f9ff55e4d0
closes #12677 (cc @Valloric) cc #15294 r? @aturon / @alexcrichton (Because of #19358 I had to move the struct bounds from the `where` clause into the parameter list)
1558 lines
45 KiB
Rust
1558 lines
45 KiB
Rust
// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
|
|
// file at the top-level directory of this distribution and at
|
|
// http://rust-lang.org/COPYRIGHT.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
|
|
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
|
|
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
|
|
// option. This file may not be copied, modified, or distributed
|
|
// except according to those terms.
|
|
|
|
//! Slice management and manipulation
|
|
//!
|
|
//! For more details `std::slice`.
|
|
|
|
#![stable]
|
|
#![doc(primitive = "slice")]
|
|
|
|
// How this module is organized.
|
|
//
|
|
// The library infrastructure for slices is fairly messy. There's
|
|
// a lot of stuff defined here. Let's keep it clean.
|
|
//
|
|
// Since slices don't support inherent methods; all operations
|
|
// on them are defined on traits, which are then reexported from
|
|
// the prelude for convenience. So there are a lot of traits here.
|
|
//
|
|
// The layout of this file is thus:
|
|
//
|
|
// * Slice-specific 'extension' traits and their implementations. This
|
|
// is where most of the slice API resides.
|
|
// * Implementations of a few common traits with important slice ops.
|
|
// * Definitions of a bunch of iterators.
|
|
// * Free functions.
|
|
// * The `raw` and `bytes` submodules.
|
|
// * Boilerplate trait implementations.
|
|
|
|
use mem::transmute;
|
|
use clone::Clone;
|
|
use cmp::{Ordering, PartialEq, PartialOrd, Eq, Ord, Equiv};
|
|
use cmp::Ordering::{Less, Equal, Greater};
|
|
use cmp;
|
|
use default::Default;
|
|
use iter::*;
|
|
use kinds::Copy;
|
|
use num::Int;
|
|
use ops::{FnMut, mod};
|
|
use option::Option;
|
|
use option::Option::{None, Some};
|
|
use ptr;
|
|
use ptr::RawPtr;
|
|
use mem;
|
|
use mem::size_of;
|
|
use kinds::{Sized, marker};
|
|
use raw::Repr;
|
|
// Avoid conflicts with *both* the Slice trait (buggy) and the `slice::raw` module.
|
|
use raw::Slice as RawSlice;
|
|
|
|
|
|
//
|
|
// Extension traits
|
|
//
|
|
|
|
/// Extension methods for slices.
|
|
#[allow(missing_docs)] // docs in libcollections
|
|
pub trait SliceExt<T> for Sized? {
|
|
fn slice<'a>(&'a self, start: uint, end: uint) -> &'a [T];
|
|
fn slice_from<'a>(&'a self, start: uint) -> &'a [T];
|
|
fn slice_to<'a>(&'a self, end: uint) -> &'a [T];
|
|
fn split_at<'a>(&'a self, mid: uint) -> (&'a [T], &'a [T]);
|
|
fn iter<'a>(&'a self) -> Items<'a, T>;
|
|
fn split<'a, P>(&'a self, pred: P) -> Splits<'a, T, P>
|
|
where P: FnMut(&T) -> bool;
|
|
fn splitn<'a, P>(&'a self, n: uint, pred: P) -> SplitsN<Splits<'a, T, P>>
|
|
where P: FnMut(&T) -> bool;
|
|
fn rsplitn<'a, P>(&'a self, n: uint, pred: P) -> SplitsN<Splits<'a, T, P>>
|
|
where P: FnMut(&T) -> bool;
|
|
fn windows<'a>(&'a self, size: uint) -> Windows<'a, T>;
|
|
fn chunks<'a>(&'a self, size: uint) -> Chunks<'a, T>;
|
|
fn get<'a>(&'a self, index: uint) -> Option<&'a T>;
|
|
fn head<'a>(&'a self) -> Option<&'a T>;
|
|
fn tail<'a>(&'a self) -> &'a [T];
|
|
fn init<'a>(&'a self) -> &'a [T];
|
|
fn last<'a>(&'a self) -> Option<&'a T>;
|
|
unsafe fn unsafe_get<'a>(&'a self, index: uint) -> &'a T;
|
|
fn as_ptr(&self) -> *const T;
|
|
fn binary_search<F>(&self, f: F) -> BinarySearchResult
|
|
where F: FnMut(&T) -> Ordering;
|
|
fn len(&self) -> uint;
|
|
fn is_empty(&self) -> bool { self.len() == 0 }
|
|
fn get_mut<'a>(&'a mut self, index: uint) -> Option<&'a mut T>;
|
|
fn as_mut_slice<'a>(&'a mut self) -> &'a mut [T];
|
|
fn slice_mut<'a>(&'a mut self, start: uint, end: uint) -> &'a mut [T];
|
|
fn slice_from_mut<'a>(&'a mut self, start: uint) -> &'a mut [T];
|
|
fn slice_to_mut<'a>(&'a mut self, end: uint) -> &'a mut [T];
|
|
fn iter_mut<'a>(&'a mut self) -> MutItems<'a, T>;
|
|
fn head_mut<'a>(&'a mut self) -> Option<&'a mut T>;
|
|
fn tail_mut<'a>(&'a mut self) -> &'a mut [T];
|
|
fn init_mut<'a>(&'a mut self) -> &'a mut [T];
|
|
fn last_mut<'a>(&'a mut self) -> Option<&'a mut T>;
|
|
fn split_mut<'a, P>(&'a mut self, pred: P) -> MutSplits<'a, T, P>
|
|
where P: FnMut(&T) -> bool;
|
|
fn splitn_mut<P>(&mut self, n: uint, pred: P) -> SplitsN<MutSplits<T, P>>
|
|
where P: FnMut(&T) -> bool;
|
|
fn rsplitn_mut<P>(&mut self, n: uint, pred: P) -> SplitsN<MutSplits<T, P>>
|
|
where P: FnMut(&T) -> bool;
|
|
fn chunks_mut<'a>(&'a mut self, chunk_size: uint) -> MutChunks<'a, T>;
|
|
fn swap(&mut self, a: uint, b: uint);
|
|
fn split_at_mut<'a>(&'a mut self, mid: uint) -> (&'a mut [T], &'a mut [T]);
|
|
fn reverse(&mut self);
|
|
unsafe fn unsafe_mut<'a>(&'a mut self, index: uint) -> &'a mut T;
|
|
fn as_mut_ptr(&mut self) -> *mut T;
|
|
}
|
|
|
|
#[unstable]
|
|
impl<T> SliceExt<T> for [T] {
|
|
#[inline]
|
|
fn slice(&self, start: uint, end: uint) -> &[T] {
|
|
assert!(start <= end);
|
|
assert!(end <= self.len());
|
|
unsafe {
|
|
transmute(RawSlice {
|
|
data: self.as_ptr().offset(start as int),
|
|
len: (end - start)
|
|
})
|
|
}
|
|
}
|
|
|
|
#[inline]
|
|
fn slice_from(&self, start: uint) -> &[T] {
|
|
self.slice(start, self.len())
|
|
}
|
|
|
|
#[inline]
|
|
fn slice_to(&self, end: uint) -> &[T] {
|
|
self.slice(0, end)
|
|
}
|
|
|
|
#[inline]
|
|
fn split_at(&self, mid: uint) -> (&[T], &[T]) {
|
|
(self[..mid], self[mid..])
|
|
}
|
|
|
|
#[inline]
|
|
fn iter<'a>(&'a self) -> Items<'a, T> {
|
|
unsafe {
|
|
let p = self.as_ptr();
|
|
if mem::size_of::<T>() == 0 {
|
|
Items{ptr: p,
|
|
end: (p as uint + self.len()) as *const T,
|
|
marker: marker::ContravariantLifetime::<'a>}
|
|
} else {
|
|
Items{ptr: p,
|
|
end: p.offset(self.len() as int),
|
|
marker: marker::ContravariantLifetime::<'a>}
|
|
}
|
|
}
|
|
}
|
|
|
|
#[inline]
|
|
fn split<'a, P>(&'a self, pred: P) -> Splits<'a, T, P> where P: FnMut(&T) -> bool {
|
|
Splits {
|
|
v: self,
|
|
pred: pred,
|
|
finished: false
|
|
}
|
|
}
|
|
|
|
#[inline]
|
|
fn splitn<'a, P>(&'a self, n: uint, pred: P) -> SplitsN<Splits<'a, T, P>> where
|
|
P: FnMut(&T) -> bool,
|
|
{
|
|
SplitsN {
|
|
iter: self.split(pred),
|
|
count: n,
|
|
invert: false
|
|
}
|
|
}
|
|
|
|
#[inline]
|
|
fn rsplitn<'a, P>(&'a self, n: uint, pred: P) -> SplitsN<Splits<'a, T, P>> where
|
|
P: FnMut(&T) -> bool,
|
|
{
|
|
SplitsN {
|
|
iter: self.split(pred),
|
|
count: n,
|
|
invert: true
|
|
}
|
|
}
|
|
|
|
#[inline]
|
|
fn windows(&self, size: uint) -> Windows<T> {
|
|
assert!(size != 0);
|
|
Windows { v: self, size: size }
|
|
}
|
|
|
|
#[inline]
|
|
fn chunks(&self, size: uint) -> Chunks<T> {
|
|
assert!(size != 0);
|
|
Chunks { v: self, size: size }
|
|
}
|
|
|
|
#[inline]
|
|
fn get(&self, index: uint) -> Option<&T> {
|
|
if index < self.len() { Some(&self[index]) } else { None }
|
|
}
|
|
|
|
#[inline]
|
|
fn head(&self) -> Option<&T> {
|
|
if self.len() == 0 { None } else { Some(&self[0]) }
|
|
}
|
|
|
|
#[inline]
|
|
fn tail(&self) -> &[T] { self[1..] }
|
|
|
|
#[inline]
|
|
fn init(&self) -> &[T] {
|
|
self[..self.len() - 1]
|
|
}
|
|
|
|
#[inline]
|
|
fn last(&self) -> Option<&T> {
|
|
if self.len() == 0 { None } else { Some(&self[self.len() - 1]) }
|
|
}
|
|
|
|
#[inline]
|
|
unsafe fn unsafe_get(&self, index: uint) -> &T {
|
|
transmute(self.repr().data.offset(index as int))
|
|
}
|
|
|
|
#[inline]
|
|
fn as_ptr(&self) -> *const T {
|
|
self.repr().data
|
|
}
|
|
|
|
#[unstable]
|
|
fn binary_search<F>(&self, mut f: F) -> BinarySearchResult where F: FnMut(&T) -> Ordering {
|
|
let mut base : uint = 0;
|
|
let mut lim : uint = self.len();
|
|
|
|
while lim != 0 {
|
|
let ix = base + (lim >> 1);
|
|
match f(&self[ix]) {
|
|
Equal => return BinarySearchResult::Found(ix),
|
|
Less => {
|
|
base = ix + 1;
|
|
lim -= 1;
|
|
}
|
|
Greater => ()
|
|
}
|
|
lim >>= 1;
|
|
}
|
|
return BinarySearchResult::NotFound(base);
|
|
}
|
|
|
|
#[inline]
|
|
fn len(&self) -> uint { self.repr().len }
|
|
|
|
#[inline]
|
|
fn get_mut(&mut self, index: uint) -> Option<&mut T> {
|
|
if index < self.len() { Some(&mut self[index]) } else { None }
|
|
}
|
|
|
|
#[inline]
|
|
fn as_mut_slice(&mut self) -> &mut [T] { self }
|
|
|
|
fn slice_mut(&mut self, start: uint, end: uint) -> &mut [T] {
|
|
self[mut start..end]
|
|
}
|
|
|
|
#[inline]
|
|
fn slice_from_mut(&mut self, start: uint) -> &mut [T] {
|
|
self[mut start..]
|
|
}
|
|
|
|
#[inline]
|
|
fn slice_to_mut(&mut self, end: uint) -> &mut [T] {
|
|
self[mut ..end]
|
|
}
|
|
|
|
#[inline]
|
|
fn split_at_mut(&mut self, mid: uint) -> (&mut [T], &mut [T]) {
|
|
unsafe {
|
|
let self2: &mut [T] = mem::transmute_copy(&self);
|
|
(self[mut ..mid], self2[mut mid..])
|
|
}
|
|
}
|
|
|
|
#[inline]
|
|
fn iter_mut<'a>(&'a mut self) -> MutItems<'a, T> {
|
|
unsafe {
|
|
let p = self.as_mut_ptr();
|
|
if mem::size_of::<T>() == 0 {
|
|
MutItems{ptr: p,
|
|
end: (p as uint + self.len()) as *mut T,
|
|
marker: marker::ContravariantLifetime::<'a>,
|
|
marker2: marker::NoCopy}
|
|
} else {
|
|
MutItems{ptr: p,
|
|
end: p.offset(self.len() as int),
|
|
marker: marker::ContravariantLifetime::<'a>,
|
|
marker2: marker::NoCopy}
|
|
}
|
|
}
|
|
}
|
|
|
|
#[inline]
|
|
fn last_mut(&mut self) -> Option<&mut T> {
|
|
let len = self.len();
|
|
if len == 0 { return None; }
|
|
Some(&mut self[len - 1])
|
|
}
|
|
|
|
#[inline]
|
|
fn head_mut(&mut self) -> Option<&mut T> {
|
|
if self.len() == 0 { None } else { Some(&mut self[0]) }
|
|
}
|
|
|
|
#[inline]
|
|
fn tail_mut(&mut self) -> &mut [T] {
|
|
let len = self.len();
|
|
self[mut 1..len]
|
|
}
|
|
|
|
#[inline]
|
|
fn init_mut(&mut self) -> &mut [T] {
|
|
let len = self.len();
|
|
self[mut 0..len - 1]
|
|
}
|
|
|
|
#[inline]
|
|
fn split_mut<'a, P>(&'a mut self, pred: P) -> MutSplits<'a, T, P> where P: FnMut(&T) -> bool {
|
|
MutSplits { v: self, pred: pred, finished: false }
|
|
}
|
|
|
|
#[inline]
|
|
fn splitn_mut<'a, P>(&'a mut self, n: uint, pred: P) -> SplitsN<MutSplits<'a, T, P>> where
|
|
P: FnMut(&T) -> bool
|
|
{
|
|
SplitsN {
|
|
iter: self.split_mut(pred),
|
|
count: n,
|
|
invert: false
|
|
}
|
|
}
|
|
|
|
#[inline]
|
|
fn rsplitn_mut<'a, P>(&'a mut self, n: uint, pred: P) -> SplitsN<MutSplits<'a, T, P>> where
|
|
P: FnMut(&T) -> bool,
|
|
{
|
|
SplitsN {
|
|
iter: self.split_mut(pred),
|
|
count: n,
|
|
invert: true
|
|
}
|
|
}
|
|
|
|
#[inline]
|
|
fn chunks_mut(&mut self, chunk_size: uint) -> MutChunks<T> {
|
|
assert!(chunk_size > 0);
|
|
MutChunks { v: self, chunk_size: chunk_size }
|
|
}
|
|
|
|
fn swap(&mut self, a: uint, b: uint) {
|
|
unsafe {
|
|
// Can't take two mutable loans from one vector, so instead just cast
|
|
// them to their raw pointers to do the swap
|
|
let pa: *mut T = &mut self[a];
|
|
let pb: *mut T = &mut self[b];
|
|
ptr::swap(pa, pb);
|
|
}
|
|
}
|
|
|
|
fn reverse(&mut self) {
|
|
let mut i: uint = 0;
|
|
let ln = self.len();
|
|
while i < ln / 2 {
|
|
// Unsafe swap to avoid the bounds check in safe swap.
|
|
unsafe {
|
|
let pa: *mut T = self.unsafe_mut(i);
|
|
let pb: *mut T = self.unsafe_mut(ln - i - 1);
|
|
ptr::swap(pa, pb);
|
|
}
|
|
i += 1;
|
|
}
|
|
}
|
|
|
|
#[inline]
|
|
unsafe fn unsafe_mut(&mut self, index: uint) -> &mut T {
|
|
transmute((self.repr().data as *mut T).offset(index as int))
|
|
}
|
|
|
|
#[inline]
|
|
fn as_mut_ptr(&mut self) -> *mut T {
|
|
self.repr().data as *mut T
|
|
}
|
|
}
|
|
|
|
impl<T> ops::Index<uint, T> for [T] {
|
|
fn index(&self, &index: &uint) -> &T {
|
|
assert!(index < self.len());
|
|
|
|
unsafe { mem::transmute(self.repr().data.offset(index as int)) }
|
|
}
|
|
}
|
|
|
|
impl<T> ops::IndexMut<uint, T> for [T] {
|
|
fn index_mut(&mut self, &index: &uint) -> &mut T {
|
|
assert!(index < self.len());
|
|
|
|
unsafe { mem::transmute(self.repr().data.offset(index as int)) }
|
|
}
|
|
}
|
|
|
|
impl<T> ops::Slice<uint, [T]> for [T] {
|
|
#[inline]
|
|
fn as_slice_<'a>(&'a self) -> &'a [T] {
|
|
self
|
|
}
|
|
|
|
#[inline]
|
|
fn slice_from_or_fail<'a>(&'a self, start: &uint) -> &'a [T] {
|
|
self.slice_or_fail(start, &self.len())
|
|
}
|
|
|
|
#[inline]
|
|
fn slice_to_or_fail<'a>(&'a self, end: &uint) -> &'a [T] {
|
|
self.slice_or_fail(&0, end)
|
|
}
|
|
#[inline]
|
|
fn slice_or_fail<'a>(&'a self, start: &uint, end: &uint) -> &'a [T] {
|
|
assert!(*start <= *end);
|
|
assert!(*end <= self.len());
|
|
unsafe {
|
|
transmute(RawSlice {
|
|
data: self.as_ptr().offset(*start as int),
|
|
len: (*end - *start)
|
|
})
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<T> ops::SliceMut<uint, [T]> for [T] {
|
|
#[inline]
|
|
fn as_mut_slice_<'a>(&'a mut self) -> &'a mut [T] {
|
|
self
|
|
}
|
|
|
|
#[inline]
|
|
fn slice_from_or_fail_mut<'a>(&'a mut self, start: &uint) -> &'a mut [T] {
|
|
let len = &self.len();
|
|
self.slice_or_fail_mut(start, len)
|
|
}
|
|
|
|
#[inline]
|
|
fn slice_to_or_fail_mut<'a>(&'a mut self, end: &uint) -> &'a mut [T] {
|
|
self.slice_or_fail_mut(&0, end)
|
|
}
|
|
#[inline]
|
|
fn slice_or_fail_mut<'a>(&'a mut self, start: &uint, end: &uint) -> &'a mut [T] {
|
|
assert!(*start <= *end);
|
|
assert!(*end <= self.len());
|
|
unsafe {
|
|
transmute(RawSlice {
|
|
data: self.as_ptr().offset(*start as int),
|
|
len: (*end - *start)
|
|
})
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Extension methods for slices containing `PartialEq` elements.
|
|
#[unstable = "may merge with other traits"]
|
|
pub trait PartialEqSliceExt<T: PartialEq> for Sized? {
|
|
/// Find the first index containing a matching value.
|
|
fn position_elem(&self, t: &T) -> Option<uint>;
|
|
|
|
/// Find the last index containing a matching value.
|
|
fn rposition_elem(&self, t: &T) -> Option<uint>;
|
|
|
|
/// Return true if the slice contains an element with the given value.
|
|
fn contains(&self, x: &T) -> bool;
|
|
|
|
/// Returns true if `needle` is a prefix of the slice.
|
|
fn starts_with(&self, needle: &[T]) -> bool;
|
|
|
|
/// Returns true if `needle` is a suffix of the slice.
|
|
fn ends_with(&self, needle: &[T]) -> bool;
|
|
}
|
|
|
|
#[unstable = "trait is unstable"]
|
|
impl<T: PartialEq> PartialEqSliceExt<T> for [T] {
|
|
#[inline]
|
|
fn position_elem(&self, x: &T) -> Option<uint> {
|
|
self.iter().position(|y| *x == *y)
|
|
}
|
|
|
|
#[inline]
|
|
fn rposition_elem(&self, t: &T) -> Option<uint> {
|
|
self.iter().rposition(|x| *x == *t)
|
|
}
|
|
|
|
#[inline]
|
|
fn contains(&self, x: &T) -> bool {
|
|
self.iter().any(|elt| *x == *elt)
|
|
}
|
|
|
|
#[inline]
|
|
fn starts_with(&self, needle: &[T]) -> bool {
|
|
let n = needle.len();
|
|
self.len() >= n && needle == self[..n]
|
|
}
|
|
|
|
#[inline]
|
|
fn ends_with(&self, needle: &[T]) -> bool {
|
|
let (m, n) = (self.len(), needle.len());
|
|
m >= n && needle == self[m-n..]
|
|
}
|
|
}
|
|
|
|
/// Extension methods for slices containing `Ord` elements.
|
|
#[unstable = "may merge with other traits"]
|
|
#[allow(missing_docs)] // docs in libcollections
|
|
pub trait OrdSliceExt<T: Ord> for Sized? {
|
|
#[unstable = "name likely to change"]
|
|
fn binary_search_elem(&self, x: &T) -> BinarySearchResult;
|
|
#[experimental]
|
|
fn next_permutation(&mut self) -> bool;
|
|
#[experimental]
|
|
fn prev_permutation(&mut self) -> bool;
|
|
}
|
|
|
|
#[unstable = "trait is unstable"]
|
|
impl<T: Ord> OrdSliceExt<T> for [T] {
|
|
#[unstable]
|
|
fn binary_search_elem(&self, x: &T) -> BinarySearchResult {
|
|
self.binary_search(|p| p.cmp(x))
|
|
}
|
|
|
|
#[experimental]
|
|
fn next_permutation(&mut self) -> bool {
|
|
// These cases only have 1 permutation each, so we can't do anything.
|
|
if self.len() < 2 { return false; }
|
|
|
|
// Step 1: Identify the longest, rightmost weakly decreasing part of the vector
|
|
let mut i = self.len() - 1;
|
|
while i > 0 && self[i-1] >= self[i] {
|
|
i -= 1;
|
|
}
|
|
|
|
// If that is the entire vector, this is the last-ordered permutation.
|
|
if i == 0 {
|
|
return false;
|
|
}
|
|
|
|
// Step 2: Find the rightmost element larger than the pivot (i-1)
|
|
let mut j = self.len() - 1;
|
|
while j >= i && self[j] <= self[i-1] {
|
|
j -= 1;
|
|
}
|
|
|
|
// Step 3: Swap that element with the pivot
|
|
self.swap(j, i-1);
|
|
|
|
// Step 4: Reverse the (previously) weakly decreasing part
|
|
self[mut i..].reverse();
|
|
|
|
true
|
|
}
|
|
|
|
#[experimental]
|
|
fn prev_permutation(&mut self) -> bool {
|
|
// These cases only have 1 permutation each, so we can't do anything.
|
|
if self.len() < 2 { return false; }
|
|
|
|
// Step 1: Identify the longest, rightmost weakly increasing part of the vector
|
|
let mut i = self.len() - 1;
|
|
while i > 0 && self[i-1] <= self[i] {
|
|
i -= 1;
|
|
}
|
|
|
|
// If that is the entire vector, this is the first-ordered permutation.
|
|
if i == 0 {
|
|
return false;
|
|
}
|
|
|
|
// Step 2: Reverse the weakly increasing part
|
|
self[mut i..].reverse();
|
|
|
|
// Step 3: Find the rightmost element equal to or bigger than the pivot (i-1)
|
|
let mut j = self.len() - 1;
|
|
while j >= i && self[j-1] < self[i-1] {
|
|
j -= 1;
|
|
}
|
|
|
|
// Step 4: Swap that element with the pivot
|
|
self.swap(i-1, j);
|
|
|
|
true
|
|
}
|
|
}
|
|
|
|
/// Extension methods for slices on Clone elements
|
|
#[unstable = "may merge with other traits"]
|
|
#[allow(missing_docs)] // docs in libcollections
|
|
pub trait CloneSliceExt<T> for Sized? {
|
|
fn clone_from_slice(&mut self, &[T]) -> uint;
|
|
}
|
|
|
|
#[unstable = "trait is unstable"]
|
|
impl<T: Clone> CloneSliceExt<T> for [T] {
|
|
#[inline]
|
|
fn clone_from_slice(&mut self, src: &[T]) -> uint {
|
|
let min = cmp::min(self.len(), src.len());
|
|
let dst = self.slice_to_mut(min);
|
|
let src = src.slice_to(min);
|
|
for i in range(0, min) {
|
|
dst[i].clone_from(&src[i]);
|
|
}
|
|
min
|
|
}
|
|
}
|
|
|
|
//
|
|
// Common traits
|
|
//
|
|
|
|
/// Data that is viewable as a slice.
|
|
#[unstable = "may merge with other traits"]
|
|
pub trait AsSlice<T> for Sized? {
|
|
/// Work with `self` as a slice.
|
|
fn as_slice<'a>(&'a self) -> &'a [T];
|
|
}
|
|
|
|
#[unstable = "trait is unstable"]
|
|
impl<T> AsSlice<T> for [T] {
|
|
#[inline(always)]
|
|
fn as_slice<'a>(&'a self) -> &'a [T] { self }
|
|
}
|
|
|
|
impl<'a, T, Sized? U: AsSlice<T>> AsSlice<T> for &'a U {
|
|
#[inline(always)]
|
|
fn as_slice(&self) -> &[T] { AsSlice::as_slice(*self) }
|
|
}
|
|
|
|
impl<'a, T, Sized? U: AsSlice<T>> AsSlice<T> for &'a mut U {
|
|
#[inline(always)]
|
|
fn as_slice(&self) -> &[T] { AsSlice::as_slice(*self) }
|
|
}
|
|
|
|
#[unstable = "waiting for DST"]
|
|
impl<'a, T> Default for &'a [T] {
|
|
fn default() -> &'a [T] { &[] }
|
|
}
|
|
|
|
//
|
|
// Iterators
|
|
//
|
|
|
|
// The shared definition of the `Item` and `MutItems` iterators
|
|
macro_rules! iterator {
|
|
(struct $name:ident -> $ptr:ty, $elem:ty) => {
|
|
#[experimental = "needs review"]
|
|
impl<'a, T> Iterator<$elem> for $name<'a, T> {
|
|
#[inline]
|
|
fn next(&mut self) -> Option<$elem> {
|
|
// could be implemented with slices, but this avoids bounds checks
|
|
unsafe {
|
|
if self.ptr == self.end {
|
|
None
|
|
} else {
|
|
if mem::size_of::<T>() == 0 {
|
|
// purposefully don't use 'ptr.offset' because for
|
|
// vectors with 0-size elements this would return the
|
|
// same pointer.
|
|
self.ptr = transmute(self.ptr as uint + 1);
|
|
|
|
// Use a non-null pointer value
|
|
Some(transmute(1u))
|
|
} else {
|
|
let old = self.ptr;
|
|
self.ptr = self.ptr.offset(1);
|
|
|
|
Some(transmute(old))
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
#[inline]
|
|
fn size_hint(&self) -> (uint, Option<uint>) {
|
|
let diff = (self.end as uint) - (self.ptr as uint);
|
|
let size = mem::size_of::<T>();
|
|
let exact = diff / (if size == 0 {1} else {size});
|
|
(exact, Some(exact))
|
|
}
|
|
}
|
|
|
|
#[experimental = "needs review"]
|
|
impl<'a, T> DoubleEndedIterator<$elem> for $name<'a, T> {
|
|
#[inline]
|
|
fn next_back(&mut self) -> Option<$elem> {
|
|
// could be implemented with slices, but this avoids bounds checks
|
|
unsafe {
|
|
if self.end == self.ptr {
|
|
None
|
|
} else {
|
|
if mem::size_of::<T>() == 0 {
|
|
// See above for why 'ptr.offset' isn't used
|
|
self.end = transmute(self.end as uint - 1);
|
|
|
|
// Use a non-null pointer value
|
|
Some(transmute(1u))
|
|
} else {
|
|
self.end = self.end.offset(-1);
|
|
|
|
Some(transmute(self.end))
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
macro_rules! make_slice {
|
|
($t: ty -> $result: ty: $start: expr, $end: expr) => {{
|
|
let diff = $end as uint - $start as uint;
|
|
let len = if mem::size_of::<T>() == 0 {
|
|
diff
|
|
} else {
|
|
diff / mem::size_of::<$t>()
|
|
};
|
|
unsafe {
|
|
transmute::<_, $result>(RawSlice { data: $start as *const T, len: len })
|
|
}
|
|
}}
|
|
}
|
|
|
|
|
|
/// Immutable slice iterator
|
|
#[experimental = "needs review"]
|
|
pub struct Items<'a, T: 'a> {
|
|
ptr: *const T,
|
|
end: *const T,
|
|
marker: marker::ContravariantLifetime<'a>
|
|
}
|
|
|
|
#[experimental]
|
|
impl<'a, T> ops::Slice<uint, [T]> for Items<'a, T> {
|
|
fn as_slice_(&self) -> &[T] {
|
|
self.as_slice()
|
|
}
|
|
fn slice_from_or_fail<'b>(&'b self, from: &uint) -> &'b [T] {
|
|
use ops::Slice;
|
|
self.as_slice().slice_from_or_fail(from)
|
|
}
|
|
fn slice_to_or_fail<'b>(&'b self, to: &uint) -> &'b [T] {
|
|
use ops::Slice;
|
|
self.as_slice().slice_to_or_fail(to)
|
|
}
|
|
fn slice_or_fail<'b>(&'b self, from: &uint, to: &uint) -> &'b [T] {
|
|
use ops::Slice;
|
|
self.as_slice().slice_or_fail(from, to)
|
|
}
|
|
}
|
|
|
|
impl<'a, T> Items<'a, T> {
|
|
/// View the underlying data as a subslice of the original data.
|
|
///
|
|
/// This has the same lifetime as the original slice, and so the
|
|
/// iterator can continue to be used while this exists.
|
|
#[experimental]
|
|
pub fn as_slice(&self) -> &'a [T] {
|
|
make_slice!(T -> &'a [T]: self.ptr, self.end)
|
|
}
|
|
}
|
|
|
|
impl<'a,T> Copy for Items<'a,T> {}
|
|
|
|
iterator!{struct Items -> *const T, &'a T}
|
|
|
|
#[experimental = "needs review"]
|
|
impl<'a, T> ExactSizeIterator<&'a T> for Items<'a, T> {}
|
|
|
|
#[experimental = "needs review"]
|
|
impl<'a, T> Clone for Items<'a, T> {
|
|
fn clone(&self) -> Items<'a, T> { *self }
|
|
}
|
|
|
|
#[experimental = "needs review"]
|
|
impl<'a, T> RandomAccessIterator<&'a T> for Items<'a, T> {
|
|
#[inline]
|
|
fn indexable(&self) -> uint {
|
|
let (exact, _) = self.size_hint();
|
|
exact
|
|
}
|
|
|
|
#[inline]
|
|
fn idx(&mut self, index: uint) -> Option<&'a T> {
|
|
unsafe {
|
|
if index < self.indexable() {
|
|
if mem::size_of::<T>() == 0 {
|
|
// Use a non-null pointer value
|
|
Some(transmute(1u))
|
|
} else {
|
|
Some(transmute(self.ptr.offset(index as int)))
|
|
}
|
|
} else {
|
|
None
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Mutable slice iterator.
|
|
#[experimental = "needs review"]
|
|
pub struct MutItems<'a, T: 'a> {
|
|
ptr: *mut T,
|
|
end: *mut T,
|
|
marker: marker::ContravariantLifetime<'a>,
|
|
marker2: marker::NoCopy
|
|
}
|
|
|
|
#[experimental]
|
|
impl<'a, T> ops::Slice<uint, [T]> for MutItems<'a, T> {
|
|
fn as_slice_<'b>(&'b self) -> &'b [T] {
|
|
make_slice!(T -> &'b [T]: self.ptr, self.end)
|
|
}
|
|
fn slice_from_or_fail<'b>(&'b self, from: &uint) -> &'b [T] {
|
|
use ops::Slice;
|
|
self.as_slice_().slice_from_or_fail(from)
|
|
}
|
|
fn slice_to_or_fail<'b>(&'b self, to: &uint) -> &'b [T] {
|
|
use ops::Slice;
|
|
self.as_slice_().slice_to_or_fail(to)
|
|
}
|
|
fn slice_or_fail<'b>(&'b self, from: &uint, to: &uint) -> &'b [T] {
|
|
use ops::Slice;
|
|
self.as_slice_().slice_or_fail(from, to)
|
|
}
|
|
}
|
|
|
|
#[experimental]
|
|
impl<'a, T> ops::SliceMut<uint, [T]> for MutItems<'a, T> {
|
|
fn as_mut_slice_<'b>(&'b mut self) -> &'b mut [T] {
|
|
make_slice!(T -> &'b mut [T]: self.ptr, self.end)
|
|
}
|
|
fn slice_from_or_fail_mut<'b>(&'b mut self, from: &uint) -> &'b mut [T] {
|
|
use ops::SliceMut;
|
|
self.as_mut_slice_().slice_from_or_fail_mut(from)
|
|
}
|
|
fn slice_to_or_fail_mut<'b>(&'b mut self, to: &uint) -> &'b mut [T] {
|
|
use ops::SliceMut;
|
|
self.as_mut_slice_().slice_to_or_fail_mut(to)
|
|
}
|
|
fn slice_or_fail_mut<'b>(&'b mut self, from: &uint, to: &uint) -> &'b mut [T] {
|
|
use ops::SliceMut;
|
|
self.as_mut_slice_().slice_or_fail_mut(from, to)
|
|
}
|
|
}
|
|
|
|
impl<'a, T> MutItems<'a, T> {
|
|
/// View the underlying data as a subslice of the original data.
|
|
///
|
|
/// To avoid creating `&mut` references that alias, this is forced
|
|
/// to consume the iterator. Consider using the `Slice` and
|
|
/// `SliceMut` implementations for obtaining slices with more
|
|
/// restricted lifetimes that do not consume the iterator.
|
|
#[experimental]
|
|
pub fn into_slice(self) -> &'a mut [T] {
|
|
make_slice!(T -> &'a mut [T]: self.ptr, self.end)
|
|
}
|
|
}
|
|
|
|
iterator!{struct MutItems -> *mut T, &'a mut T}
|
|
|
|
#[experimental = "needs review"]
|
|
impl<'a, T> ExactSizeIterator<&'a mut T> for MutItems<'a, T> {}
|
|
|
|
/// An abstraction over the splitting iterators, so that splitn, splitn_mut etc
|
|
/// can be implemented once.
|
|
trait SplitsIter<E>: DoubleEndedIterator<E> {
|
|
/// Mark the underlying iterator as complete, extracting the remaining
|
|
/// portion of the slice.
|
|
fn finish(&mut self) -> Option<E>;
|
|
}
|
|
|
|
/// An iterator over subslices separated by elements that match a predicate
|
|
/// function.
|
|
#[experimental = "needs review"]
|
|
pub struct Splits<'a, T:'a, P> where P: FnMut(&T) -> bool {
|
|
v: &'a [T],
|
|
pred: P,
|
|
finished: bool
|
|
}
|
|
|
|
// FIXME(#19839) Remove in favor of `#[deriving(Clone)]`
|
|
impl<'a, T, P> Clone for Splits<'a, T, P> where P: Clone + FnMut(&T) -> bool {
|
|
fn clone(&self) -> Splits<'a, T, P> {
|
|
Splits {
|
|
v: self.v,
|
|
pred: self.pred.clone(),
|
|
finished: self.finished,
|
|
}
|
|
}
|
|
}
|
|
|
|
#[experimental = "needs review"]
|
|
impl<'a, T, P> Iterator<&'a [T]> for Splits<'a, T, P> where P: FnMut(&T) -> bool {
|
|
#[inline]
|
|
fn next(&mut self) -> Option<&'a [T]> {
|
|
if self.finished { return None; }
|
|
|
|
match self.v.iter().position(|x| (self.pred)(x)) {
|
|
None => self.finish(),
|
|
Some(idx) => {
|
|
let ret = Some(self.v[..idx]);
|
|
self.v = self.v[idx + 1..];
|
|
ret
|
|
}
|
|
}
|
|
}
|
|
|
|
#[inline]
|
|
fn size_hint(&self) -> (uint, Option<uint>) {
|
|
if self.finished {
|
|
(0, Some(0))
|
|
} else {
|
|
(1, Some(self.v.len() + 1))
|
|
}
|
|
}
|
|
}
|
|
|
|
#[experimental = "needs review"]
|
|
impl<'a, T, P> DoubleEndedIterator<&'a [T]> for Splits<'a, T, P> where P: FnMut(&T) -> bool {
|
|
#[inline]
|
|
fn next_back(&mut self) -> Option<&'a [T]> {
|
|
if self.finished { return None; }
|
|
|
|
match self.v.iter().rposition(|x| (self.pred)(x)) {
|
|
None => self.finish(),
|
|
Some(idx) => {
|
|
let ret = Some(self.v[idx + 1..]);
|
|
self.v = self.v[..idx];
|
|
ret
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<'a, T, P> SplitsIter<&'a [T]> for Splits<'a, T, P> where P: FnMut(&T) -> bool {
|
|
#[inline]
|
|
fn finish(&mut self) -> Option<&'a [T]> {
|
|
if self.finished { None } else { self.finished = true; Some(self.v) }
|
|
}
|
|
}
|
|
|
|
/// An iterator over the subslices of the vector which are separated
|
|
/// by elements that match `pred`.
|
|
#[experimental = "needs review"]
|
|
pub struct MutSplits<'a, T:'a, P> where P: FnMut(&T) -> bool {
|
|
v: &'a mut [T],
|
|
pred: P,
|
|
finished: bool
|
|
}
|
|
|
|
impl<'a, T, P> SplitsIter<&'a mut [T]> for MutSplits<'a, T, P> where P: FnMut(&T) -> bool {
|
|
#[inline]
|
|
fn finish(&mut self) -> Option<&'a mut [T]> {
|
|
if self.finished {
|
|
None
|
|
} else {
|
|
self.finished = true;
|
|
Some(mem::replace(&mut self.v, &mut []))
|
|
}
|
|
}
|
|
}
|
|
|
|
#[experimental = "needs review"]
|
|
impl<'a, T, P> Iterator<&'a mut [T]> for MutSplits<'a, T, P> where P: FnMut(&T) -> bool {
|
|
#[inline]
|
|
fn next(&mut self) -> Option<&'a mut [T]> {
|
|
if self.finished { return None; }
|
|
|
|
let idx_opt = { // work around borrowck limitations
|
|
let pred = &mut self.pred;
|
|
self.v.iter().position(|x| (*pred)(x))
|
|
};
|
|
match idx_opt {
|
|
None => self.finish(),
|
|
Some(idx) => {
|
|
let tmp = mem::replace(&mut self.v, &mut []);
|
|
let (head, tail) = tmp.split_at_mut(idx);
|
|
self.v = tail[mut 1..];
|
|
Some(head)
|
|
}
|
|
}
|
|
}
|
|
|
|
#[inline]
|
|
fn size_hint(&self) -> (uint, Option<uint>) {
|
|
if self.finished {
|
|
(0, Some(0))
|
|
} else {
|
|
// if the predicate doesn't match anything, we yield one slice
|
|
// if it matches every element, we yield len+1 empty slices.
|
|
(1, Some(self.v.len() + 1))
|
|
}
|
|
}
|
|
}
|
|
|
|
#[experimental = "needs review"]
|
|
impl<'a, T, P> DoubleEndedIterator<&'a mut [T]> for MutSplits<'a, T, P> where
|
|
P: FnMut(&T) -> bool,
|
|
{
|
|
#[inline]
|
|
fn next_back(&mut self) -> Option<&'a mut [T]> {
|
|
if self.finished { return None; }
|
|
|
|
let idx_opt = { // work around borrowck limitations
|
|
let pred = &mut self.pred;
|
|
self.v.iter().rposition(|x| (*pred)(x))
|
|
};
|
|
match idx_opt {
|
|
None => self.finish(),
|
|
Some(idx) => {
|
|
let tmp = mem::replace(&mut self.v, &mut []);
|
|
let (head, tail) = tmp.split_at_mut(idx);
|
|
self.v = head;
|
|
Some(tail[mut 1..])
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// An iterator over subslices separated by elements that match a predicate
|
|
/// function, splitting at most a fixed number of times.
|
|
#[experimental = "needs review"]
|
|
pub struct SplitsN<I> {
|
|
iter: I,
|
|
count: uint,
|
|
invert: bool
|
|
}
|
|
|
|
#[experimental = "needs review"]
|
|
impl<E, I: SplitsIter<E>> Iterator<E> for SplitsN<I> {
|
|
#[inline]
|
|
fn next(&mut self) -> Option<E> {
|
|
if self.count == 0 {
|
|
self.iter.finish()
|
|
} else {
|
|
self.count -= 1;
|
|
if self.invert { self.iter.next_back() } else { self.iter.next() }
|
|
}
|
|
}
|
|
|
|
#[inline]
|
|
fn size_hint(&self) -> (uint, Option<uint>) {
|
|
let (lower, upper_opt) = self.iter.size_hint();
|
|
(lower, upper_opt.map(|upper| cmp::min(self.count + 1, upper)))
|
|
}
|
|
}
|
|
|
|
/// An iterator over overlapping subslices of length `size`.
|
|
#[deriving(Clone)]
|
|
#[experimental = "needs review"]
|
|
pub struct Windows<'a, T:'a> {
|
|
v: &'a [T],
|
|
size: uint
|
|
}
|
|
|
|
impl<'a, T> Iterator<&'a [T]> for Windows<'a, T> {
|
|
#[inline]
|
|
fn next(&mut self) -> Option<&'a [T]> {
|
|
if self.size > self.v.len() {
|
|
None
|
|
} else {
|
|
let ret = Some(self.v[..self.size]);
|
|
self.v = self.v[1..];
|
|
ret
|
|
}
|
|
}
|
|
|
|
#[inline]
|
|
fn size_hint(&self) -> (uint, Option<uint>) {
|
|
if self.size > self.v.len() {
|
|
(0, Some(0))
|
|
} else {
|
|
let x = self.v.len() - self.size;
|
|
(x.saturating_add(1), x.checked_add(1u))
|
|
}
|
|
}
|
|
}
|
|
|
|
/// An iterator over a slice in (non-overlapping) chunks (`size` elements at a
|
|
/// time).
|
|
///
|
|
/// When the slice len is not evenly divided by the chunk size, the last slice
|
|
/// of the iteration will be the remainder.
|
|
#[deriving(Clone)]
|
|
#[experimental = "needs review"]
|
|
pub struct Chunks<'a, T:'a> {
|
|
v: &'a [T],
|
|
size: uint
|
|
}
|
|
|
|
#[experimental = "needs review"]
|
|
impl<'a, T> Iterator<&'a [T]> for Chunks<'a, T> {
|
|
#[inline]
|
|
fn next(&mut self) -> Option<&'a [T]> {
|
|
if self.v.len() == 0 {
|
|
None
|
|
} else {
|
|
let chunksz = cmp::min(self.v.len(), self.size);
|
|
let (fst, snd) = self.v.split_at(chunksz);
|
|
self.v = snd;
|
|
Some(fst)
|
|
}
|
|
}
|
|
|
|
#[inline]
|
|
fn size_hint(&self) -> (uint, Option<uint>) {
|
|
if self.v.len() == 0 {
|
|
(0, Some(0))
|
|
} else {
|
|
let n = self.v.len() / self.size;
|
|
let rem = self.v.len() % self.size;
|
|
let n = if rem > 0 { n+1 } else { n };
|
|
(n, Some(n))
|
|
}
|
|
}
|
|
}
|
|
|
|
#[experimental = "needs review"]
|
|
impl<'a, T> DoubleEndedIterator<&'a [T]> for Chunks<'a, T> {
|
|
#[inline]
|
|
fn next_back(&mut self) -> Option<&'a [T]> {
|
|
if self.v.len() == 0 {
|
|
None
|
|
} else {
|
|
let remainder = self.v.len() % self.size;
|
|
let chunksz = if remainder != 0 { remainder } else { self.size };
|
|
let (fst, snd) = self.v.split_at(self.v.len() - chunksz);
|
|
self.v = fst;
|
|
Some(snd)
|
|
}
|
|
}
|
|
}
|
|
|
|
#[experimental = "needs review"]
|
|
impl<'a, T> RandomAccessIterator<&'a [T]> for Chunks<'a, T> {
|
|
#[inline]
|
|
fn indexable(&self) -> uint {
|
|
self.v.len()/self.size + if self.v.len() % self.size != 0 { 1 } else { 0 }
|
|
}
|
|
|
|
#[inline]
|
|
fn idx(&mut self, index: uint) -> Option<&'a [T]> {
|
|
if index < self.indexable() {
|
|
let lo = index * self.size;
|
|
let mut hi = lo + self.size;
|
|
if hi < lo || hi > self.v.len() { hi = self.v.len(); }
|
|
|
|
Some(self.v[lo..hi])
|
|
} else {
|
|
None
|
|
}
|
|
}
|
|
}
|
|
|
|
/// An iterator over a slice in (non-overlapping) mutable chunks (`size`
|
|
/// elements at a time). When the slice len is not evenly divided by the chunk
|
|
/// size, the last slice of the iteration will be the remainder.
|
|
#[experimental = "needs review"]
|
|
pub struct MutChunks<'a, T:'a> {
|
|
v: &'a mut [T],
|
|
chunk_size: uint
|
|
}
|
|
|
|
#[experimental = "needs review"]
|
|
impl<'a, T> Iterator<&'a mut [T]> for MutChunks<'a, T> {
|
|
#[inline]
|
|
fn next(&mut self) -> Option<&'a mut [T]> {
|
|
if self.v.len() == 0 {
|
|
None
|
|
} else {
|
|
let sz = cmp::min(self.v.len(), self.chunk_size);
|
|
let tmp = mem::replace(&mut self.v, &mut []);
|
|
let (head, tail) = tmp.split_at_mut(sz);
|
|
self.v = tail;
|
|
Some(head)
|
|
}
|
|
}
|
|
|
|
#[inline]
|
|
fn size_hint(&self) -> (uint, Option<uint>) {
|
|
if self.v.len() == 0 {
|
|
(0, Some(0))
|
|
} else {
|
|
let n = self.v.len() / self.chunk_size;
|
|
let rem = self.v.len() % self.chunk_size;
|
|
let n = if rem > 0 { n + 1 } else { n };
|
|
(n, Some(n))
|
|
}
|
|
}
|
|
}
|
|
|
|
#[experimental = "needs review"]
|
|
impl<'a, T> DoubleEndedIterator<&'a mut [T]> for MutChunks<'a, T> {
|
|
#[inline]
|
|
fn next_back(&mut self) -> Option<&'a mut [T]> {
|
|
if self.v.len() == 0 {
|
|
None
|
|
} else {
|
|
let remainder = self.v.len() % self.chunk_size;
|
|
let sz = if remainder != 0 { remainder } else { self.chunk_size };
|
|
let tmp = mem::replace(&mut self.v, &mut []);
|
|
let tmp_len = tmp.len();
|
|
let (head, tail) = tmp.split_at_mut(tmp_len - sz);
|
|
self.v = head;
|
|
Some(tail)
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
/// The result of calling `binary_search`.
|
|
///
|
|
/// `Found` means the search succeeded, and the contained value is the
|
|
/// index of the matching element. `NotFound` means the search
|
|
/// succeeded, and the contained value is an index where a matching
|
|
/// value could be inserted while maintaining sort order.
|
|
#[deriving(PartialEq, Show)]
|
|
#[experimental = "needs review"]
|
|
pub enum BinarySearchResult {
|
|
/// The index of the found value.
|
|
Found(uint),
|
|
/// The index where the value should have been found.
|
|
NotFound(uint)
|
|
}
|
|
|
|
impl Copy for BinarySearchResult {}
|
|
|
|
#[experimental = "needs review"]
|
|
impl BinarySearchResult {
|
|
/// Converts a `Found` to `Some`, `NotFound` to `None`.
|
|
/// Similar to `Result::ok`.
|
|
pub fn found(&self) -> Option<uint> {
|
|
match *self {
|
|
BinarySearchResult::Found(i) => Some(i),
|
|
BinarySearchResult::NotFound(_) => None
|
|
}
|
|
}
|
|
|
|
/// Convert a `Found` to `None`, `NotFound` to `Some`.
|
|
/// Similar to `Result::err`.
|
|
pub fn not_found(&self) -> Option<uint> {
|
|
match *self {
|
|
BinarySearchResult::Found(_) => None,
|
|
BinarySearchResult::NotFound(i) => Some(i)
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
//
|
|
// Free functions
|
|
//
|
|
|
|
/// Converts a pointer to A into a slice of length 1 (without copying).
|
|
#[unstable = "waiting for DST"]
|
|
pub fn ref_slice<'a, A>(s: &'a A) -> &'a [A] {
|
|
unsafe {
|
|
transmute(RawSlice { data: s, len: 1 })
|
|
}
|
|
}
|
|
|
|
/// Converts a pointer to A into a slice of length 1 (without copying).
|
|
#[unstable = "waiting for DST"]
|
|
pub fn mut_ref_slice<'a, A>(s: &'a mut A) -> &'a mut [A] {
|
|
unsafe {
|
|
let ptr: *const A = transmute(s);
|
|
transmute(RawSlice { data: ptr, len: 1 })
|
|
}
|
|
}
|
|
|
|
/// Forms a slice from a pointer and a length.
|
|
///
|
|
/// The pointer given is actually a reference to the base of the slice. This
|
|
/// reference is used to give a concrete lifetime to tie the returned slice to.
|
|
/// Typically this should indicate that the slice is valid for as long as the
|
|
/// pointer itself is valid.
|
|
///
|
|
/// The `len` argument is the number of **elements**, not the number of bytes.
|
|
///
|
|
/// This function is unsafe as there is no guarantee that the given pointer is
|
|
/// valid for `len` elements, nor whether the lifetime provided is a suitable
|
|
/// lifetime for the returned slice.
|
|
///
|
|
/// # Example
|
|
///
|
|
/// ```rust
|
|
/// use std::slice;
|
|
///
|
|
/// // manifest a slice out of thin air!
|
|
/// let ptr = 0x1234 as *const uint;
|
|
/// let amt = 10;
|
|
/// unsafe {
|
|
/// let slice = slice::from_raw_buf(&ptr, amt);
|
|
/// }
|
|
/// ```
|
|
#[inline]
|
|
#[unstable = "just renamed from `mod raw`"]
|
|
pub unsafe fn from_raw_buf<'a, T>(p: &'a *const T, len: uint) -> &'a [T] {
|
|
transmute(RawSlice { data: *p, len: len })
|
|
}
|
|
|
|
/// Performs the same functionality as `from_raw_buf`, except that a mutable
|
|
/// slice is returned.
|
|
///
|
|
/// This function is unsafe for the same reasons as `from_raw_buf`, as well as
|
|
/// not being able to provide a non-aliasing guarantee of the returned mutable
|
|
/// slice.
|
|
#[inline]
|
|
#[unstable = "just renamed from `mod raw`"]
|
|
pub unsafe fn from_raw_mut_buf<'a, T>(p: &'a *mut T, len: uint) -> &'a mut [T] {
|
|
transmute(RawSlice { data: *p as *const T, len: len })
|
|
}
|
|
|
|
//
|
|
// Submodules
|
|
//
|
|
|
|
/// Unsafe operations
|
|
#[deprecated]
|
|
pub mod raw {
|
|
use mem::transmute;
|
|
use ptr::RawPtr;
|
|
use raw::Slice;
|
|
use ops::FnOnce;
|
|
use option::Option;
|
|
use option::Option::{None, Some};
|
|
|
|
/// Form a slice from a pointer and length (as a number of units,
|
|
/// not bytes).
|
|
#[inline]
|
|
#[deprecated = "renamed to slice::from_raw_buf"]
|
|
pub unsafe fn buf_as_slice<T, U, F>(p: *const T, len: uint, f: F) -> U where
|
|
F: FnOnce(&[T]) -> U,
|
|
{
|
|
f(transmute(Slice {
|
|
data: p,
|
|
len: len
|
|
}))
|
|
}
|
|
|
|
/// Form a slice from a pointer and length (as a number of units,
|
|
/// not bytes).
|
|
#[inline]
|
|
#[deprecated = "renamed to slice::from_raw_mut_buf"]
|
|
pub unsafe fn mut_buf_as_slice<T, U, F>(p: *mut T, len: uint, f: F) -> U where
|
|
F: FnOnce(&mut [T]) -> U,
|
|
{
|
|
f(transmute(Slice {
|
|
data: p as *const T,
|
|
len: len
|
|
}))
|
|
}
|
|
|
|
/// Returns a pointer to first element in slice and adjusts
|
|
/// slice so it no longer contains that element. Returns None
|
|
/// if the slice is empty. O(1).
|
|
#[inline]
|
|
#[deprecated = "inspect `Slice::{data, len}` manually (increment data by 1)"]
|
|
pub unsafe fn shift_ptr<T>(slice: &mut Slice<T>) -> Option<*const T> {
|
|
if slice.len == 0 { return None; }
|
|
let head: *const T = slice.data;
|
|
slice.data = slice.data.offset(1);
|
|
slice.len -= 1;
|
|
Some(head)
|
|
}
|
|
|
|
/// Returns a pointer to last element in slice and adjusts
|
|
/// slice so it no longer contains that element. Returns None
|
|
/// if the slice is empty. O(1).
|
|
#[inline]
|
|
#[deprecated = "inspect `Slice::{data, len}` manually (decrement len by 1)"]
|
|
pub unsafe fn pop_ptr<T>(slice: &mut Slice<T>) -> Option<*const T> {
|
|
if slice.len == 0 { return None; }
|
|
let tail: *const T = slice.data.offset((slice.len - 1) as int);
|
|
slice.len -= 1;
|
|
Some(tail)
|
|
}
|
|
}
|
|
|
|
/// Operations on `[u8]`.
|
|
#[experimental = "needs review"]
|
|
pub mod bytes {
|
|
use kinds::Sized;
|
|
use ptr;
|
|
use slice::SliceExt;
|
|
|
|
/// A trait for operations on mutable `[u8]`s.
|
|
pub trait MutableByteVector for Sized? {
|
|
/// Sets all bytes of the receiver to the given value.
|
|
fn set_memory(&mut self, value: u8);
|
|
}
|
|
|
|
impl MutableByteVector for [u8] {
|
|
#[inline]
|
|
#[allow(experimental)]
|
|
fn set_memory(&mut self, value: u8) {
|
|
unsafe { ptr::set_memory(self.as_mut_ptr(), value, self.len()) };
|
|
}
|
|
}
|
|
|
|
/// Copies data from `src` to `dst`
|
|
///
|
|
/// Panics if the length of `dst` is less than the length of `src`.
|
|
#[inline]
|
|
pub fn copy_memory(dst: &mut [u8], src: &[u8]) {
|
|
let len_src = src.len();
|
|
assert!(dst.len() >= len_src);
|
|
// `dst` is unaliasable, so we know statically it doesn't overlap
|
|
// with `src`.
|
|
unsafe {
|
|
ptr::copy_nonoverlapping_memory(dst.as_mut_ptr(),
|
|
src.as_ptr(),
|
|
len_src);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
//
|
|
// Boilerplate traits
|
|
//
|
|
|
|
#[unstable = "waiting for DST"]
|
|
impl<A, B> PartialEq<[B]> for [A] where A: PartialEq<B> {
|
|
fn eq(&self, other: &[B]) -> bool {
|
|
self.len() == other.len() &&
|
|
order::eq(self.iter(), other.iter())
|
|
}
|
|
fn ne(&self, other: &[B]) -> bool {
|
|
self.len() != other.len() ||
|
|
order::ne(self.iter(), other.iter())
|
|
}
|
|
}
|
|
|
|
#[unstable = "waiting for DST"]
|
|
impl<T: Eq> Eq for [T] {}
|
|
|
|
#[allow(deprecated)]
|
|
#[deprecated = "Use overloaded `core::cmp::PartialEq`"]
|
|
impl<T: PartialEq, Sized? V: AsSlice<T>> Equiv<V> for [T] {
|
|
#[inline]
|
|
fn equiv(&self, other: &V) -> bool { self.as_slice() == other.as_slice() }
|
|
}
|
|
|
|
#[allow(deprecated)]
|
|
#[deprecated = "Use overloaded `core::cmp::PartialEq`"]
|
|
impl<'a,T:PartialEq, Sized? V: AsSlice<T>> Equiv<V> for &'a mut [T] {
|
|
#[inline]
|
|
fn equiv(&self, other: &V) -> bool { self.as_slice() == other.as_slice() }
|
|
}
|
|
|
|
#[unstable = "waiting for DST"]
|
|
impl<T: Ord> Ord for [T] {
|
|
fn cmp(&self, other: &[T]) -> Ordering {
|
|
order::cmp(self.iter(), other.iter())
|
|
}
|
|
}
|
|
|
|
#[unstable = "waiting for DST"]
|
|
impl<T: PartialOrd> PartialOrd for [T] {
|
|
#[inline]
|
|
fn partial_cmp(&self, other: &[T]) -> Option<Ordering> {
|
|
order::partial_cmp(self.iter(), other.iter())
|
|
}
|
|
#[inline]
|
|
fn lt(&self, other: &[T]) -> bool {
|
|
order::lt(self.iter(), other.iter())
|
|
}
|
|
#[inline]
|
|
fn le(&self, other: &[T]) -> bool {
|
|
order::le(self.iter(), other.iter())
|
|
}
|
|
#[inline]
|
|
fn ge(&self, other: &[T]) -> bool {
|
|
order::ge(self.iter(), other.iter())
|
|
}
|
|
#[inline]
|
|
fn gt(&self, other: &[T]) -> bool {
|
|
order::gt(self.iter(), other.iter())
|
|
}
|
|
}
|
|
|
|
/// Extension methods for immutable slices containing integers.
|
|
#[experimental]
|
|
pub trait ImmutableIntSlice<U, S> for Sized? {
|
|
/// Converts the slice to an immutable slice of unsigned integers with the same width.
|
|
fn as_unsigned<'a>(&'a self) -> &'a [U];
|
|
/// Converts the slice to an immutable slice of signed integers with the same width.
|
|
fn as_signed<'a>(&'a self) -> &'a [S];
|
|
}
|
|
|
|
/// Extension methods for mutable slices containing integers.
|
|
#[experimental]
|
|
pub trait MutableIntSlice<U, S> for Sized?: ImmutableIntSlice<U, S> {
|
|
/// Converts the slice to a mutable slice of unsigned integers with the same width.
|
|
fn as_unsigned_mut<'a>(&'a mut self) -> &'a mut [U];
|
|
/// Converts the slice to a mutable slice of signed integers with the same width.
|
|
fn as_signed_mut<'a>(&'a mut self) -> &'a mut [S];
|
|
}
|
|
|
|
macro_rules! impl_immut_int_slice {
|
|
($u:ty, $s:ty, $t:ty) => {
|
|
#[experimental]
|
|
impl ImmutableIntSlice<$u, $s> for [$t] {
|
|
#[inline]
|
|
fn as_unsigned(&self) -> &[$u] { unsafe { transmute(self) } }
|
|
#[inline]
|
|
fn as_signed(&self) -> &[$s] { unsafe { transmute(self) } }
|
|
}
|
|
}
|
|
}
|
|
macro_rules! impl_mut_int_slice {
|
|
($u:ty, $s:ty, $t:ty) => {
|
|
#[experimental]
|
|
impl MutableIntSlice<$u, $s> for [$t] {
|
|
#[inline]
|
|
fn as_unsigned_mut(&mut self) -> &mut [$u] { unsafe { transmute(self) } }
|
|
#[inline]
|
|
fn as_signed_mut(&mut self) -> &mut [$s] { unsafe { transmute(self) } }
|
|
}
|
|
}
|
|
}
|
|
|
|
macro_rules! impl_int_slice {
|
|
($u:ty, $s:ty) => {
|
|
impl_immut_int_slice!($u, $s, $u)
|
|
impl_immut_int_slice!($u, $s, $s)
|
|
impl_mut_int_slice!($u, $s, $u)
|
|
impl_mut_int_slice!($u, $s, $s)
|
|
}
|
|
}
|
|
|
|
impl_int_slice!(u8, i8)
|
|
impl_int_slice!(u16, i16)
|
|
impl_int_slice!(u32, i32)
|
|
impl_int_slice!(u64, i64)
|
|
impl_int_slice!(uint, int)
|
|
|