: &Attribute,
descr: &str,
) -> Option<(Symbol, Vec<Symbol>)> {
// Once we've located the `#[proc_macro_derive]` attribute, verify
// that it's of the form `#[proc_macro_derive(Foo)]` or
// `#[proc_macro_derive(Foo, attributes(A, ..))]`
let list = match attr.meta_item_list() {
Some(list) => list,
None => return None,
};
if list.len() != 1 && list.len() != 2 {
diag.span_err(attr.span, "attribute must have either one or two arguments");
return None;
}
let trait_attr = match list[0].meta_item() {
Some(meta_item) => meta_item,
_ => {
diag.span_err(list[0].span(), "not a meta item");
return None;
}
};
let trait_ident = match trait_attr.ident() {
Some(trait_ident) if trait_attr.is_word() => trait_ident,
_ => {
diag.span_err(trait_attr.span, "must only be one word");
return None;
}
};
if !trait_ident.name.can_be_raw() {
diag.span_err(
trait_attr.span,
&format!("`{}` cannot be a name of {} macro", trait_ident, descr),
);
}
let attributes_attr = list.get(1);
let proc_attrs: Vec<_> = if let Some(attr) = attributes_attr {
if !attr.has_name(sym::attributes) {
diag.span_err(attr.span(), "second argument must be `attributes`")
}
attr.meta_item_list()
.unwrap_or_else(|| {
diag.span_err(attr.span(), "attribute must be of form: `attributes(foo, bar)`");
&[]
})
.iter()
.filter_map(|attr| {
let attr = match attr.meta_item() {
Some(meta_item) => meta_item,
_ => {
diag.span_err(attr.span(), "not a meta item");
return None;
}
};
let ident = match attr.ident() {
Some(ident) if attr.is_word() => ident,
_ => {
diag.span_err(attr.span, "must only be one word");
return None;
}
};
if !ident.name.can_be_raw() {
diag.span_err(
attr.span,
&format!("`{}` cannot be a name of derive helper attribute", ident),
);
}
Some(ident.name)
})
.collect()
} else {
Vec::new()
};
Some((trait_ident.name, proc_attrs))
}
/// This nonterminal looks like some specific enums from
/// `proc-macro-hack` and `procedural-masquerade` crates.
/// We need to maintain some special pretty-printing behavior for them due to incorrect
/// asserts in old versions of those crates and their wide use in the ecosystem.
/// See issue #73345 for more details.
/// FIXME(#73933): Remove this eventually.
pub(crate) fn pretty_printing_compatibility_hack(nt: &Nonterminal, sess: &ParseSess) -> bool {
let item = match nt {
Nonterminal::NtItem(item) => item,
Nonterminal::NtStmt(stmt) => match &stmt.kind {
ast::StmtKind::Item(item) => item,
_ => return false,
},
_ => return false,
};
let name = item.ident.name;
if name == sym::ProceduralMasqueradeDummyType {
if let ast::ItemKind::Enum(enum_def, _) = &item.kind {
if let [variant] = &*enum_def.variants {
if variant.ident.name == sym::Input {
sess.buffer_lint_with_diagnostic(
&PROC_MACRO_BACK_COMPAT,
item.ident.span,
ast::CRATE_NODE_ID,
"using `procedural-masquerade` crate",
BuiltinLintDiagnostics::ProcMacroBackCompat(
"The `procedural-masquerade` crate has been unnecessary since Rust 1.30.0. \
Versions of this crate below 0.1.7 will eventually stop compiling.".to_string())
);
return true;
}
}
}
}
false
}