rust/src/interpreter.rs

357 lines
12 KiB
Rust

use rustc::middle::{const_eval, def_id, ty};
use rustc_mir::mir_map::MirMap;
use rustc_mir::repr::{self as mir, Mir};
use syntax::ast::Attribute;
use syntax::attr::AttrMetaMethods;
use std::iter;
const TRACE_EXECUTION: bool = false;
#[derive(Clone, Debug, PartialEq)]
enum Value {
Uninit,
Bool(bool),
Int(i64), // FIXME: Should be bit-width aware.
Func(def_id::DefId),
}
#[derive(Copy, Clone, Debug, PartialEq, Eq, PartialOrd, Ord)]
enum Pointer {
Stack(usize),
// TODO(tsion): Heap
}
/// A stack frame:
///
/// ```text
/// +-----------------------+
/// | ReturnPointer | return value
/// + - - - - - - - - - - - +
/// | Arg(0) |
/// | Arg(1) | arguments
/// | ... |
/// | Arg(num_args - 1) |
/// + - - - - - - - - - - - +
/// | Var(0) |
/// | Var(1) | variables
/// | ... |
/// | Var(num_vars - 1) |
/// + - - - - - - - - - - - +
/// | Temp(0) |
/// | Temp(1) | temporaries
/// | ... |
/// | Temp(num_temps - 1) |
/// + - - - - - - - - - - - +
/// | Aggregates | aggregates
/// +-----------------------+
/// ```
#[derive(Debug)]
struct Frame {
offset: usize,
num_args: usize,
num_vars: usize,
num_temps: usize,
// aggregates
}
impl Frame {
fn size(&self) -> usize {
1 + self.num_args + self.num_vars + self.num_temps
}
fn return_val_offset(&self) -> usize {
self.offset
}
fn arg_offset(&self, i: u32) -> usize {
self.offset + 1 + i as usize
}
fn var_offset(&self, i: u32) -> usize {
self.offset + 1 + self.num_args + i as usize
}
fn temp_offset(&self, i: u32) -> usize {
self.offset + 1 + self.num_args + self.num_vars + i as usize
}
}
struct Interpreter<'a, 'tcx: 'a> {
tcx: &'a ty::ctxt<'tcx>,
mir_map: &'a MirMap<'tcx>,
value_stack: Vec<Value>,
call_stack: Vec<Frame>,
}
impl<'a, 'tcx> Interpreter<'a, 'tcx> {
fn new(tcx: &'a ty::ctxt<'tcx>, mir_map: &'a MirMap<'tcx>) -> Self {
Interpreter {
tcx: tcx,
mir_map: mir_map,
value_stack: Vec::new(),
call_stack: Vec::new(),
}
}
fn push_stack_frame(&mut self, mir: &Mir, args: &[Value]) {
self.call_stack.push(Frame {
offset: self.value_stack.len(),
num_args: mir.arg_decls.len(),
num_vars: mir.var_decls.len(),
num_temps: mir.temp_decls.len(),
});
let frame = self.call_stack.last().unwrap();
self.value_stack.extend(iter::repeat(Value::Uninit).take(frame.size()));
for (i, arg) in args.iter().enumerate() {
self.value_stack[frame.offset + 1 + i] = arg.clone();
}
}
fn pop_stack_frame(&mut self) {
let frame = self.call_stack.pop().expect("tried to pop stack frame, but there were none");
self.value_stack.truncate(frame.offset);
}
fn call(&mut self, mir: &Mir, args: &[Value]) -> Value {
self.push_stack_frame(mir, args);
let mut block = mir::START_BLOCK;
loop {
use rustc_mir::repr::Terminator::*;
let block_data = mir.basic_block_data(block);
for stmt in &block_data.statements {
use rustc_mir::repr::StatementKind::*;
if TRACE_EXECUTION { println!("{:?}", stmt); }
match stmt.kind {
Assign(ref lvalue, ref rvalue) => {
let ptr = self.eval_lvalue(lvalue);
let value = self.eval_rvalue(rvalue);
self.write_pointer(ptr, value);
}
Drop(_kind, ref _lv) => {
// TODO
},
}
}
if TRACE_EXECUTION { println!("{:?}", block_data.terminator); }
match block_data.terminator {
Return => break,
Goto { target } => block = target,
Call { data: mir::CallData { ref destination, ref func, ref args }, targets } => {
let ptr = self.eval_lvalue(destination);
let func_val = self.eval_operand(func);
if let Value::Func(def_id) = func_val {
let node_id = self.tcx.map.as_local_node_id(def_id).unwrap();
let mir = &self.mir_map[&node_id];
let arg_vals: Vec<Value> =
args.iter().map(|arg| self.eval_operand(arg)).collect();
// FIXME: Pass the destination lvalue such that the ReturnPointer inside
// the function call will point to the destination.
let return_val = self.call(mir, &arg_vals);
self.write_pointer(ptr, return_val);
block = targets[0];
} else {
panic!("tried to call a non-function value: {:?}", func_val);
}
}
If { ref cond, targets } => {
match self.eval_operand(cond) {
Value::Bool(true) => block = targets[0],
Value::Bool(false) => block = targets[1],
cond_val => panic!("Non-boolean `if` condition value: {:?}", cond_val),
}
}
SwitchInt { ref discr, switch_ty: _, ref values, ref targets } => {
let discr_val = self.read_lvalue(discr);
let index = values.iter().position(|v| discr_val == self.eval_constant(v))
.expect("discriminant matched no values");
block = targets[index];
}
// Diverge => unimplemented!(),
// Panic { target } => unimplemented!(),
// Switch { ref discr, adt_def, ref targets } => unimplemented!(),
_ => unimplemented!(),
}
}
let ret_val = self.read_lvalue(&mir::Lvalue::ReturnPointer);
self.pop_stack_frame();
ret_val
}
fn eval_lvalue(&self, lvalue: &mir::Lvalue) -> Pointer {
use rustc_mir::repr::Lvalue::*;
let frame = self.call_stack.last().expect("missing call frame");
match *lvalue {
ReturnPointer => Pointer::Stack(frame.return_val_offset()),
Arg(i) => Pointer::Stack(frame.arg_offset(i)),
Var(i) => Pointer::Stack(frame.var_offset(i)),
Temp(i) => Pointer::Stack(frame.temp_offset(i)),
_ => unimplemented!(),
}
}
fn eval_rvalue(&mut self, rvalue: &mir::Rvalue) -> Value {
use rustc_mir::repr::Rvalue::*;
use rustc_mir::repr::BinOp::*;
use rustc_mir::repr::UnOp::*;
match *rvalue {
Use(ref operand) => self.eval_operand(operand),
BinaryOp(bin_op, ref left, ref right) => {
match (self.eval_operand(left), self.eval_operand(right)) {
(Value::Int(l), Value::Int(r)) => {
match bin_op {
Add => Value::Int(l + r),
Sub => Value::Int(l - r),
Mul => Value::Int(l * r),
Div => Value::Int(l / r),
Rem => Value::Int(l % r),
BitXor => Value::Int(l ^ r),
BitAnd => Value::Int(l & r),
BitOr => Value::Int(l | r),
Shl => Value::Int(l << r),
Shr => Value::Int(l >> r),
Eq => Value::Bool(l == r),
Lt => Value::Bool(l < r),
Le => Value::Bool(l <= r),
Ne => Value::Bool(l != r),
Ge => Value::Bool(l >= r),
Gt => Value::Bool(l > r),
}
}
_ => unimplemented!(),
}
}
UnaryOp(un_op, ref operand) => {
match (un_op, self.eval_operand(operand)) {
(Not, Value::Int(n)) => Value::Int(!n),
(Neg, Value::Int(n)) => Value::Int(-n),
_ => unimplemented!(),
}
}
// Aggregate(mir::AggregateKind::Adt(ref adt_def, variant, substs), ref operands) => {
// let num_fields = adt_def.variants[variant].fields.len();
// debug_assert_eq!(num_fields, operands.len());
// let data = operands.iter().map(|op| self.eval_operand(op)).collect();
// Value::Adt(variant, data)
// }
_ => unimplemented!(),
}
}
fn eval_operand(&mut self, op: &mir::Operand) -> Value {
use rustc_mir::repr::Operand::*;
match *op {
Consume(ref lvalue) => self.read_lvalue(lvalue),
Constant(ref constant) => {
match constant.literal {
mir::Literal::Value { ref value } => self.eval_constant(value),
mir::Literal::Item { def_id, substs: _ } => {
Value::Func(def_id)
}
}
}
}
}
fn eval_constant(&self, const_val: &const_eval::ConstVal) -> Value {
use rustc::middle::const_eval::ConstVal::*;
match *const_val {
Float(_f) => unimplemented!(),
Int(i) => Value::Int(i),
Uint(_u) => unimplemented!(),
Str(ref _s) => unimplemented!(),
ByteStr(ref _bs) => unimplemented!(),
Bool(b) => Value::Bool(b),
Struct(_node_id) => unimplemented!(),
Tuple(_node_id) => unimplemented!(),
Function(_def_id) => unimplemented!(),
}
}
fn read_lvalue(&self, lvalue: &mir::Lvalue) -> Value {
self.read_pointer(self.eval_lvalue(lvalue))
}
fn read_pointer(&self, p: Pointer) -> Value {
match p {
Pointer::Stack(offset) => self.value_stack[offset].clone(),
}
}
fn write_pointer(&mut self, p: Pointer, val: Value) {
match p {
Pointer::Stack(offset) => self.value_stack[offset] = val,
}
}
}
pub fn interpret_start_points<'tcx>(tcx: &ty::ctxt<'tcx>, mir_map: &MirMap<'tcx>) {
for (&id, mir) in mir_map {
for attr in tcx.map.attrs(id) {
if attr.check_name("miri_run") {
let item = tcx.map.expect_item(id);
println!("Interpreting: {}", item.name);
let mut interpreter = Interpreter::new(tcx, mir_map);
let val = interpreter.call(mir, &[]);
let val_str = format!("{:?}", val);
if !check_expected(&val_str, attr) {
println!("=> {}\n", val_str);
}
}
}
}
}
fn check_expected(actual: &str, attr: &Attribute) -> bool {
if let Some(meta_items) = attr.meta_item_list() {
for meta_item in meta_items {
if meta_item.check_name("expected") {
let expected = meta_item.value_str().unwrap();
if actual == &expected[..] {
println!("Test passed!\n");
} else {
println!("Actual value:\t{}\nExpected value:\t{}\n", actual, expected);
}
return true;
}
}
}
false
}