rust/src/librustuv/lib.rs
Alex Crichton b2c6d6fd3f rustuv: Implement timeouts for unix networking
This commit implements the set{,_read,_write}_timeout() methods for the
libuv-based networking I/O objects. The implementation details are commented
thoroughly throughout the implementation.
2014-05-07 23:29:04 -07:00

506 lines
14 KiB
Rust

// Copyright 2013 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
/*!
Bindings to libuv, along with the default implementation of `std::rt::rtio`.
UV types consist of the event loop (Loop), Watchers, Requests and
Callbacks.
Watchers and Requests encapsulate pointers to uv *handles*, which have
subtyping relationships with each other. This subtyping is reflected
in the bindings with explicit or implicit coercions. For example, an
upcast from TcpWatcher to StreamWatcher is done with
`tcp_watcher.as_stream()`. In other cases a callback on a specific
type of watcher will be passed a watcher of a supertype.
Currently all use of Request types (connect/write requests) are
encapsulated in the bindings and don't need to be dealt with by the
caller.
# Safety note
Due to the complex lifecycle of uv handles, as well as compiler bugs,
this module is not memory safe and requires explicit memory management,
via `close` and `delete` methods.
*/
#![crate_id = "rustuv#0.11-pre"]
#![license = "MIT/ASL2"]
#![crate_type = "rlib"]
#![crate_type = "dylib"]
#![feature(macro_rules)]
#![deny(unused_result, unused_must_use)]
#![allow(visible_private_types)]
#[cfg(test)] extern crate green;
#[cfg(test)] extern crate realrustuv = "rustuv";
extern crate libc;
use libc::{c_int, c_void};
use std::cast;
use std::fmt;
use std::io::IoError;
use std::io;
use std::ptr::null;
use std::ptr;
use std::rt::local::Local;
use std::rt::rtio;
use std::rt::task::{BlockedTask, Task};
use std::str::raw::from_c_str;
use std::str;
use std::task;
pub use self::async::AsyncWatcher;
pub use self::file::{FsRequest, FileWatcher};
pub use self::idle::IdleWatcher;
pub use self::net::{TcpWatcher, TcpListener, TcpAcceptor, UdpWatcher};
pub use self::pipe::{PipeWatcher, PipeListener, PipeAcceptor};
pub use self::process::Process;
pub use self::signal::SignalWatcher;
pub use self::timer::TimerWatcher;
pub use self::tty::TtyWatcher;
// Run tests with libgreen instead of libnative.
//
// FIXME: This egregiously hacks around starting the test runner in a different
// threading mode than the default by reaching into the auto-generated
// '__test' module.
#[cfg(test)] #[start]
fn start(argc: int, argv: **u8) -> int {
green::start(argc, argv, event_loop, __test::main)
}
mod macros;
mod access;
mod timeout;
mod homing;
mod queue;
mod rc;
pub mod uvio;
pub mod uvll;
pub mod file;
pub mod net;
pub mod idle;
pub mod timer;
pub mod async;
pub mod addrinfo;
pub mod process;
pub mod pipe;
pub mod tty;
pub mod signal;
pub mod stream;
/// Creates a new event loop which is powered by libuv
///
/// This function is used in tandem with libgreen's `PoolConfig` type as a value
/// for the `event_loop_factory` field. Using this function as the event loop
/// factory will power programs with libuv and enable green threading.
///
/// # Example
///
/// ```
/// extern crate rustuv;
/// extern crate green;
///
/// #[start]
/// fn start(argc: int, argv: **u8) -> int {
/// green::start(argc, argv, rustuv::event_loop, main)
/// }
///
/// fn main() {
/// // this code is running inside of a green task powered by libuv
/// }
/// ```
pub fn event_loop() -> Box<rtio::EventLoop:Send> {
box uvio::UvEventLoop::new() as Box<rtio::EventLoop:Send>
}
/// A type that wraps a uv handle
pub trait UvHandle<T> {
fn uv_handle(&self) -> *T;
fn uv_loop(&self) -> Loop {
Loop::wrap(unsafe { uvll::get_loop_for_uv_handle(self.uv_handle()) })
}
// FIXME(#8888) dummy self
fn alloc(_: Option<Self>, ty: uvll::uv_handle_type) -> *T {
unsafe {
let handle = uvll::malloc_handle(ty);
assert!(!handle.is_null());
handle as *T
}
}
unsafe fn from_uv_handle<'a>(h: &'a *T) -> &'a mut Self {
cast::transmute(uvll::get_data_for_uv_handle(*h))
}
fn install(~self) -> Box<Self> {
unsafe {
let myptr = cast::transmute::<&Box<Self>, &*u8>(&self);
uvll::set_data_for_uv_handle(self.uv_handle(), *myptr);
}
self
}
fn close_async_(&mut self) {
// we used malloc to allocate all handles, so we must always have at
// least a callback to free all the handles we allocated.
extern fn close_cb(handle: *uvll::uv_handle_t) {
unsafe { uvll::free_handle(handle) }
}
unsafe {
uvll::set_data_for_uv_handle(self.uv_handle(), null::<()>());
uvll::uv_close(self.uv_handle() as *uvll::uv_handle_t, close_cb)
}
}
fn close(&mut self) {
let mut slot = None;
unsafe {
uvll::uv_close(self.uv_handle() as *uvll::uv_handle_t, close_cb);
uvll::set_data_for_uv_handle(self.uv_handle(), ptr::null::<()>());
wait_until_woken_after(&mut slot, &self.uv_loop(), || {
uvll::set_data_for_uv_handle(self.uv_handle(), &slot);
})
}
extern fn close_cb(handle: *uvll::uv_handle_t) {
unsafe {
let data = uvll::get_data_for_uv_handle(handle);
uvll::free_handle(handle);
if data == ptr::null() { return }
let slot: &mut Option<BlockedTask> = cast::transmute(data);
wakeup(slot);
}
}
}
}
pub struct ForbidSwitch {
msg: &'static str,
io: uint,
}
impl ForbidSwitch {
fn new(s: &'static str) -> ForbidSwitch {
ForbidSwitch {
msg: s,
io: homing::local_id(),
}
}
}
impl Drop for ForbidSwitch {
fn drop(&mut self) {
assert!(self.io == homing::local_id(),
"didnt want a scheduler switch: {}",
self.msg);
}
}
pub struct ForbidUnwind {
msg: &'static str,
failing_before: bool,
}
impl ForbidUnwind {
fn new(s: &'static str) -> ForbidUnwind {
ForbidUnwind {
msg: s, failing_before: task::failing(),
}
}
}
impl Drop for ForbidUnwind {
fn drop(&mut self) {
assert!(self.failing_before == task::failing(),
"didnt want an unwind during: {}", self.msg);
}
}
fn wait_until_woken_after(slot: *mut Option<BlockedTask>,
loop_: &Loop,
f: ||) {
let _f = ForbidUnwind::new("wait_until_woken_after");
unsafe {
assert!((*slot).is_none());
let task: Box<Task> = Local::take();
loop_.modify_blockers(1);
task.deschedule(1, |task| {
*slot = Some(task);
f();
Ok(())
});
loop_.modify_blockers(-1);
}
}
fn wakeup(slot: &mut Option<BlockedTask>) {
assert!(slot.is_some());
let _ = slot.take_unwrap().wake().map(|t| t.reawaken());
}
pub struct Request {
pub handle: *uvll::uv_req_t,
defused: bool,
}
impl Request {
pub fn new(ty: uvll::uv_req_type) -> Request {
unsafe {
let handle = uvll::malloc_req(ty);
uvll::set_data_for_req(handle, null::<()>());
Request::wrap(handle)
}
}
pub fn wrap(handle: *uvll::uv_req_t) -> Request {
Request { handle: handle, defused: false }
}
pub fn set_data<T>(&self, t: *T) {
unsafe { uvll::set_data_for_req(self.handle, t) }
}
pub unsafe fn get_data<T>(&self) -> &'static mut T {
let data = uvll::get_data_for_req(self.handle);
assert!(data != null());
cast::transmute(data)
}
// This function should be used when the request handle has been given to an
// underlying uv function, and the uv function has succeeded. This means
// that uv will at some point invoke the callback, and in the meantime we
// can't deallocate the handle because libuv could be using it.
//
// This is still a problem in blocking situations due to linked failure. In
// the connection callback the handle should be re-wrapped with the `wrap`
// function to ensure its destruction.
pub fn defuse(&mut self) {
self.defused = true;
}
}
impl Drop for Request {
fn drop(&mut self) {
if !self.defused {
unsafe { uvll::free_req(self.handle) }
}
}
}
/// FIXME: Loop(*handle) is buggy with destructors. Normal structs
/// with dtors may not be destructured, but tuple structs can,
/// but the results are not correct.
pub struct Loop {
handle: *uvll::uv_loop_t
}
impl Loop {
pub fn new() -> Loop {
let handle = unsafe { uvll::loop_new() };
assert!(handle.is_not_null());
unsafe { uvll::set_data_for_uv_loop(handle, 0 as *c_void) }
Loop::wrap(handle)
}
pub fn wrap(handle: *uvll::uv_loop_t) -> Loop { Loop { handle: handle } }
pub fn run(&mut self) {
assert_eq!(unsafe { uvll::uv_run(self.handle, uvll::RUN_DEFAULT) }, 0);
}
pub fn close(&mut self) {
unsafe { uvll::uv_loop_delete(self.handle) };
}
// The 'data' field of the uv_loop_t is used to count the number of tasks
// that are currently blocked waiting for I/O to complete.
fn modify_blockers(&self, amt: uint) {
unsafe {
let cur = uvll::get_data_for_uv_loop(self.handle) as uint;
uvll::set_data_for_uv_loop(self.handle, (cur + amt) as *c_void)
}
}
fn get_blockers(&self) -> uint {
unsafe { uvll::get_data_for_uv_loop(self.handle) as uint }
}
}
// FIXME: Need to define the error constants like EOF so they can be
// compared to the UvError type
pub struct UvError(c_int);
impl UvError {
pub fn name(&self) -> ~str {
unsafe {
let inner = match self { &UvError(a) => a };
let name_str = uvll::uv_err_name(inner);
assert!(name_str.is_not_null());
from_c_str(name_str)
}
}
pub fn desc(&self) -> ~str {
unsafe {
let inner = match self { &UvError(a) => a };
let desc_str = uvll::uv_strerror(inner);
assert!(desc_str.is_not_null());
from_c_str(desc_str)
}
}
pub fn is_eof(&self) -> bool {
let UvError(handle) = *self;
handle == uvll::EOF
}
}
impl fmt::Show for UvError {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f.buf, "{}: {}", self.name(), self.desc())
}
}
#[test]
fn error_smoke_test() {
let err: UvError = UvError(uvll::EOF);
assert_eq!(err.to_str(), "EOF: end of file".to_owned());
}
pub fn uv_error_to_io_error(uverr: UvError) -> IoError {
unsafe {
// Importing error constants
// uv error descriptions are static
let UvError(errcode) = uverr;
let c_desc = uvll::uv_strerror(errcode);
let desc = str::raw::c_str_to_static_slice(c_desc);
let kind = match errcode {
uvll::UNKNOWN => io::OtherIoError,
uvll::OK => io::OtherIoError,
uvll::EOF => io::EndOfFile,
uvll::EACCES => io::PermissionDenied,
uvll::ECONNREFUSED => io::ConnectionRefused,
uvll::ECONNRESET => io::ConnectionReset,
uvll::ENOTCONN => io::NotConnected,
uvll::ENOENT => io::FileNotFound,
uvll::EPIPE => io::BrokenPipe,
uvll::ECONNABORTED => io::ConnectionAborted,
uvll::EADDRNOTAVAIL => io::ConnectionRefused,
uvll::ECANCELED => io::TimedOut,
err => {
uvdebug!("uverr.code {}", err as int);
// FIXME: Need to map remaining uv error types
io::OtherIoError
}
};
IoError {
kind: kind,
desc: desc,
detail: None
}
}
}
/// Given a uv error code, convert a callback status to a UvError
pub fn status_to_maybe_uv_error(status: c_int) -> Option<UvError> {
if status >= 0 {
None
} else {
Some(UvError(status))
}
}
pub fn status_to_io_result(status: c_int) -> Result<(), IoError> {
if status >= 0 {Ok(())} else {Err(uv_error_to_io_error(UvError(status)))}
}
/// The uv buffer type
pub type Buf = uvll::uv_buf_t;
pub fn empty_buf() -> Buf {
uvll::uv_buf_t {
base: null(),
len: 0,
}
}
/// Borrow a slice to a Buf
pub fn slice_to_uv_buf(v: &[u8]) -> Buf {
let data = v.as_ptr();
uvll::uv_buf_t { base: data, len: v.len() as uvll::uv_buf_len_t }
}
// This function is full of lies!
#[cfg(test)]
fn local_loop() -> &'static mut uvio::UvIoFactory {
unsafe {
cast::transmute({
let mut task = Local::borrow(None::<Task>);
let mut io = task.local_io().unwrap();
let (_vtable, uvio): (uint, &'static mut uvio::UvIoFactory) =
cast::transmute(io.get());
uvio
})
}
}
#[cfg(test)]
mod test {
use std::cast::transmute;
use std::unstable::run_in_bare_thread;
use super::{slice_to_uv_buf, Loop};
#[test]
fn test_slice_to_uv_buf() {
let slice = [0, .. 20];
let buf = slice_to_uv_buf(slice);
assert_eq!(buf.len, 20);
unsafe {
let base = transmute::<*u8, *mut u8>(buf.base);
(*base) = 1;
(*base.offset(1)) = 2;
}
assert!(slice[0] == 1);
assert!(slice[1] == 2);
}
#[test]
fn loop_smoke_test() {
run_in_bare_thread(proc() {
let mut loop_ = Loop::new();
loop_.run();
loop_.close();
});
}
}