rust/src/librustc/middle/resolve_lifetime.rs
2015-02-24 14:16:02 +02:00

657 lines
26 KiB
Rust

// Copyright 2012-2013 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! Name resolution for lifetimes.
//!
//! Name resolution for lifetimes follows MUCH simpler rules than the
//! full resolve. For example, lifetime names are never exported or
//! used between functions, and they operate in a purely top-down
//! way. Therefore we break lifetime name resolution into a separate pass.
pub use self::DefRegion::*;
use self::ScopeChain::*;
use session::Session;
use middle::def::{self, DefMap};
use middle::region;
use middle::subst;
use middle::ty;
use std::fmt;
use syntax::ast;
use syntax::codemap::Span;
use syntax::parse::token::special_idents;
use syntax::parse::token;
use syntax::print::pprust::{lifetime_to_string};
use syntax::visit;
use syntax::visit::Visitor;
use util::nodemap::NodeMap;
#[derive(Clone, Copy, PartialEq, Eq, Hash, RustcEncodable, RustcDecodable, Debug)]
pub enum DefRegion {
DefStaticRegion,
DefEarlyBoundRegion(/* space */ subst::ParamSpace,
/* index */ u32,
/* lifetime decl */ ast::NodeId),
DefLateBoundRegion(ty::DebruijnIndex,
/* lifetime decl */ ast::NodeId),
DefFreeRegion(/* block scope */ region::DestructionScopeData,
/* lifetime decl */ ast::NodeId),
}
// Maps the id of each lifetime reference to the lifetime decl
// that it corresponds to.
pub type NamedRegionMap = NodeMap<DefRegion>;
struct LifetimeContext<'a> {
sess: &'a Session,
named_region_map: &'a mut NamedRegionMap,
scope: Scope<'a>,
def_map: &'a DefMap,
// Deep breath. Our representation for poly trait refs contains a single
// binder and thus we only allow a single level of quantification. However,
// the syntax of Rust permits quantification in two places, e.g., `T: for <'a> Foo<'a>`
// and `for <'a, 'b> &'b T: Foo<'a>`. In order to get the de Bruijn indices
// correct when representing these constraints, we should only introduce one
// scope. However, we want to support both locations for the quantifier and
// during lifetime resolution we want precise information (so we can't
// desugar in an earlier phase).
// SO, if we encounter a quantifier at the outer scope, we set
// trait_ref_hack to true (and introduce a scope), and then if we encounter
// a quantifier at the inner scope, we error. If trait_ref_hack is false,
// then we introduce the scope at the inner quantifier.
// I'm sorry.
trait_ref_hack: bool,
}
enum ScopeChain<'a> {
/// EarlyScope(i, ['a, 'b, ...], s) extends s with early-bound
/// lifetimes, assigning indexes 'a => i, 'b => i+1, ... etc.
EarlyScope(subst::ParamSpace, &'a Vec<ast::LifetimeDef>, Scope<'a>),
/// LateScope(['a, 'b, ...], s) extends s with late-bound
/// lifetimes introduced by the declaration binder_id.
LateScope(&'a Vec<ast::LifetimeDef>, Scope<'a>),
/// lifetimes introduced by items within a code block are scoped
/// to that block.
BlockScope(region::DestructionScopeData, Scope<'a>),
RootScope
}
type Scope<'a> = &'a ScopeChain<'a>;
static ROOT_SCOPE: ScopeChain<'static> = RootScope;
pub fn krate(sess: &Session, krate: &ast::Crate, def_map: &DefMap) -> NamedRegionMap {
let mut named_region_map = NodeMap();
visit::walk_crate(&mut LifetimeContext {
sess: sess,
named_region_map: &mut named_region_map,
scope: &ROOT_SCOPE,
def_map: def_map,
trait_ref_hack: false,
}, krate);
sess.abort_if_errors();
named_region_map
}
impl<'a, 'v> Visitor<'v> for LifetimeContext<'a> {
fn visit_item(&mut self, item: &ast::Item) {
// Items always introduce a new root scope
self.with(RootScope, |_, this| {
match item.node {
ast::ItemFn(..) => {
// Fn lifetimes get added in visit_fn below:
visit::walk_item(this, item);
}
ast::ItemExternCrate(_) |
ast::ItemUse(_) |
ast::ItemMod(..) |
ast::ItemMac(..) |
ast::ItemDefaultImpl(..) |
ast::ItemForeignMod(..) |
ast::ItemStatic(..) |
ast::ItemConst(..) => {
// These sorts of items have no lifetime parameters at all.
visit::walk_item(this, item);
}
ast::ItemTy(_, ref generics) |
ast::ItemEnum(_, ref generics) |
ast::ItemStruct(_, ref generics) |
ast::ItemTrait(_, ref generics, _, _) |
ast::ItemImpl(_, _, ref generics, _, _, _) => {
// These kinds of items have only early bound lifetime parameters.
let lifetimes = &generics.lifetimes;
let early_scope = EarlyScope(subst::TypeSpace, lifetimes, &ROOT_SCOPE);
this.with(early_scope, |old_scope, this| {
this.check_lifetime_defs(old_scope, lifetimes);
visit::walk_item(this, item);
});
}
}
});
}
fn visit_fn(&mut self, fk: visit::FnKind<'v>, fd: &'v ast::FnDecl,
b: &'v ast::Block, s: Span, _: ast::NodeId) {
match fk {
visit::FkItemFn(_, generics, _, _) |
visit::FkMethod(_, generics, _) => {
self.visit_early_late(subst::FnSpace, generics, |this| {
visit::walk_fn(this, fk, fd, b, s)
})
}
visit::FkFnBlock(..) => {
visit::walk_fn(self, fk, fd, b, s)
}
}
}
fn visit_ty(&mut self, ty: &ast::Ty) {
match ty.node {
ast::TyBareFn(ref c) => {
visit::walk_lifetime_decls_helper(self, &c.lifetimes);
self.with(LateScope(&c.lifetimes, self.scope), |old_scope, this| {
// a bare fn has no bounds, so everything
// contained within is scoped within its binder.
this.check_lifetime_defs(old_scope, &c.lifetimes);
visit::walk_ty(this, ty);
});
}
ast::TyPath(None, ref path) => {
// if this path references a trait, then this will resolve to
// a trait ref, which introduces a binding scope.
match self.def_map.borrow().get(&ty.id).map(|d| (d.base_def, d.depth)) {
Some((def::DefTrait(..), 0)) => {
self.with(LateScope(&Vec::new(), self.scope), |_, this| {
this.visit_path(path, ty.id);
});
}
_ => {
visit::walk_ty(self, ty);
}
}
}
_ => {
visit::walk_ty(self, ty)
}
}
}
fn visit_ty_method(&mut self, m: &ast::TypeMethod) {
self.visit_early_late(
subst::FnSpace, &m.generics,
|this| visit::walk_ty_method(this, m))
}
fn visit_block(&mut self, b: &ast::Block) {
self.with(BlockScope(region::DestructionScopeData::new(b.id),
self.scope),
|_, this| visit::walk_block(this, b));
}
fn visit_lifetime_ref(&mut self, lifetime_ref: &ast::Lifetime) {
if lifetime_ref.name == special_idents::static_lifetime.name {
self.insert_lifetime(lifetime_ref, DefStaticRegion);
return;
}
self.resolve_lifetime_ref(lifetime_ref);
}
fn visit_generics(&mut self, generics: &ast::Generics) {
for ty_param in &*generics.ty_params {
visit::walk_ty_param_bounds_helper(self, &ty_param.bounds);
match ty_param.default {
Some(ref ty) => self.visit_ty(&**ty),
None => {}
}
}
for predicate in &generics.where_clause.predicates {
match predicate {
&ast::WherePredicate::BoundPredicate(ast::WhereBoundPredicate{ ref bounded_ty,
ref bounds,
ref bound_lifetimes,
.. }) => {
if bound_lifetimes.len() > 0 {
self.trait_ref_hack = true;
let result = self.with(LateScope(bound_lifetimes, self.scope),
|old_scope, this| {
this.check_lifetime_defs(old_scope, bound_lifetimes);
this.visit_ty(&**bounded_ty);
visit::walk_ty_param_bounds_helper(this, bounds);
});
self.trait_ref_hack = false;
result
} else {
self.visit_ty(&**bounded_ty);
visit::walk_ty_param_bounds_helper(self, bounds);
}
}
&ast::WherePredicate::RegionPredicate(ast::WhereRegionPredicate{ref lifetime,
ref bounds,
.. }) => {
self.visit_lifetime_ref(lifetime);
for bound in bounds {
self.visit_lifetime_ref(bound);
}
}
&ast::WherePredicate::EqPredicate(ast::WhereEqPredicate{ id,
ref path,
ref ty,
.. }) => {
self.visit_path(path, id);
self.visit_ty(&**ty);
}
}
}
}
fn visit_poly_trait_ref(&mut self,
trait_ref: &ast::PolyTraitRef,
_modifier: &ast::TraitBoundModifier) {
debug!("visit_poly_trait_ref trait_ref={:?}", trait_ref);
if !self.trait_ref_hack || trait_ref.bound_lifetimes.len() > 0 {
if self.trait_ref_hack {
println!("{:?}", trait_ref.span);
span_err!(self.sess, trait_ref.span, E0316,
"nested quantification of lifetimes");
}
self.with(LateScope(&trait_ref.bound_lifetimes, self.scope), |old_scope, this| {
this.check_lifetime_defs(old_scope, &trait_ref.bound_lifetimes);
for lifetime in &trait_ref.bound_lifetimes {
this.visit_lifetime_def(lifetime);
}
visit::walk_path(this, &trait_ref.trait_ref.path)
})
} else {
self.visit_trait_ref(&trait_ref.trait_ref)
}
}
}
impl<'a> LifetimeContext<'a> {
fn with<F>(&mut self, wrap_scope: ScopeChain, f: F) where
F: FnOnce(Scope, &mut LifetimeContext),
{
let LifetimeContext {sess, ref mut named_region_map, ..} = *self;
let mut this = LifetimeContext {
sess: sess,
named_region_map: *named_region_map,
scope: &wrap_scope,
def_map: self.def_map,
trait_ref_hack: self.trait_ref_hack,
};
debug!("entering scope {:?}", this.scope);
f(self.scope, &mut this);
debug!("exiting scope {:?}", this.scope);
}
/// Visits self by adding a scope and handling recursive walk over the contents with `walk`.
///
/// Handles visiting fns and methods. These are a bit complicated because we must distinguish
/// early- vs late-bound lifetime parameters. We do this by checking which lifetimes appear
/// within type bounds; those are early bound lifetimes, and the rest are late bound.
///
/// For example:
///
/// fn foo<'a,'b,'c,T:Trait<'b>>(...)
///
/// Here `'a` and `'c` are late bound but `'b` is early bound. Note that early- and late-bound
/// lifetimes may be interspersed together.
///
/// If early bound lifetimes are present, we separate them into their own list (and likewise
/// for late bound). They will be numbered sequentially, starting from the lowest index that is
/// already in scope (for a fn item, that will be 0, but for a method it might not be). Late
/// bound lifetimes are resolved by name and associated with a binder id (`binder_id`), so the
/// ordering is not important there.
fn visit_early_late<F>(&mut self,
early_space: subst::ParamSpace,
generics: &ast::Generics,
walk: F) where
F: FnOnce(&mut LifetimeContext),
{
let referenced_idents = early_bound_lifetime_names(generics);
debug!("visit_early_late: referenced_idents={:?}",
referenced_idents);
let (early, late): (Vec<_>, _) = generics.lifetimes.iter().cloned().partition(
|l| referenced_idents.iter().any(|&i| i == l.lifetime.name));
self.with(EarlyScope(early_space, &early, self.scope), move |old_scope, this| {
this.with(LateScope(&late, this.scope), move |_, this| {
this.check_lifetime_defs(old_scope, &generics.lifetimes);
walk(this);
});
});
}
fn resolve_lifetime_ref(&mut self, lifetime_ref: &ast::Lifetime) {
// Walk up the scope chain, tracking the number of fn scopes
// that we pass through, until we find a lifetime with the
// given name or we run out of scopes. If we encounter a code
// block, then the lifetime is not bound but free, so switch
// over to `resolve_free_lifetime_ref()` to complete the
// search.
let mut late_depth = 0;
let mut scope = self.scope;
loop {
match *scope {
BlockScope(blk_scope, s) => {
return self.resolve_free_lifetime_ref(blk_scope, lifetime_ref, s);
}
RootScope => {
break;
}
EarlyScope(space, lifetimes, s) => {
match search_lifetimes(lifetimes, lifetime_ref) {
Some((index, lifetime_def)) => {
let decl_id = lifetime_def.id;
let def = DefEarlyBoundRegion(space, index, decl_id);
self.insert_lifetime(lifetime_ref, def);
return;
}
None => {
scope = s;
}
}
}
LateScope(lifetimes, s) => {
match search_lifetimes(lifetimes, lifetime_ref) {
Some((_index, lifetime_def)) => {
let decl_id = lifetime_def.id;
let debruijn = ty::DebruijnIndex::new(late_depth + 1);
let def = DefLateBoundRegion(debruijn, decl_id);
self.insert_lifetime(lifetime_ref, def);
return;
}
None => {
late_depth += 1;
scope = s;
}
}
}
}
}
self.unresolved_lifetime_ref(lifetime_ref);
}
fn resolve_free_lifetime_ref(&mut self,
scope_data: region::DestructionScopeData,
lifetime_ref: &ast::Lifetime,
scope: Scope) {
debug!("resolve_free_lifetime_ref \
scope_data: {:?} lifetime_ref: {:?} scope: {:?}",
scope_data, lifetime_ref, scope);
// Walk up the scope chain, tracking the outermost free scope,
// until we encounter a scope that contains the named lifetime
// or we run out of scopes.
let mut scope_data = scope_data;
let mut scope = scope;
let mut search_result = None;
loop {
debug!("resolve_free_lifetime_ref \
scope_data: {:?} scope: {:?} search_result: {:?}",
scope_data, scope, search_result);
match *scope {
BlockScope(blk_scope_data, s) => {
scope_data = blk_scope_data;
scope = s;
}
RootScope => {
break;
}
EarlyScope(_, lifetimes, s) |
LateScope(lifetimes, s) => {
search_result = search_lifetimes(lifetimes, lifetime_ref);
if search_result.is_some() {
break;
}
scope = s;
}
}
}
match search_result {
Some((_depth, lifetime)) => {
let def = DefFreeRegion(scope_data, lifetime.id);
self.insert_lifetime(lifetime_ref, def);
}
None => {
self.unresolved_lifetime_ref(lifetime_ref);
}
}
}
fn unresolved_lifetime_ref(&self, lifetime_ref: &ast::Lifetime) {
span_err!(self.sess, lifetime_ref.span, E0261,
"use of undeclared lifetime name `{}`",
token::get_name(lifetime_ref.name));
}
fn check_lifetime_defs(&mut self, old_scope: Scope, lifetimes: &Vec<ast::LifetimeDef>) {
for i in 0..lifetimes.len() {
let lifetime_i = &lifetimes[i];
let special_idents = [special_idents::static_lifetime];
for lifetime in lifetimes {
if special_idents.iter().any(|&i| i.name == lifetime.lifetime.name) {
span_err!(self.sess, lifetime.lifetime.span, E0262,
"illegal lifetime parameter name: `{}`",
token::get_name(lifetime.lifetime.name));
}
}
// It is a hard error to shadow a lifetime within the same scope.
for j in i + 1..lifetimes.len() {
let lifetime_j = &lifetimes[j];
if lifetime_i.lifetime.name == lifetime_j.lifetime.name {
span_err!(self.sess, lifetime_j.lifetime.span, E0263,
"lifetime name `{}` declared twice in \
the same scope",
token::get_name(lifetime_j.lifetime.name));
}
}
// It is a soft error to shadow a lifetime within a parent scope.
self.check_lifetime_def_for_shadowing(old_scope, &lifetime_i.lifetime);
for bound in &lifetime_i.bounds {
self.resolve_lifetime_ref(bound);
}
}
}
fn check_lifetime_def_for_shadowing(&self,
mut old_scope: Scope,
lifetime: &ast::Lifetime)
{
loop {
match *old_scope {
BlockScope(_, s) => {
old_scope = s;
}
RootScope => {
return;
}
EarlyScope(_, lifetimes, s) |
LateScope(lifetimes, s) => {
if let Some((_, lifetime_def)) = search_lifetimes(lifetimes, lifetime) {
self.sess.span_warn(
lifetime.span,
&format!("lifetime name `{}` shadows another \
lifetime name that is already in scope",
token::get_name(lifetime.name)));
self.sess.span_note(
lifetime_def.span,
&format!("shadowed lifetime `{}` declared here",
token::get_name(lifetime.name)));
self.sess.span_note(
lifetime.span,
"shadowed lifetimes are deprecated \
and will become a hard error before 1.0");
return;
}
old_scope = s;
}
}
}
}
fn insert_lifetime(&mut self,
lifetime_ref: &ast::Lifetime,
def: DefRegion) {
if lifetime_ref.id == ast::DUMMY_NODE_ID {
self.sess.span_bug(lifetime_ref.span,
"lifetime reference not renumbered, \
probably a bug in syntax::fold");
}
debug!("lifetime_ref={:?} id={:?} resolved to {:?}",
lifetime_to_string(lifetime_ref),
lifetime_ref.id,
def);
self.named_region_map.insert(lifetime_ref.id, def);
}
}
fn search_lifetimes<'a>(lifetimes: &'a Vec<ast::LifetimeDef>,
lifetime_ref: &ast::Lifetime)
-> Option<(u32, &'a ast::Lifetime)> {
for (i, lifetime_decl) in lifetimes.iter().enumerate() {
if lifetime_decl.lifetime.name == lifetime_ref.name {
return Some((i as u32, &lifetime_decl.lifetime));
}
}
return None;
}
///////////////////////////////////////////////////////////////////////////
pub fn early_bound_lifetimes<'a>(generics: &'a ast::Generics) -> Vec<ast::LifetimeDef> {
let referenced_idents = early_bound_lifetime_names(generics);
if referenced_idents.is_empty() {
return Vec::new();
}
generics.lifetimes.iter()
.filter(|l| referenced_idents.iter().any(|&i| i == l.lifetime.name))
.cloned()
.collect()
}
/// Given a set of generic declarations, returns a list of names containing all early bound
/// lifetime names for those generics. (In fact, this list may also contain other names.)
fn early_bound_lifetime_names(generics: &ast::Generics) -> Vec<ast::Name> {
// Create two lists, dividing the lifetimes into early/late bound.
// Initially, all of them are considered late, but we will move
// things from late into early as we go if we find references to
// them.
let mut early_bound = Vec::new();
let mut late_bound = generics.lifetimes.iter()
.map(|l| l.lifetime.name)
.collect();
// Any lifetime that appears in a type bound is early.
{
let mut collector =
FreeLifetimeCollector { early_bound: &mut early_bound,
late_bound: &mut late_bound };
for ty_param in &*generics.ty_params {
visit::walk_ty_param_bounds_helper(&mut collector, &ty_param.bounds);
}
for predicate in &generics.where_clause.predicates {
match predicate {
&ast::WherePredicate::BoundPredicate(ast::WhereBoundPredicate{ref bounds,
ref bounded_ty,
..}) => {
collector.visit_ty(&**bounded_ty);
visit::walk_ty_param_bounds_helper(&mut collector, bounds);
}
&ast::WherePredicate::RegionPredicate(ast::WhereRegionPredicate{ref lifetime,
ref bounds,
..}) => {
collector.visit_lifetime_ref(lifetime);
for bound in bounds {
collector.visit_lifetime_ref(bound);
}
}
&ast::WherePredicate::EqPredicate(_) => unimplemented!()
}
}
}
// Any lifetime that either has a bound or is referenced by a
// bound is early.
for lifetime_def in &generics.lifetimes {
if !lifetime_def.bounds.is_empty() {
shuffle(&mut early_bound, &mut late_bound,
lifetime_def.lifetime.name);
for bound in &lifetime_def.bounds {
shuffle(&mut early_bound, &mut late_bound,
bound.name);
}
}
}
return early_bound;
struct FreeLifetimeCollector<'a> {
early_bound: &'a mut Vec<ast::Name>,
late_bound: &'a mut Vec<ast::Name>,
}
impl<'a, 'v> Visitor<'v> for FreeLifetimeCollector<'a> {
fn visit_lifetime_ref(&mut self, lifetime_ref: &ast::Lifetime) {
shuffle(self.early_bound, self.late_bound,
lifetime_ref.name);
}
}
fn shuffle(early_bound: &mut Vec<ast::Name>,
late_bound: &mut Vec<ast::Name>,
name: ast::Name) {
match late_bound.iter().position(|n| *n == name) {
Some(index) => {
late_bound.swap_remove(index);
early_bound.push(name);
}
None => { }
}
}
}
impl<'a> fmt::Debug for ScopeChain<'a> {
fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
match *self {
EarlyScope(space, defs, _) => write!(fmt, "EarlyScope({:?}, {:?})", space, defs),
LateScope(defs, _) => write!(fmt, "LateScope({:?})", defs),
BlockScope(id, _) => write!(fmt, "BlockScope({:?})", id),
RootScope => write!(fmt, "RootScope"),
}
}
}