Guillaume Gomez 0b7fe4d67c Rollup merge of #36699 - bluss:repeat-str, r=alexcrichton
Add method str::repeat(self, usize) -> String

It is relatively simple to repeat a string n times:
`(0..n).map(|_| s).collect::<String>()`. It becomes slightly more
complicated to do it “right” (sizing the allocation up front), which
warrants a method that does it for us.

This method is useful in writing testcases, or when generating text.
`format!()` can be used to repeat single characters, but not repeating
strings like this.
2016-10-11 17:51:26 +02:00

1813 lines
57 KiB
Rust
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! Unicode string slices.
//!
//! *[See also the `str` primitive type](../../std/primitive.str.html).*
#![stable(feature = "rust1", since = "1.0.0")]
// Many of the usings in this module are only used in the test configuration.
// It's cleaner to just turn off the unused_imports warning than to fix them.
#![allow(unused_imports)]
use core::str as core_str;
use core::str::pattern::Pattern;
use core::str::pattern::{Searcher, ReverseSearcher, DoubleEndedSearcher};
use core::mem;
use core::iter::FusedIterator;
use rustc_unicode::str::{UnicodeStr, Utf16Encoder};
use vec_deque::VecDeque;
use borrow::{Borrow, ToOwned};
use string::String;
use rustc_unicode;
use vec::Vec;
use slice::SliceConcatExt;
use boxed::Box;
#[stable(feature = "rust1", since = "1.0.0")]
pub use core::str::{FromStr, Utf8Error};
#[allow(deprecated)]
#[stable(feature = "rust1", since = "1.0.0")]
pub use core::str::{Lines, LinesAny};
#[stable(feature = "rust1", since = "1.0.0")]
pub use core::str::{Split, RSplit};
#[stable(feature = "rust1", since = "1.0.0")]
pub use core::str::{SplitN, RSplitN};
#[stable(feature = "rust1", since = "1.0.0")]
pub use core::str::{SplitTerminator, RSplitTerminator};
#[stable(feature = "rust1", since = "1.0.0")]
pub use core::str::{Matches, RMatches};
#[stable(feature = "rust1", since = "1.0.0")]
pub use core::str::{MatchIndices, RMatchIndices};
#[stable(feature = "rust1", since = "1.0.0")]
pub use core::str::{from_utf8, Chars, CharIndices, Bytes};
#[stable(feature = "rust1", since = "1.0.0")]
pub use core::str::{from_utf8_unchecked, ParseBoolError};
#[stable(feature = "rust1", since = "1.0.0")]
pub use rustc_unicode::str::SplitWhitespace;
#[stable(feature = "rust1", since = "1.0.0")]
pub use core::str::pattern;
#[unstable(feature = "slice_concat_ext",
reason = "trait should not have to exist",
issue = "27747")]
impl<S: Borrow<str>> SliceConcatExt<str> for [S] {
type Output = String;
fn concat(&self) -> String {
if self.is_empty() {
return String::new();
}
// `len` calculation may overflow but push_str will check boundaries
let len = self.iter().map(|s| s.borrow().len()).sum();
let mut result = String::with_capacity(len);
for s in self {
result.push_str(s.borrow())
}
result
}
fn join(&self, sep: &str) -> String {
if self.is_empty() {
return String::new();
}
// concat is faster
if sep.is_empty() {
return self.concat();
}
// this is wrong without the guarantee that `self` is non-empty
// `len` calculation may overflow but push_str but will check boundaries
let len = sep.len() * (self.len() - 1) +
self.iter().map(|s| s.borrow().len()).sum::<usize>();
let mut result = String::with_capacity(len);
let mut first = true;
for s in self {
if first {
first = false;
} else {
result.push_str(sep);
}
result.push_str(s.borrow());
}
result
}
fn connect(&self, sep: &str) -> String {
self.join(sep)
}
}
/// External iterator for a string's UTF-16 code units.
///
/// For use with the `std::iter` module.
#[derive(Clone)]
#[stable(feature = "encode_utf16", since = "1.8.0")]
pub struct EncodeUtf16<'a> {
encoder: Utf16Encoder<Chars<'a>>,
}
#[stable(feature = "encode_utf16", since = "1.8.0")]
impl<'a> Iterator for EncodeUtf16<'a> {
type Item = u16;
#[inline]
fn next(&mut self) -> Option<u16> {
self.encoder.next()
}
#[inline]
fn size_hint(&self) -> (usize, Option<usize>) {
self.encoder.size_hint()
}
}
#[unstable(feature = "fused", issue = "35602")]
impl<'a> FusedIterator for EncodeUtf16<'a> {}
// Return the initial codepoint accumulator for the first byte.
// The first byte is special, only want bottom 5 bits for width 2, 4 bits
// for width 3, and 3 bits for width 4
macro_rules! utf8_first_byte {
($byte:expr, $width:expr) => (($byte & (0x7F >> $width)) as u32)
}
// return the value of $ch updated with continuation byte $byte
macro_rules! utf8_acc_cont_byte {
($ch:expr, $byte:expr) => (($ch << 6) | ($byte & 63) as u32)
}
#[stable(feature = "rust1", since = "1.0.0")]
impl Borrow<str> for String {
#[inline]
fn borrow(&self) -> &str {
&self[..]
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl ToOwned for str {
type Owned = String;
fn to_owned(&self) -> String {
unsafe { String::from_utf8_unchecked(self.as_bytes().to_owned()) }
}
}
/// Methods for string slices.
#[lang = "str"]
#[cfg(not(test))]
impl str {
/// Returns the length of `self`.
///
/// This length is in bytes, not [`char`]s or graphemes. In other words,
/// it may not be what a human considers the length of the string.
///
/// [`char`]: primitive.char.html
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// let len = "foo".len();
/// assert_eq!(3, len);
///
/// let len = "ƒoo".len(); // fancy f!
/// assert_eq!(4, len);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
pub fn len(&self) -> usize {
core_str::StrExt::len(self)
}
/// Returns true if this slice has a length of zero bytes.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// let s = "";
/// assert!(s.is_empty());
///
/// let s = "not empty";
/// assert!(!s.is_empty());
/// ```
#[inline]
#[stable(feature = "rust1", since = "1.0.0")]
pub fn is_empty(&self) -> bool {
core_str::StrExt::is_empty(self)
}
/// Checks that `index`-th byte lies at the start and/or end of a
/// UTF-8 code point sequence.
///
/// The start and end of the string (when `index == self.len()`) are
/// considered to be
/// boundaries.
///
/// Returns `false` if `index` is greater than `self.len()`.
///
/// # Examples
///
/// ```
/// let s = "Löwe 老虎 Léopard";
/// assert!(s.is_char_boundary(0));
/// // start of `老`
/// assert!(s.is_char_boundary(6));
/// assert!(s.is_char_boundary(s.len()));
///
/// // second byte of `ö`
/// assert!(!s.is_char_boundary(2));
///
/// // third byte of `老`
/// assert!(!s.is_char_boundary(8));
/// ```
#[stable(feature = "is_char_boundary", since = "1.9.0")]
#[inline]
pub fn is_char_boundary(&self, index: usize) -> bool {
core_str::StrExt::is_char_boundary(self, index)
}
/// Converts a string slice to a byte slice.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// let bytes = "bors".as_bytes();
/// assert_eq!(b"bors", bytes);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[inline(always)]
pub fn as_bytes(&self) -> &[u8] {
core_str::StrExt::as_bytes(self)
}
/// Converts a string slice to a raw pointer.
///
/// As string slices are a slice of bytes, the raw pointer points to a
/// [`u8`]. This pointer will be pointing to the first byte of the string
/// slice.
///
/// [`u8`]: primitive.u8.html
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// let s = "Hello";
/// let ptr = s.as_ptr();
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
pub fn as_ptr(&self) -> *const u8 {
core_str::StrExt::as_ptr(self)
}
/// Creates a string slice from another string slice, bypassing safety
/// checks.
///
/// This new slice goes from `begin` to `end`, including `begin` but
/// excluding `end`.
///
/// To get a mutable string slice instead, see the
/// [`slice_mut_unchecked()`] method.
///
/// [`slice_mut_unchecked()`]: #method.slice_mut_unchecked
///
/// # Safety
///
/// Callers of this function are responsible that three preconditions are
/// satisfied:
///
/// * `begin` must come before `end`.
/// * `begin` and `end` must be byte positions within the string slice.
/// * `begin` and `end` must lie on UTF-8 sequence boundaries.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// let s = "Löwe 老虎 Léopard";
///
/// unsafe {
/// assert_eq!("Löwe 老虎 Léopard", s.slice_unchecked(0, 21));
/// }
///
/// let s = "Hello, world!";
///
/// unsafe {
/// assert_eq!("world", s.slice_unchecked(7, 12));
/// }
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
pub unsafe fn slice_unchecked(&self, begin: usize, end: usize) -> &str {
core_str::StrExt::slice_unchecked(self, begin, end)
}
/// Creates a string slice from another string slice, bypassing safety
/// checks.
///
/// This new slice goes from `begin` to `end`, including `begin` but
/// excluding `end`.
///
/// To get an immutable string slice instead, see the
/// [`slice_unchecked()`] method.
///
/// [`slice_unchecked()`]: #method.slice_unchecked
///
/// # Safety
///
/// Callers of this function are responsible that three preconditions are
/// satisfied:
///
/// * `begin` must come before `end`.
/// * `begin` and `end` must be byte positions within the string slice.
/// * `begin` and `end` must lie on UTF-8 sequence boundaries.
#[stable(feature = "str_slice_mut", since = "1.5.0")]
#[inline]
pub unsafe fn slice_mut_unchecked(&mut self, begin: usize, end: usize) -> &mut str {
core_str::StrExt::slice_mut_unchecked(self, begin, end)
}
/// Divide one string slice into two at an index.
///
/// The argument, `mid`, should be a byte offset from the start of the
/// string. It must also be on the boundary of a UTF-8 code point.
///
/// The two slices returned go from the start of the string slice to `mid`,
/// and from `mid` to the end of the string slice.
///
/// To get mutable string slices instead, see the [`split_at_mut()`]
/// method.
///
/// [`split_at_mut()`]: #method.split_at_mut
///
/// # Panics
///
/// Panics if `mid` is not on a UTF-8 code point boundary, or if it is
/// beyond the last code point of the string slice.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// let s = "Per Martin-Löf";
///
/// let (first, last) = s.split_at(3);
///
/// assert_eq!("Per", first);
/// assert_eq!(" Martin-Löf", last);
/// ```
#[inline]
#[stable(feature = "str_split_at", since = "1.4.0")]
pub fn split_at(&self, mid: usize) -> (&str, &str) {
core_str::StrExt::split_at(self, mid)
}
/// Divide one mutable string slice into two at an index.
///
/// The argument, `mid`, should be a byte offset from the start of the
/// string. It must also be on the boundary of a UTF-8 code point.
///
/// The two slices returned go from the start of the string slice to `mid`,
/// and from `mid` to the end of the string slice.
///
/// To get immutable string slices instead, see the [`split_at()`] method.
///
/// [`split_at()`]: #method.split_at
///
/// # Panics
///
/// Panics if `mid` is not on a UTF-8 code point boundary, or if it is
/// beyond the last code point of the string slice.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// let mut s = "Per Martin-Löf".to_string();
///
/// let (first, last) = s.split_at_mut(3);
///
/// assert_eq!("Per", first);
/// assert_eq!(" Martin-Löf", last);
/// ```
#[inline]
#[stable(feature = "str_split_at", since = "1.4.0")]
pub fn split_at_mut(&mut self, mid: usize) -> (&mut str, &mut str) {
core_str::StrExt::split_at_mut(self, mid)
}
/// Returns an iterator over the `char`s of a string slice.
///
/// As a string slice consists of valid UTF-8, we can iterate through a
/// string slice by [`char`]. This method returns such an iterator.
///
/// It's important to remember that [`char`] represents a Unicode Scalar
/// Value, and may not match your idea of what a 'character' is. Iteration
/// over grapheme clusters may be what you actually want.
///
/// [`char`]: primitive.char.html
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// let word = "goodbye";
///
/// let count = word.chars().count();
/// assert_eq!(7, count);
///
/// let mut chars = word.chars();
///
/// assert_eq!(Some('g'), chars.next());
/// assert_eq!(Some('o'), chars.next());
/// assert_eq!(Some('o'), chars.next());
/// assert_eq!(Some('d'), chars.next());
/// assert_eq!(Some('b'), chars.next());
/// assert_eq!(Some('y'), chars.next());
/// assert_eq!(Some('e'), chars.next());
///
/// assert_eq!(None, chars.next());
/// ```
///
/// Remember, [`char`]s may not match your human intuition about characters:
///
/// ```
/// let y = "y̆";
///
/// let mut chars = y.chars();
///
/// assert_eq!(Some('y'), chars.next()); // not 'y̆'
/// assert_eq!(Some('\u{0306}'), chars.next());
///
/// assert_eq!(None, chars.next());
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
pub fn chars(&self) -> Chars {
core_str::StrExt::chars(self)
}
/// Returns an iterator over the [`char`]s of a string slice, and their
/// positions.
///
/// As a string slice consists of valid UTF-8, we can iterate through a
/// string slice by [`char`]. This method returns an iterator of both
/// these [`char`]s, as well as their byte positions.
///
/// The iterator yields tuples. The position is first, the [`char`] is
/// second.
///
/// [`char`]: primitive.char.html
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// let word = "goodbye";
///
/// let count = word.char_indices().count();
/// assert_eq!(7, count);
///
/// let mut char_indices = word.char_indices();
///
/// assert_eq!(Some((0, 'g')), char_indices.next());
/// assert_eq!(Some((1, 'o')), char_indices.next());
/// assert_eq!(Some((2, 'o')), char_indices.next());
/// assert_eq!(Some((3, 'd')), char_indices.next());
/// assert_eq!(Some((4, 'b')), char_indices.next());
/// assert_eq!(Some((5, 'y')), char_indices.next());
/// assert_eq!(Some((6, 'e')), char_indices.next());
///
/// assert_eq!(None, char_indices.next());
/// ```
///
/// Remember, [`char`]s may not match your human intuition about characters:
///
/// ```
/// let y = "y̆";
///
/// let mut char_indices = y.char_indices();
///
/// assert_eq!(Some((0, 'y')), char_indices.next()); // not (0, 'y̆')
/// assert_eq!(Some((1, '\u{0306}')), char_indices.next());
///
/// assert_eq!(None, char_indices.next());
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
pub fn char_indices(&self) -> CharIndices {
core_str::StrExt::char_indices(self)
}
/// An iterator over the bytes of a string slice.
///
/// As a string slice consists of a sequence of bytes, we can iterate
/// through a string slice by byte. This method returns such an iterator.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// let mut bytes = "bors".bytes();
///
/// assert_eq!(Some(b'b'), bytes.next());
/// assert_eq!(Some(b'o'), bytes.next());
/// assert_eq!(Some(b'r'), bytes.next());
/// assert_eq!(Some(b's'), bytes.next());
///
/// assert_eq!(None, bytes.next());
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
pub fn bytes(&self) -> Bytes {
core_str::StrExt::bytes(self)
}
/// Split a string slice by whitespace.
///
/// The iterator returned will return string slices that are sub-slices of
/// the original string slice, separated by any amount of whitespace.
///
/// 'Whitespace' is defined according to the terms of the Unicode Derived
/// Core Property `White_Space`.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// let mut iter = "A few words".split_whitespace();
///
/// assert_eq!(Some("A"), iter.next());
/// assert_eq!(Some("few"), iter.next());
/// assert_eq!(Some("words"), iter.next());
///
/// assert_eq!(None, iter.next());
/// ```
///
/// All kinds of whitespace are considered:
///
/// ```
/// let mut iter = " Mary had\ta\u{2009}little \n\t lamb".split_whitespace();
/// assert_eq!(Some("Mary"), iter.next());
/// assert_eq!(Some("had"), iter.next());
/// assert_eq!(Some("a"), iter.next());
/// assert_eq!(Some("little"), iter.next());
/// assert_eq!(Some("lamb"), iter.next());
///
/// assert_eq!(None, iter.next());
/// ```
#[stable(feature = "split_whitespace", since = "1.1.0")]
#[inline]
pub fn split_whitespace(&self) -> SplitWhitespace {
UnicodeStr::split_whitespace(self)
}
/// An iterator over the lines of a string, as string slices.
///
/// Lines are ended with either a newline (`\n`) or a carriage return with
/// a line feed (`\r\n`).
///
/// The final line ending is optional.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// let text = "foo\r\nbar\n\nbaz\n";
/// let mut lines = text.lines();
///
/// assert_eq!(Some("foo"), lines.next());
/// assert_eq!(Some("bar"), lines.next());
/// assert_eq!(Some(""), lines.next());
/// assert_eq!(Some("baz"), lines.next());
///
/// assert_eq!(None, lines.next());
/// ```
///
/// The final line ending isn't required:
///
/// ```
/// let text = "foo\nbar\n\r\nbaz";
/// let mut lines = text.lines();
///
/// assert_eq!(Some("foo"), lines.next());
/// assert_eq!(Some("bar"), lines.next());
/// assert_eq!(Some(""), lines.next());
/// assert_eq!(Some("baz"), lines.next());
///
/// assert_eq!(None, lines.next());
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
pub fn lines(&self) -> Lines {
core_str::StrExt::lines(self)
}
/// An iterator over the lines of a string.
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_deprecated(since = "1.4.0", reason = "use lines() instead now")]
#[inline]
#[allow(deprecated)]
pub fn lines_any(&self) -> LinesAny {
core_str::StrExt::lines_any(self)
}
/// Returns an iterator of `u16` over the string encoded as UTF-16.
#[stable(feature = "encode_utf16", since = "1.8.0")]
pub fn encode_utf16(&self) -> EncodeUtf16 {
EncodeUtf16 { encoder: Utf16Encoder::new(self[..].chars()) }
}
/// Returns `true` if the given pattern matches a sub-slice of
/// this string slice.
///
/// Returns `false` if it does not.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// let bananas = "bananas";
///
/// assert!(bananas.contains("nana"));
/// assert!(!bananas.contains("apples"));
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub fn contains<'a, P: Pattern<'a>>(&'a self, pat: P) -> bool {
core_str::StrExt::contains(self, pat)
}
/// Returns `true` if the given pattern matches a prefix of this
/// string slice.
///
/// Returns `false` if it does not.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// let bananas = "bananas";
///
/// assert!(bananas.starts_with("bana"));
/// assert!(!bananas.starts_with("nana"));
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub fn starts_with<'a, P: Pattern<'a>>(&'a self, pat: P) -> bool {
core_str::StrExt::starts_with(self, pat)
}
/// Returns `true` if the given pattern matches a suffix of this
/// string slice.
///
/// Returns `false` if it does not.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// let bananas = "bananas";
///
/// assert!(bananas.ends_with("anas"));
/// assert!(!bananas.ends_with("nana"));
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub fn ends_with<'a, P: Pattern<'a>>(&'a self, pat: P) -> bool
where P::Searcher: ReverseSearcher<'a>
{
core_str::StrExt::ends_with(self, pat)
}
/// Returns the byte index of the first character of this string slice that
/// matches the pattern.
///
/// Returns [`None`] if the pattern doesn't match.
///
/// The pattern can be a `&str`, [`char`], or a closure that determines if
/// a character matches.
///
/// [`char`]: primitive.char.html
/// [`None`]: option/enum.Option.html#variant.None
///
/// # Examples
///
/// Simple patterns:
///
/// ```
/// let s = "Löwe 老虎 Léopard";
///
/// assert_eq!(s.find('L'), Some(0));
/// assert_eq!(s.find('é'), Some(14));
/// assert_eq!(s.find("Léopard"), Some(13));
/// ```
///
/// More complex patterns with closures:
///
/// ```
/// let s = "Löwe 老虎 Léopard";
///
/// assert_eq!(s.find(char::is_whitespace), Some(5));
/// assert_eq!(s.find(char::is_lowercase), Some(1));
/// ```
///
/// Not finding the pattern:
///
/// ```
/// let s = "Löwe 老虎 Léopard";
/// let x: &[_] = &['1', '2'];
///
/// assert_eq!(s.find(x), None);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub fn find<'a, P: Pattern<'a>>(&'a self, pat: P) -> Option<usize> {
core_str::StrExt::find(self, pat)
}
/// Returns the byte index of the last character of this string slice that
/// matches the pattern.
///
/// Returns [`None`] if the pattern doesn't match.
///
/// The pattern can be a `&str`, [`char`], or a closure that determines if
/// a character matches.
///
/// [`char`]: primitive.char.html
/// [`None`]: option/enum.Option.html#variant.None
///
/// # Examples
///
/// Simple patterns:
///
/// ```
/// let s = "Löwe 老虎 Léopard";
///
/// assert_eq!(s.rfind('L'), Some(13));
/// assert_eq!(s.rfind('é'), Some(14));
/// ```
///
/// More complex patterns with closures:
///
/// ```
/// let s = "Löwe 老虎 Léopard";
///
/// assert_eq!(s.rfind(char::is_whitespace), Some(12));
/// assert_eq!(s.rfind(char::is_lowercase), Some(20));
/// ```
///
/// Not finding the pattern:
///
/// ```
/// let s = "Löwe 老虎 Léopard";
/// let x: &[_] = &['1', '2'];
///
/// assert_eq!(s.rfind(x), None);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub fn rfind<'a, P: Pattern<'a>>(&'a self, pat: P) -> Option<usize>
where P::Searcher: ReverseSearcher<'a>
{
core_str::StrExt::rfind(self, pat)
}
/// An iterator over substrings of this string slice, separated by
/// characters matched by a pattern.
///
/// The pattern can be a `&str`, [`char`], or a closure that determines the
/// split.
///
/// # Iterator behavior
///
/// The returned iterator will be a [`DoubleEndedIterator`] if the pattern
/// allows a reverse search and forward/reverse search yields the same
/// elements. This is true for, eg, [`char`] but not for `&str`.
///
/// [`DoubleEndedIterator`]: iter/trait.DoubleEndedIterator.html
///
/// If the pattern allows a reverse search but its results might differ
/// from a forward search, the [`rsplit()`] method can be used.
///
/// [`char`]: primitive.char.html
/// [`rsplit()`]: #method.rsplit
///
/// # Examples
///
/// Simple patterns:
///
/// ```
/// let v: Vec<&str> = "Mary had a little lamb".split(' ').collect();
/// assert_eq!(v, ["Mary", "had", "a", "little", "lamb"]);
///
/// let v: Vec<&str> = "".split('X').collect();
/// assert_eq!(v, [""]);
///
/// let v: Vec<&str> = "lionXXtigerXleopard".split('X').collect();
/// assert_eq!(v, ["lion", "", "tiger", "leopard"]);
///
/// let v: Vec<&str> = "lion::tiger::leopard".split("::").collect();
/// assert_eq!(v, ["lion", "tiger", "leopard"]);
///
/// let v: Vec<&str> = "abc1def2ghi".split(char::is_numeric).collect();
/// assert_eq!(v, ["abc", "def", "ghi"]);
///
/// let v: Vec<&str> = "lionXtigerXleopard".split(char::is_uppercase).collect();
/// assert_eq!(v, ["lion", "tiger", "leopard"]);
/// ```
///
/// A more complex pattern, using a closure:
///
/// ```
/// let v: Vec<&str> = "abc1defXghi".split(|c| c == '1' || c == 'X').collect();
/// assert_eq!(v, ["abc", "def", "ghi"]);
/// ```
///
/// If a string contains multiple contiguous separators, you will end up
/// with empty strings in the output:
///
/// ```
/// let x = "||||a||b|c".to_string();
/// let d: Vec<_> = x.split('|').collect();
///
/// assert_eq!(d, &["", "", "", "", "a", "", "b", "c"]);
/// ```
///
/// Contiguous separators are separated by the empty string.
///
/// ```
/// let x = "(///)".to_string();
/// let d: Vec<_> = x.split('/').collect();;
///
/// assert_eq!(d, &["(", "", "", ")"]);
/// ```
///
/// Separators at the start or end of a string are neighbored
/// by empty strings.
///
/// ```
/// let d: Vec<_> = "010".split("0").collect();
/// assert_eq!(d, &["", "1", ""]);
/// ```
///
/// When the empty string is used as a separator, it separates
/// every character in the string, along with the beginning
/// and end of the string.
///
/// ```
/// let f: Vec<_> = "rust".split("").collect();
/// assert_eq!(f, &["", "r", "u", "s", "t", ""]);
/// ```
///
/// Contiguous separators can lead to possibly surprising behavior
/// when whitespace is used as the separator. This code is correct:
///
/// ```
/// let x = " a b c".to_string();
/// let d: Vec<_> = x.split(' ').collect();
///
/// assert_eq!(d, &["", "", "", "", "a", "", "b", "c"]);
/// ```
///
/// It does _not_ give you:
///
/// ```,ignore
/// assert_eq!(d, &["a", "b", "c"]);
/// ```
///
/// Use [`split_whitespace()`] for this behavior.
///
/// [`split_whitespace()`]: #method.split_whitespace
#[stable(feature = "rust1", since = "1.0.0")]
pub fn split<'a, P: Pattern<'a>>(&'a self, pat: P) -> Split<'a, P> {
core_str::StrExt::split(self, pat)
}
/// An iterator over substrings of the given string slice, separated by
/// characters matched by a pattern and yielded in reverse order.
///
/// The pattern can be a `&str`, [`char`], or a closure that determines the
/// split.
///
/// [`char`]: primitive.char.html
///
/// # Iterator behavior
///
/// The returned iterator requires that the pattern supports a reverse
/// search, and it will be a [`DoubleEndedIterator`] if a forward/reverse
/// search yields the same elements.
///
/// [`DoubleEndedIterator`]: iter/trait.DoubleEndedIterator.html
///
/// For iterating from the front, the [`split()`] method can be used.
///
/// [`split()`]: #method.split
///
/// # Examples
///
/// Simple patterns:
///
/// ```
/// let v: Vec<&str> = "Mary had a little lamb".rsplit(' ').collect();
/// assert_eq!(v, ["lamb", "little", "a", "had", "Mary"]);
///
/// let v: Vec<&str> = "".rsplit('X').collect();
/// assert_eq!(v, [""]);
///
/// let v: Vec<&str> = "lionXXtigerXleopard".rsplit('X').collect();
/// assert_eq!(v, ["leopard", "tiger", "", "lion"]);
///
/// let v: Vec<&str> = "lion::tiger::leopard".rsplit("::").collect();
/// assert_eq!(v, ["leopard", "tiger", "lion"]);
/// ```
///
/// A more complex pattern, using a closure:
///
/// ```
/// let v: Vec<&str> = "abc1defXghi".rsplit(|c| c == '1' || c == 'X').collect();
/// assert_eq!(v, ["ghi", "def", "abc"]);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub fn rsplit<'a, P: Pattern<'a>>(&'a self, pat: P) -> RSplit<'a, P>
where P::Searcher: ReverseSearcher<'a>
{
core_str::StrExt::rsplit(self, pat)
}
/// An iterator over substrings of the given string slice, separated by
/// characters matched by a pattern.
///
/// The pattern can be a `&str`, [`char`], or a closure that determines the
/// split.
///
/// Equivalent to [`split()`], except that the trailing substring
/// is skipped if empty.
///
/// [`split()`]: #method.split
///
/// This method can be used for string data that is _terminated_,
/// rather than _separated_ by a pattern.
///
/// # Iterator behavior
///
/// The returned iterator will be a [`DoubleEndedIterator`] if the pattern
/// allows a reverse search and forward/reverse search yields the same
/// elements. This is true for, eg, [`char`] but not for `&str`.
///
/// [`DoubleEndedIterator`]: iter/trait.DoubleEndedIterator.html
/// [`char`]: primitive.char.html
///
/// If the pattern allows a reverse search but its results might differ
/// from a forward search, the [`rsplit_terminator()`] method can be used.
///
/// [`rsplit_terminator()`]: #method.rsplit_terminator
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// let v: Vec<&str> = "A.B.".split_terminator('.').collect();
/// assert_eq!(v, ["A", "B"]);
///
/// let v: Vec<&str> = "A..B..".split_terminator(".").collect();
/// assert_eq!(v, ["A", "", "B", ""]);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub fn split_terminator<'a, P: Pattern<'a>>(&'a self, pat: P) -> SplitTerminator<'a, P> {
core_str::StrExt::split_terminator(self, pat)
}
/// An iterator over substrings of `self`, separated by characters
/// matched by a pattern and yielded in reverse order.
///
/// The pattern can be a simple `&str`, [`char`], or a closure that
/// determines the split.
/// Additional libraries might provide more complex patterns like
/// regular expressions.
///
/// [`char`]: primitive.char.html
///
/// Equivalent to [`split()`], except that the trailing substring is
/// skipped if empty.
///
/// [`split()`]: #method.split
///
/// This method can be used for string data that is _terminated_,
/// rather than _separated_ by a pattern.
///
/// # Iterator behavior
///
/// The returned iterator requires that the pattern supports a
/// reverse search, and it will be double ended if a forward/reverse
/// search yields the same elements.
///
/// For iterating from the front, the [`split_terminator()`] method can be
/// used.
///
/// [`split_terminator()`]: #method.split_terminator
///
/// # Examples
///
/// ```
/// let v: Vec<&str> = "A.B.".rsplit_terminator('.').collect();
/// assert_eq!(v, ["B", "A"]);
///
/// let v: Vec<&str> = "A..B..".rsplit_terminator(".").collect();
/// assert_eq!(v, ["", "B", "", "A"]);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub fn rsplit_terminator<'a, P: Pattern<'a>>(&'a self, pat: P) -> RSplitTerminator<'a, P>
where P::Searcher: ReverseSearcher<'a>
{
core_str::StrExt::rsplit_terminator(self, pat)
}
/// An iterator over substrings of the given string slice, separated by a
/// pattern, restricted to returning at most `n` items.
///
/// If `n` substrings are returned, the last substring (the `n`th substring)
/// will contain the remainder of the string.
///
/// The pattern can be a `&str`, [`char`], or a closure that determines the
/// split.
///
/// [`char`]: primitive.char.html
///
/// # Iterator behavior
///
/// The returned iterator will not be double ended, because it is
/// not efficient to support.
///
/// If the pattern allows a reverse search, the [`rsplitn()`] method can be
/// used.
///
/// [`rsplitn()`]: #method.rsplitn
///
/// # Examples
///
/// Simple patterns:
///
/// ```
/// let v: Vec<&str> = "Mary had a little lambda".splitn(3, ' ').collect();
/// assert_eq!(v, ["Mary", "had", "a little lambda"]);
///
/// let v: Vec<&str> = "lionXXtigerXleopard".splitn(3, "X").collect();
/// assert_eq!(v, ["lion", "", "tigerXleopard"]);
///
/// let v: Vec<&str> = "abcXdef".splitn(1, 'X').collect();
/// assert_eq!(v, ["abcXdef"]);
///
/// let v: Vec<&str> = "".splitn(1, 'X').collect();
/// assert_eq!(v, [""]);
/// ```
///
/// A more complex pattern, using a closure:
///
/// ```
/// let v: Vec<&str> = "abc1defXghi".splitn(2, |c| c == '1' || c == 'X').collect();
/// assert_eq!(v, ["abc", "defXghi"]);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub fn splitn<'a, P: Pattern<'a>>(&'a self, n: usize, pat: P) -> SplitN<'a, P> {
core_str::StrExt::splitn(self, n, pat)
}
/// An iterator over substrings of this string slice, separated by a
/// pattern, starting from the end of the string, restricted to returning
/// at most `n` items.
///
/// If `n` substrings are returned, the last substring (the `n`th substring)
/// will contain the remainder of the string.
///
/// The pattern can be a `&str`, [`char`], or a closure that
/// determines the split.
///
/// [`char`]: primitive.char.html
///
/// # Iterator behavior
///
/// The returned iterator will not be double ended, because it is not
/// efficient to support.
///
/// For splitting from the front, the [`splitn()`] method can be used.
///
/// [`splitn()`]: #method.splitn
///
/// # Examples
///
/// Simple patterns:
///
/// ```
/// let v: Vec<&str> = "Mary had a little lamb".rsplitn(3, ' ').collect();
/// assert_eq!(v, ["lamb", "little", "Mary had a"]);
///
/// let v: Vec<&str> = "lionXXtigerXleopard".rsplitn(3, 'X').collect();
/// assert_eq!(v, ["leopard", "tiger", "lionX"]);
///
/// let v: Vec<&str> = "lion::tiger::leopard".rsplitn(2, "::").collect();
/// assert_eq!(v, ["leopard", "lion::tiger"]);
/// ```
///
/// A more complex pattern, using a closure:
///
/// ```
/// let v: Vec<&str> = "abc1defXghi".rsplitn(2, |c| c == '1' || c == 'X').collect();
/// assert_eq!(v, ["ghi", "abc1def"]);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub fn rsplitn<'a, P: Pattern<'a>>(&'a self, n: usize, pat: P) -> RSplitN<'a, P>
where P::Searcher: ReverseSearcher<'a>
{
core_str::StrExt::rsplitn(self, n, pat)
}
/// An iterator over the matches of a pattern within the given string
/// slice.
///
/// The pattern can be a `&str`, [`char`], or a closure that
/// determines if a character matches.
///
/// [`char`]: primitive.char.html
///
/// # Iterator behavior
///
/// The returned iterator will be a [`DoubleEndedIterator`] if the pattern
/// allows a reverse search and forward/reverse search yields the same
/// elements. This is true for, eg, [`char`] but not for `&str`.
///
/// [`DoubleEndedIterator`]: iter/trait.DoubleEndedIterator.html
/// [`char`]: primitive.char.html
///
/// If the pattern allows a reverse search but its results might differ
/// from a forward search, the [`rmatches()`] method can be used.
///
/// [`rmatches()`]: #method.rmatches
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// let v: Vec<&str> = "abcXXXabcYYYabc".matches("abc").collect();
/// assert_eq!(v, ["abc", "abc", "abc"]);
///
/// let v: Vec<&str> = "1abc2abc3".matches(char::is_numeric).collect();
/// assert_eq!(v, ["1", "2", "3"]);
/// ```
#[stable(feature = "str_matches", since = "1.2.0")]
pub fn matches<'a, P: Pattern<'a>>(&'a self, pat: P) -> Matches<'a, P> {
core_str::StrExt::matches(self, pat)
}
/// An iterator over the matches of a pattern within this string slice,
/// yielded in reverse order.
///
/// The pattern can be a `&str`, [`char`], or a closure that determines if
/// a character matches.
///
/// [`char`]: primitive.char.html
///
/// # Iterator behavior
///
/// The returned iterator requires that the pattern supports a reverse
/// search, and it will be a [`DoubleEndedIterator`] if a forward/reverse
/// search yields the same elements.
///
/// [`DoubleEndedIterator`]: iter/trait.DoubleEndedIterator.html
///
/// For iterating from the front, the [`matches()`] method can be used.
///
/// [`matches()`]: #method.matches
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// let v: Vec<&str> = "abcXXXabcYYYabc".rmatches("abc").collect();
/// assert_eq!(v, ["abc", "abc", "abc"]);
///
/// let v: Vec<&str> = "1abc2abc3".rmatches(char::is_numeric).collect();
/// assert_eq!(v, ["3", "2", "1"]);
/// ```
#[stable(feature = "str_matches", since = "1.2.0")]
pub fn rmatches<'a, P: Pattern<'a>>(&'a self, pat: P) -> RMatches<'a, P>
where P::Searcher: ReverseSearcher<'a>
{
core_str::StrExt::rmatches(self, pat)
}
/// An iterator over the disjoint matches of a pattern within this string
/// slice as well as the index that the match starts at.
///
/// For matches of `pat` within `self` that overlap, only the indices
/// corresponding to the first match are returned.
///
/// The pattern can be a `&str`, [`char`], or a closure that determines
/// if a character matches.
///
/// [`char`]: primitive.char.html
///
/// # Iterator behavior
///
/// The returned iterator will be a [`DoubleEndedIterator`] if the pattern
/// allows a reverse search and forward/reverse search yields the same
/// elements. This is true for, eg, [`char`] but not for `&str`.
///
/// [`DoubleEndedIterator`]: iter/trait.DoubleEndedIterator.html
///
/// If the pattern allows a reverse search but its results might differ
/// from a forward search, the [`rmatch_indices()`] method can be used.
///
/// [`rmatch_indices()`]: #method.rmatch_indices
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// let v: Vec<_> = "abcXXXabcYYYabc".match_indices("abc").collect();
/// assert_eq!(v, [(0, "abc"), (6, "abc"), (12, "abc")]);
///
/// let v: Vec<_> = "1abcabc2".match_indices("abc").collect();
/// assert_eq!(v, [(1, "abc"), (4, "abc")]);
///
/// let v: Vec<_> = "ababa".match_indices("aba").collect();
/// assert_eq!(v, [(0, "aba")]); // only the first `aba`
/// ```
#[stable(feature = "str_match_indices", since = "1.5.0")]
pub fn match_indices<'a, P: Pattern<'a>>(&'a self, pat: P) -> MatchIndices<'a, P> {
core_str::StrExt::match_indices(self, pat)
}
/// An iterator over the disjoint matches of a pattern within `self`,
/// yielded in reverse order along with the index of the match.
///
/// For matches of `pat` within `self` that overlap, only the indices
/// corresponding to the last match are returned.
///
/// The pattern can be a `&str`, [`char`], or a closure that determines if a
/// character matches.
///
/// [`char`]: primitive.char.html
///
/// # Iterator behavior
///
/// The returned iterator requires that the pattern supports a reverse
/// search, and it will be a [`DoubleEndedIterator`] if a forward/reverse
/// search yields the same elements.
///
/// [`DoubleEndedIterator`]: iter/trait.DoubleEndedIterator.html
///
/// For iterating from the front, the [`match_indices()`] method can be used.
///
/// [`match_indices()`]: #method.match_indices
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// let v: Vec<_> = "abcXXXabcYYYabc".rmatch_indices("abc").collect();
/// assert_eq!(v, [(12, "abc"), (6, "abc"), (0, "abc")]);
///
/// let v: Vec<_> = "1abcabc2".rmatch_indices("abc").collect();
/// assert_eq!(v, [(4, "abc"), (1, "abc")]);
///
/// let v: Vec<_> = "ababa".rmatch_indices("aba").collect();
/// assert_eq!(v, [(2, "aba")]); // only the last `aba`
/// ```
#[stable(feature = "str_match_indices", since = "1.5.0")]
pub fn rmatch_indices<'a, P: Pattern<'a>>(&'a self, pat: P) -> RMatchIndices<'a, P>
where P::Searcher: ReverseSearcher<'a>
{
core_str::StrExt::rmatch_indices(self, pat)
}
/// Returns a string slice with leading and trailing whitespace removed.
///
/// 'Whitespace' is defined according to the terms of the Unicode Derived
/// Core Property `White_Space`.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// let s = " Hello\tworld\t";
///
/// assert_eq!("Hello\tworld", s.trim());
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub fn trim(&self) -> &str {
UnicodeStr::trim(self)
}
/// Returns a string slice with leading whitespace removed.
///
/// 'Whitespace' is defined according to the terms of the Unicode Derived
/// Core Property `White_Space`.
///
/// # Text directionality
///
/// A string is a sequence of bytes. 'Left' in this context means the first
/// position of that byte string; for a language like Arabic or Hebrew
/// which are 'right to left' rather than 'left to right', this will be
/// the _right_ side, not the left.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// let s = " Hello\tworld\t";
///
/// assert_eq!("Hello\tworld\t", s.trim_left());
/// ```
///
/// Directionality:
///
/// ```
/// let s = " English";
/// assert!(Some('E') == s.trim_left().chars().next());
///
/// let s = " עברית";
/// assert!(Some('ע') == s.trim_left().chars().next());
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub fn trim_left(&self) -> &str {
UnicodeStr::trim_left(self)
}
/// Returns a string slice with trailing whitespace removed.
///
/// 'Whitespace' is defined according to the terms of the Unicode Derived
/// Core Property `White_Space`.
///
/// # Text directionality
///
/// A string is a sequence of bytes. 'Right' in this context means the last
/// position of that byte string; for a language like Arabic or Hebrew
/// which are 'right to left' rather than 'left to right', this will be
/// the _left_ side, not the right.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// let s = " Hello\tworld\t";
///
/// assert_eq!(" Hello\tworld", s.trim_right());
/// ```
///
/// Directionality:
///
/// ```
/// let s = "English ";
/// assert!(Some('h') == s.trim_right().chars().rev().next());
///
/// let s = "עברית ";
/// assert!(Some('ת') == s.trim_right().chars().rev().next());
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub fn trim_right(&self) -> &str {
UnicodeStr::trim_right(self)
}
/// Returns a string slice with all prefixes and suffixes that match a
/// pattern repeatedly removed.
///
/// The pattern can be a [`char`] or a closure that determines if a
/// character matches.
///
/// [`char`]: primitive.char.html
///
/// # Examples
///
/// Simple patterns:
///
/// ```
/// assert_eq!("11foo1bar11".trim_matches('1'), "foo1bar");
/// assert_eq!("123foo1bar123".trim_matches(char::is_numeric), "foo1bar");
///
/// let x: &[_] = &['1', '2'];
/// assert_eq!("12foo1bar12".trim_matches(x), "foo1bar");
/// ```
///
/// A more complex pattern, using a closure:
///
/// ```
/// assert_eq!("1foo1barXX".trim_matches(|c| c == '1' || c == 'X'), "foo1bar");
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub fn trim_matches<'a, P: Pattern<'a>>(&'a self, pat: P) -> &'a str
where P::Searcher: DoubleEndedSearcher<'a>
{
core_str::StrExt::trim_matches(self, pat)
}
/// Returns a string slice with all prefixes that match a pattern
/// repeatedly removed.
///
/// The pattern can be a `&str`, [`char`], or a closure that determines if
/// a character matches.
///
/// [`char`]: primitive.char.html
///
/// # Text directionality
///
/// A string is a sequence of bytes. 'Left' in this context means the first
/// position of that byte string; for a language like Arabic or Hebrew
/// which are 'right to left' rather than 'left to right', this will be
/// the _right_ side, not the left.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// assert_eq!("11foo1bar11".trim_left_matches('1'), "foo1bar11");
/// assert_eq!("123foo1bar123".trim_left_matches(char::is_numeric), "foo1bar123");
///
/// let x: &[_] = &['1', '2'];
/// assert_eq!("12foo1bar12".trim_left_matches(x), "foo1bar12");
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub fn trim_left_matches<'a, P: Pattern<'a>>(&'a self, pat: P) -> &'a str {
core_str::StrExt::trim_left_matches(self, pat)
}
/// Returns a string slice with all suffixes that match a pattern
/// repeatedly removed.
///
/// The pattern can be a `&str`, [`char`], or a closure that
/// determines if a character matches.
///
/// [`char`]: primitive.char.html
///
/// # Text directionality
///
/// A string is a sequence of bytes. 'Right' in this context means the last
/// position of that byte string; for a language like Arabic or Hebrew
/// which are 'right to left' rather than 'left to right', this will be
/// the _left_ side, not the right.
///
/// # Examples
///
/// Simple patterns:
///
/// ```
/// assert_eq!("11foo1bar11".trim_right_matches('1'), "11foo1bar");
/// assert_eq!("123foo1bar123".trim_right_matches(char::is_numeric), "123foo1bar");
///
/// let x: &[_] = &['1', '2'];
/// assert_eq!("12foo1bar12".trim_right_matches(x), "12foo1bar");
/// ```
///
/// A more complex pattern, using a closure:
///
/// ```
/// assert_eq!("1fooX".trim_left_matches(|c| c == '1' || c == 'X'), "fooX");
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub fn trim_right_matches<'a, P: Pattern<'a>>(&'a self, pat: P) -> &'a str
where P::Searcher: ReverseSearcher<'a>
{
core_str::StrExt::trim_right_matches(self, pat)
}
/// Parses this string slice into another type.
///
/// Because `parse()` is so general, it can cause problems with type
/// inference. As such, `parse()` is one of the few times you'll see
/// the syntax affectionately known as the 'turbofish': `::<>`. This
/// helps the inference algorithm understand specifically which type
/// you're trying to parse into.
///
/// `parse()` can parse any type that implements the [`FromStr`] trait.
///
/// [`FromStr`]: str/trait.FromStr.html
///
/// # Errors
///
/// Will return [`Err`] if it's not possible to parse this string slice into
/// the desired type.
///
/// [`Err`]: str/trait.FromStr.html#associatedtype.Err
///
/// # Example
///
/// Basic usage
///
/// ```
/// let four: u32 = "4".parse().unwrap();
///
/// assert_eq!(4, four);
/// ```
///
/// Using the 'turbofish' instead of annotating `four`:
///
/// ```
/// let four = "4".parse::<u32>();
///
/// assert_eq!(Ok(4), four);
/// ```
///
/// Failing to parse:
///
/// ```
/// let nope = "j".parse::<u32>();
///
/// assert!(nope.is_err());
/// ```
#[inline]
#[stable(feature = "rust1", since = "1.0.0")]
pub fn parse<F: FromStr>(&self) -> Result<F, F::Err> {
core_str::StrExt::parse(self)
}
/// Replaces all matches of a pattern with another string.
///
/// `replace` creates a new [`String`], and copies the data from this string slice into it.
/// While doing so, it attempts to find matches of a pattern. If it finds any, it
/// replaces them with the replacement string slice.
///
/// [`String`]: string/struct.String.html
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// let s = "this is old";
///
/// assert_eq!("this is new", s.replace("old", "new"));
/// ```
///
/// When the pattern doesn't match:
///
/// ```
/// let s = "this is old";
/// assert_eq!(s, s.replace("cookie monster", "little lamb"));
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub fn replace<'a, P: Pattern<'a>>(&'a self, from: P, to: &str) -> String {
let mut result = String::new();
let mut last_end = 0;
for (start, part) in self.match_indices(from) {
result.push_str(unsafe { self.slice_unchecked(last_end, start) });
result.push_str(to);
last_end = start + part.len();
}
result.push_str(unsafe { self.slice_unchecked(last_end, self.len()) });
result
}
/// Replaces first N matches of a pattern with another string.
///
/// `replacen` creates a new [`String`], and copies the data from this string slice into it.
/// While doing so, it attempts to find matches of a pattern. If it finds any, it
/// replaces them with the replacement string slice at most `N` times.
///
/// [`String`]: string/struct.String.html
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// # #![feature(str_replacen)]
/// let s = "foo foo 123 foo";
/// assert_eq!("new new 123 foo", s.replacen("foo", "new", 2));
/// assert_eq!("faa fao 123 foo", s.replacen('o', "a", 3));
/// assert_eq!("foo foo new23 foo", s.replacen(char::is_numeric, "new", 1));
/// ```
///
/// When the pattern doesn't match:
///
/// ```
/// # #![feature(str_replacen)]
/// let s = "this is old";
/// assert_eq!(s, s.replacen("cookie monster", "little lamb", 10));
/// ```
#[unstable(feature = "str_replacen",
issue = "36436",
reason = "only need to replace first N matches")]
pub fn replacen<'a, P: Pattern<'a>>(&'a self, pat: P, to: &str, count: usize) -> String {
// Hope to reduce the times of re-allocation
let mut result = String::with_capacity(32);
let mut last_end = 0;
for (start, part) in self.match_indices(pat).take(count) {
result.push_str(unsafe { self.slice_unchecked(last_end, start) });
result.push_str(to);
last_end = start + part.len();
}
result.push_str(unsafe { self.slice_unchecked(last_end, self.len()) });
result
}
/// Returns the lowercase equivalent of this string slice, as a new [`String`].
///
/// 'Lowercase' is defined according to the terms of the Unicode Derived Core Property
/// `Lowercase`.
///
/// [`String`]: string/struct.String.html
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// let s = "HELLO";
///
/// assert_eq!("hello", s.to_lowercase());
/// ```
///
/// A tricky example, with sigma:
///
/// ```
/// let sigma = "Σ";
///
/// assert_eq!("σ", sigma.to_lowercase());
///
/// // but at the end of a word, it's ς, not σ:
/// let odysseus = "ὈΔΥΣΣΕΎΣ";
///
/// assert_eq!("ὀδυσσεύς", odysseus.to_lowercase());
/// ```
///
/// Languages without case are not changed:
///
/// ```
/// let new_year = "农历新年";
///
/// assert_eq!(new_year, new_year.to_lowercase());
/// ```
#[stable(feature = "unicode_case_mapping", since = "1.2.0")]
pub fn to_lowercase(&self) -> String {
let mut s = String::with_capacity(self.len());
for (i, c) in self[..].char_indices() {
if c == 'Σ' {
// Σ maps to σ, except at the end of a word where it maps to ς.
// This is the only conditional (contextual) but language-independent mapping
// in `SpecialCasing.txt`,
// so hard-code it rather than have a generic "condition" mechanism.
// See https://github.com/rust-lang/rust/issues/26035
map_uppercase_sigma(self, i, &mut s)
} else {
s.extend(c.to_lowercase());
}
}
return s;
fn map_uppercase_sigma(from: &str, i: usize, to: &mut String) {
// See http://www.unicode.org/versions/Unicode7.0.0/ch03.pdf#G33992
// for the definition of `Final_Sigma`.
debug_assert!('Σ'.len_utf8() == 2);
let is_word_final = case_ignoreable_then_cased(from[..i].chars().rev()) &&
!case_ignoreable_then_cased(from[i + 2..].chars());
to.push_str(if is_word_final {
"ς"
} else {
"σ"
});
}
fn case_ignoreable_then_cased<I: Iterator<Item = char>>(iter: I) -> bool {
use rustc_unicode::derived_property::{Cased, Case_Ignorable};
match iter.skip_while(|&c| Case_Ignorable(c)).next() {
Some(c) => Cased(c),
None => false,
}
}
}
/// Returns the uppercase equivalent of this string slice, as a new [`String`].
///
/// 'Uppercase' is defined according to the terms of the Unicode Derived Core Property
/// `Uppercase`.
///
/// [`String`]: string/struct.String.html
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// let s = "hello";
///
/// assert_eq!("HELLO", s.to_uppercase());
/// ```
///
/// Scripts without case are not changed:
///
/// ```
/// let new_year = "农历新年";
///
/// assert_eq!(new_year, new_year.to_uppercase());
/// ```
#[stable(feature = "unicode_case_mapping", since = "1.2.0")]
pub fn to_uppercase(&self) -> String {
let mut s = String::with_capacity(self.len());
s.extend(self.chars().flat_map(|c| c.to_uppercase()));
return s;
}
/// Escapes each char in `s` with `char::escape_debug`.
#[unstable(feature = "str_escape",
reason = "return type may change to be an iterator",
issue = "27791")]
pub fn escape_debug(&self) -> String {
self.chars().flat_map(|c| c.escape_debug()).collect()
}
/// Escapes each char in `s` with `char::escape_default`.
#[unstable(feature = "str_escape",
reason = "return type may change to be an iterator",
issue = "27791")]
pub fn escape_default(&self) -> String {
self.chars().flat_map(|c| c.escape_default()).collect()
}
/// Escapes each char in `s` with `char::escape_unicode`.
#[unstable(feature = "str_escape",
reason = "return type may change to be an iterator",
issue = "27791")]
pub fn escape_unicode(&self) -> String {
self.chars().flat_map(|c| c.escape_unicode()).collect()
}
/// Converts a `Box<str>` into a [`String`] without copying or allocating.
///
/// [`String`]: string/struct.String.html
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// let string = String::from("birthday gift");
/// let boxed_str = string.clone().into_boxed_str();
///
/// assert_eq!(boxed_str.into_string(), string);
/// ```
#[stable(feature = "box_str", since = "1.4.0")]
pub fn into_string(self: Box<str>) -> String {
unsafe {
let slice = mem::transmute::<Box<str>, Box<[u8]>>(self);
String::from_utf8_unchecked(slice.into_vec())
}
}
/// Create a [`String`] by repeating a string `n` times.
///
/// [`String`]: string/struct.String.html
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// #![feature(repeat_str)]
///
/// assert_eq!("abc".repeat(4), String::from("abcabcabcabc"));
/// ```
#[unstable(feature = "repeat_str", issue = "37079")]
pub fn repeat(&self, n: usize) -> String {
let mut s = String::with_capacity(self.len() * n);
s.extend((0..n).map(|_| self));
s
}
}