rust/src/libcollections/ring_buf.rs
Alex Crichton 3369b33a20 rollup merge of #19902: alexcrichton/second-pass-mem
This commit stabilizes the `mem` and `default` modules of std.
2014-12-17 11:50:29 -08:00

2136 lines
63 KiB
Rust

// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! This crate implements a double-ended queue with `O(1)` amortized inserts and removals from both
//! ends of the container. It also has `O(1)` indexing like a vector. The contained elements are
//! not required to be copyable, and the queue will be sendable if the contained type is sendable.
use core::prelude::*;
use core::default::Default;
use core::fmt;
use core::iter;
use core::raw::Slice as RawSlice;
use core::ptr;
use core::kinds::marker;
use core::mem;
use core::num::{Int, UnsignedInt};
use std::hash::{Writer, Hash};
use std::cmp;
use alloc::heap;
static INITIAL_CAPACITY: uint = 8u; // 2^3
static MINIMUM_CAPACITY: uint = 2u;
// FIXME(conventions): implement shrink_to_fit. Awkward with the current design, but it should
// be scrapped anyway. Defer to rewrite?
/// `RingBuf` is a circular buffer, which can be used as a double-ended queue efficiently.
pub struct RingBuf<T> {
// tail and head are pointers into the buffer. Tail always points
// to the first element that could be read, Head always points
// to where data should be written.
// If tail == head the buffer is empty. The length of the ringbuf
// is defined as the distance between the two.
tail: uint,
head: uint,
cap: uint,
ptr: *mut T
}
impl<T: Clone> Clone for RingBuf<T> {
fn clone(&self) -> RingBuf<T> {
self.iter().map(|t| t.clone()).collect()
}
}
#[unsafe_destructor]
impl<T> Drop for RingBuf<T> {
fn drop(&mut self) {
self.clear();
unsafe {
if mem::size_of::<T>() != 0 {
heap::deallocate(self.ptr as *mut u8,
self.cap * mem::size_of::<T>(),
mem::min_align_of::<T>())
}
}
}
}
#[stable]
impl<T> Default for RingBuf<T> {
#[stable]
#[inline]
fn default() -> RingBuf<T> { RingBuf::new() }
}
impl<T> RingBuf<T> {
/// Turn ptr into a slice
#[inline]
unsafe fn buffer_as_slice(&self) -> &[T] {
mem::transmute(RawSlice { data: self.ptr as *const T, len: self.cap })
}
/// Moves an element out of the buffer
#[inline]
unsafe fn buffer_read(&mut self, off: uint) -> T {
ptr::read(self.ptr.offset(off as int) as *const T)
}
/// Writes an element into the buffer, moving it.
#[inline]
unsafe fn buffer_write(&mut self, off: uint, t: T) {
ptr::write(self.ptr.offset(off as int), t);
}
/// Returns true iff the buffer is at capacity
#[inline]
fn is_full(&self) -> bool { self.cap - self.len() == 1 }
/// Returns the index in the underlying buffer for a given logical element index.
#[inline]
fn wrap_index(&self, idx: uint) -> uint { wrap_index(idx, self.cap) }
/// Copies a contiguous block of memory len long from src to dst
#[inline]
unsafe fn copy(&self, dst: uint, src: uint, len: uint) {
debug_assert!(dst + len <= self.cap, "dst={} src={} len={} cap={}", dst, src, len,
self.cap);
debug_assert!(src + len <= self.cap, "dst={} src={} len={} cap={}", dst, src, len,
self.cap);
ptr::copy_memory(
self.ptr.offset(dst as int),
self.ptr.offset(src as int) as *const T,
len);
}
}
impl<T> RingBuf<T> {
/// Creates an empty `RingBuf`.
#[unstable = "matches collection reform specification, waiting for dust to settle"]
pub fn new() -> RingBuf<T> {
RingBuf::with_capacity(INITIAL_CAPACITY)
}
/// Creates an empty `RingBuf` with space for at least `n` elements.
#[unstable = "matches collection reform specification, waiting for dust to settle"]
pub fn with_capacity(n: uint) -> RingBuf<T> {
// +1 since the ringbuffer always leaves one space empty
let cap = cmp::max(n + 1, MINIMUM_CAPACITY).next_power_of_two();
let size = cap.checked_mul(mem::size_of::<T>())
.expect("capacity overflow");
let ptr = if mem::size_of::<T>() != 0 {
unsafe {
let ptr = heap::allocate(size, mem::min_align_of::<T>()) as *mut T;;
if ptr.is_null() { ::alloc::oom() }
ptr
}
} else {
heap::EMPTY as *mut T
};
RingBuf {
tail: 0,
head: 0,
cap: cap,
ptr: ptr
}
}
/// Retrieves an element in the `RingBuf` by index.
///
/// # Examples
///
/// ```rust
/// use std::collections::RingBuf;
///
/// let mut buf = RingBuf::new();
/// buf.push_back(3i);
/// buf.push_back(4);
/// buf.push_back(5);
/// assert_eq!(buf.get(1).unwrap(), &4);
/// ```
#[unstable = "matches collection reform specification, waiting for dust to settle"]
pub fn get(&self, i: uint) -> Option<&T> {
if i < self.len() {
let idx = self.wrap_index(self.tail + i);
unsafe { Some(&*self.ptr.offset(idx as int)) }
} else {
None
}
}
/// Retrieves an element in the `RingBuf` mutably by index.
///
/// # Examples
///
/// ```rust
/// use std::collections::RingBuf;
///
/// let mut buf = RingBuf::new();
/// buf.push_back(3i);
/// buf.push_back(4);
/// buf.push_back(5);
/// match buf.get_mut(1) {
/// None => {}
/// Some(elem) => {
/// *elem = 7;
/// }
/// }
///
/// assert_eq!(buf[1], 7);
/// ```
#[unstable = "matches collection reform specification, waiting for dust to settle"]
pub fn get_mut(&mut self, i: uint) -> Option<&mut T> {
if i < self.len() {
let idx = self.wrap_index(self.tail + i);
unsafe { Some(&mut *self.ptr.offset(idx as int)) }
} else {
None
}
}
/// Swaps elements at indices `i` and `j`.
///
/// `i` and `j` may be equal.
///
/// Fails if there is no element with either index.
///
/// # Examples
///
/// ```rust
/// use std::collections::RingBuf;
///
/// let mut buf = RingBuf::new();
/// buf.push_back(3i);
/// buf.push_back(4);
/// buf.push_back(5);
/// buf.swap(0, 2);
/// assert_eq!(buf[0], 5);
/// assert_eq!(buf[2], 3);
/// ```
pub fn swap(&mut self, i: uint, j: uint) {
assert!(i < self.len());
assert!(j < self.len());
let ri = self.wrap_index(self.tail + i);
let rj = self.wrap_index(self.tail + j);
unsafe {
ptr::swap(self.ptr.offset(ri as int), self.ptr.offset(rj as int))
}
}
/// Returns the number of elements the `RingBuf` can hold without
/// reallocating.
///
/// # Examples
///
/// ```
/// use std::collections::RingBuf;
///
/// let buf: RingBuf<int> = RingBuf::with_capacity(10);
/// assert!(buf.capacity() >= 10);
/// ```
#[inline]
#[unstable = "matches collection reform specification, waiting for dust to settle"]
pub fn capacity(&self) -> uint { self.cap - 1 }
/// Reserves the minimum capacity for exactly `additional` more elements to be inserted in the
/// given `RingBuf`. Does nothing if the capacity is already sufficient.
///
/// Note that the allocator may give the collection more space than it requests. Therefore
/// capacity can not be relied upon to be precisely minimal. Prefer `reserve` if future
/// insertions are expected.
///
/// # Panics
///
/// Panics if the new capacity overflows `uint`.
///
/// # Examples
///
/// ```
/// use std::collections::RingBuf;
///
/// let mut buf: RingBuf<int> = vec![1].into_iter().collect();
/// buf.reserve_exact(10);
/// assert!(buf.capacity() >= 11);
/// ```
#[unstable = "matches collection reform specification, waiting for dust to settle"]
pub fn reserve_exact(&mut self, additional: uint) {
self.reserve(additional);
}
/// Reserves capacity for at least `additional` more elements to be inserted in the given
/// `Ringbuf`. The collection may reserve more space to avoid frequent reallocations.
///
/// # Panics
///
/// Panics if the new capacity overflows `uint`.
///
/// # Examples
///
/// ```
/// use std::collections::RingBuf;
///
/// let mut buf: RingBuf<int> = vec![1].into_iter().collect();
/// buf.reserve(10);
/// assert!(buf.capacity() >= 11);
/// ```
#[unstable = "matches collection reform specification, waiting for dust to settle"]
pub fn reserve(&mut self, additional: uint) {
let new_len = self.len() + additional;
assert!(new_len + 1 > self.len(), "capacity overflow");
if new_len > self.capacity() {
let count = (new_len + 1).next_power_of_two();
assert!(count >= new_len + 1);
if mem::size_of::<T>() != 0 {
let old = self.cap * mem::size_of::<T>();
let new = count.checked_mul(mem::size_of::<T>())
.expect("capacity overflow");
unsafe {
self.ptr = heap::reallocate(self.ptr as *mut u8,
old,
new,
mem::min_align_of::<T>()) as *mut T;
if self.ptr.is_null() { ::alloc::oom() }
}
}
// Move the shortest contiguous section of the ring buffer
// T H
// [o o o o o o o . ]
// T H
// A [o o o o o o o . . . . . . . . . ]
// H T
// [o o . o o o o o ]
// T H
// B [. . . o o o o o o o . . . . . . ]
// H T
// [o o o o o . o o ]
// H T
// C [o o o o o . . . . . . . . . o o ]
let oldcap = self.cap;
self.cap = count;
if self.tail <= self.head { // A
// Nop
} else if self.head < oldcap - self.tail { // B
unsafe {
ptr::copy_nonoverlapping_memory(
self.ptr.offset(oldcap as int),
self.ptr as *const T,
self.head
);
}
self.head += oldcap;
debug_assert!(self.head > self.tail);
} else { // C
unsafe {
ptr::copy_nonoverlapping_memory(
self.ptr.offset((count - (oldcap - self.tail)) as int),
self.ptr.offset(self.tail as int) as *const T,
oldcap - self.tail
);
}
self.tail = count - (oldcap - self.tail);
debug_assert!(self.head < self.tail);
}
debug_assert!(self.head < self.cap);
debug_assert!(self.tail < self.cap);
debug_assert!(self.cap.count_ones() == 1);
}
}
/// Returns a front-to-back iterator.
///
/// # Examples
///
/// ```rust
/// use std::collections::RingBuf;
///
/// let mut buf = RingBuf::new();
/// buf.push_back(5i);
/// buf.push_back(3);
/// buf.push_back(4);
/// let b: &[_] = &[&5, &3, &4];
/// assert_eq!(buf.iter().collect::<Vec<&int>>().as_slice(), b);
/// ```
#[unstable = "matches collection reform specification, waiting for dust to settle"]
pub fn iter(&self) -> Items<T> {
Items {
tail: self.tail,
head: self.head,
ring: unsafe { self.buffer_as_slice() }
}
}
/// Returns a front-to-back iterator that returns mutable references.
///
/// # Examples
///
/// ```rust
/// use std::collections::RingBuf;
///
/// let mut buf = RingBuf::new();
/// buf.push_back(5i);
/// buf.push_back(3);
/// buf.push_back(4);
/// for num in buf.iter_mut() {
/// *num = *num - 2;
/// }
/// let b: &[_] = &[&mut 3, &mut 1, &mut 2];
/// assert_eq!(buf.iter_mut().collect::<Vec<&mut int>>()[], b);
/// ```
#[unstable = "matches collection reform specification, waiting for dust to settle"]
pub fn iter_mut<'a>(&'a mut self) -> MutItems<'a, T> {
MutItems {
tail: self.tail,
head: self.head,
cap: self.cap,
ptr: self.ptr,
marker: marker::ContravariantLifetime::<'a>,
}
}
/// Consumes the list into an iterator yielding elements by value.
#[unstable = "matches collection reform specification, waiting for dust to settle"]
pub fn into_iter(self) -> MoveItems<T> {
MoveItems {
inner: self,
}
}
/// Returns the number of elements in the `RingBuf`.
///
/// # Examples
///
/// ```
/// use std::collections::RingBuf;
///
/// let mut v = RingBuf::new();
/// assert_eq!(v.len(), 0);
/// v.push_back(1i);
/// assert_eq!(v.len(), 1);
/// ```
#[unstable = "matches collection reform specification, waiting for dust to settle"]
pub fn len(&self) -> uint { count(self.tail, self.head, self.cap) }
/// Returns true if the buffer contains no elements
///
/// # Examples
///
/// ```
/// use std::collections::RingBuf;
///
/// let mut v = RingBuf::new();
/// assert!(v.is_empty());
/// v.push_front(1i);
/// assert!(!v.is_empty());
/// ```
#[unstable = "matches collection reform specification, waiting for dust to settle"]
pub fn is_empty(&self) -> bool { self.len() == 0 }
/// Clears the buffer, removing all values.
///
/// # Examples
///
/// ```
/// use std::collections::RingBuf;
///
/// let mut v = RingBuf::new();
/// v.push_back(1i);
/// v.clear();
/// assert!(v.is_empty());
/// ```
#[unstable = "matches collection reform specification, waiting for dust to settle"]
pub fn clear(&mut self) {
while self.pop_front().is_some() {}
self.head = 0;
self.tail = 0;
}
/// Provides a reference to the front element, or `None` if the sequence is
/// empty.
///
/// # Examples
///
/// ```
/// use std::collections::RingBuf;
///
/// let mut d = RingBuf::new();
/// assert_eq!(d.front(), None);
///
/// d.push_back(1i);
/// d.push_back(2i);
/// assert_eq!(d.front(), Some(&1i));
/// ```
#[unstable = "matches collection reform specification, waiting for dust to settle"]
pub fn front(&self) -> Option<&T> {
if !self.is_empty() { Some(&self[0]) } else { None }
}
/// Provides a mutable reference to the front element, or `None` if the
/// sequence is empty.
///
/// # Examples
///
/// ```
/// use std::collections::RingBuf;
///
/// let mut d = RingBuf::new();
/// assert_eq!(d.front_mut(), None);
///
/// d.push_back(1i);
/// d.push_back(2i);
/// match d.front_mut() {
/// Some(x) => *x = 9i,
/// None => (),
/// }
/// assert_eq!(d.front(), Some(&9i));
/// ```
#[unstable = "matches collection reform specification, waiting for dust to settle"]
pub fn front_mut(&mut self) -> Option<&mut T> {
if !self.is_empty() { Some(&mut self[0]) } else { None }
}
/// Provides a reference to the back element, or `None` if the sequence is
/// empty.
///
/// # Examples
///
/// ```
/// use std::collections::RingBuf;
///
/// let mut d = RingBuf::new();
/// assert_eq!(d.back(), None);
///
/// d.push_back(1i);
/// d.push_back(2i);
/// assert_eq!(d.back(), Some(&2i));
/// ```
#[unstable = "matches collection reform specification, waiting for dust to settle"]
pub fn back(&self) -> Option<&T> {
if !self.is_empty() { Some(&self[self.len() - 1]) } else { None }
}
/// Provides a mutable reference to the back element, or `None` if the
/// sequence is empty.
///
/// # Examples
///
/// ```
/// use std::collections::RingBuf;
///
/// let mut d = RingBuf::new();
/// assert_eq!(d.back(), None);
///
/// d.push_back(1i);
/// d.push_back(2i);
/// match d.back_mut() {
/// Some(x) => *x = 9i,
/// None => (),
/// }
/// assert_eq!(d.back(), Some(&9i));
/// ```
#[unstable = "matches collection reform specification, waiting for dust to settle"]
pub fn back_mut(&mut self) -> Option<&mut T> {
let len = self.len();
if !self.is_empty() { Some(&mut self[len - 1]) } else { None }
}
/// Removes the first element and returns it, or `None` if the sequence is
/// empty.
///
/// # Examples
///
/// ```
/// use std::collections::RingBuf;
///
/// let mut d = RingBuf::new();
/// d.push_back(1i);
/// d.push_back(2i);
///
/// assert_eq!(d.pop_front(), Some(1i));
/// assert_eq!(d.pop_front(), Some(2i));
/// assert_eq!(d.pop_front(), None);
/// ```
#[unstable = "matches collection reform specification, waiting for dust to settle"]
pub fn pop_front(&mut self) -> Option<T> {
if self.is_empty() {
None
} else {
let tail = self.tail;
self.tail = self.wrap_index(self.tail + 1);
unsafe { Some(self.buffer_read(tail)) }
}
}
/// Inserts an element first in the sequence.
///
/// # Examples
///
/// ```
/// use std::collections::RingBuf;
///
/// let mut d = RingBuf::new();
/// d.push_front(1i);
/// d.push_front(2i);
/// assert_eq!(d.front(), Some(&2i));
/// ```
#[unstable = "matches collection reform specification, waiting for dust to settle"]
pub fn push_front(&mut self, t: T) {
if self.is_full() {
self.reserve(1);
debug_assert!(!self.is_full());
}
self.tail = self.wrap_index(self.tail - 1);
let tail = self.tail;
unsafe { self.buffer_write(tail, t); }
}
/// Deprecated: Renamed to `push_back`.
#[deprecated = "Renamed to `push_back`"]
pub fn push(&mut self, t: T) {
self.push_back(t)
}
/// Appends an element to the back of a buffer
///
/// # Examples
///
/// ```rust
/// use std::collections::RingBuf;
///
/// let mut buf = RingBuf::new();
/// buf.push_back(1i);
/// buf.push_back(3);
/// assert_eq!(3, *buf.back().unwrap());
/// ```
#[unstable = "matches collection reform specification, waiting for dust to settle"]
pub fn push_back(&mut self, t: T) {
if self.is_full() {
self.reserve(1);
debug_assert!(!self.is_full());
}
let head = self.head;
self.head = self.wrap_index(self.head + 1);
unsafe { self.buffer_write(head, t) }
}
/// Deprecated: Renamed to `pop_back`.
#[deprecated = "Renamed to `pop_back`"]
pub fn pop(&mut self) -> Option<T> {
self.pop_back()
}
/// Removes the last element from a buffer and returns it, or `None` if
/// it is empty.
///
/// # Examples
///
/// ```rust
/// use std::collections::RingBuf;
///
/// let mut buf = RingBuf::new();
/// assert_eq!(buf.pop_back(), None);
/// buf.push_back(1i);
/// buf.push_back(3);
/// assert_eq!(buf.pop_back(), Some(3));
/// ```
#[unstable = "matches collection reform specification, waiting for dust to settle"]
pub fn pop_back(&mut self) -> Option<T> {
if self.is_empty() {
None
} else {
self.head = self.wrap_index(self.head - 1);
let head = self.head;
unsafe { Some(self.buffer_read(head)) }
}
}
/// Inserts an element at position `i` within the ringbuf. Whichever
/// end is closer to the insertion point will be moved to make room,
/// and all the affected elements will be moved to new positions.
///
/// # Panics
///
/// Panics if `i` is greater than ringbuf's length
///
/// # Example
/// ```rust
/// use std::collections::RingBuf;
///
/// let mut buf = RingBuf::new();
/// buf.push_back(10i);
/// buf.push_back(12);
/// buf.insert(1,11);
/// assert_eq!(Some(&11), buf.get(1));
/// ```
pub fn insert(&mut self, i: uint, t: T) {
assert!(i <= self.len(), "index out of bounds");
if self.is_full() {
self.reserve(1);
debug_assert!(!self.is_full());
}
// Move the least number of elements in the ring buffer and insert
// the given object
//
// At most len/2 - 1 elements will be moved. O(min(n, n-i))
//
// There are three main cases:
// Elements are contiguous
// - special case when tail is 0
// Elements are discontiguous and the insert is in the tail section
// Elements are discontiguous and the insert is in the head section
//
// For each of those there are two more cases:
// Insert is closer to tail
// Insert is closer to head
//
// Key: H - self.head
// T - self.tail
// o - Valid element
// I - Insertion element
// A - The element that should be after the insertion point
// M - Indicates element was moved
let idx = self.wrap_index(self.tail + i);
let distance_to_tail = i;
let distance_to_head = self.len() - i;
let contiguous = self.tail <= self.head;
match (contiguous, distance_to_tail <= distance_to_head, idx >= self.tail) {
(true, true, _) if i == 0 => {
// push_front
//
// T
// I H
// [A o o o o o o . . . . . . . . .]
//
// H T
// [A o o o o o o o . . . . . I]
//
self.tail = self.wrap_index(self.tail - 1);
},
(true, true, _) => unsafe {
// contiguous, insert closer to tail:
//
// T I H
// [. . . o o A o o o o . . . . . .]
//
// T H
// [. . o o I A o o o o . . . . . .]
// M M
//
// contiguous, insert closer to tail and tail is 0:
//
//
// T I H
// [o o A o o o o . . . . . . . . .]
//
// H T
// [o I A o o o o o . . . . . . . o]
// M M
let new_tail = self.wrap_index(self.tail - 1);
self.copy(new_tail, self.tail, 1);
// Already moved the tail, so we only copy `i - 1` elements.
self.copy(self.tail, self.tail + 1, i - 1);
self.tail = new_tail;
},
(true, false, _) => unsafe {
// contiguous, insert closer to head:
//
// T I H
// [. . . o o o o A o o . . . . . .]
//
// T H
// [. . . o o o o I A o o . . . . .]
// M M M
self.copy(idx + 1, idx, self.head - idx);
self.head = self.wrap_index(self.head + 1);
},
(false, true, true) => unsafe {
// discontiguous, insert closer to tail, tail section:
//
// H T I
// [o o o o o o . . . . . o o A o o]
//
// H T
// [o o o o o o . . . . o o I A o o]
// M M
self.copy(self.tail - 1, self.tail, i);
self.tail -= 1;
},
(false, false, true) => unsafe {
// discontiguous, insert closer to head, tail section:
//
// H T I
// [o o . . . . . . . o o o o o A o]
//
// H T
// [o o o . . . . . . o o o o o I A]
// M M M M
// copy elements up to new head
self.copy(1, 0, self.head);
// copy last element into empty spot at bottom of buffer
self.copy(0, self.cap - 1, 1);
// move elements from idx to end forward not including ^ element
self.copy(idx + 1, idx, self.cap - 1 - idx);
self.head += 1;
},
(false, true, false) if idx == 0 => unsafe {
// discontiguous, insert is closer to tail, head section,
// and is at index zero in the internal buffer:
//
// I H T
// [A o o o o o o o o o . . . o o o]
//
// H T
// [A o o o o o o o o o . . o o o I]
// M M M
// copy elements up to new tail
self.copy(self.tail - 1, self.tail, self.cap - self.tail);
// copy last element into empty spot at bottom of buffer
self.copy(self.cap - 1, 0, 1);
self.tail -= 1;
},
(false, true, false) => unsafe {
// discontiguous, insert closer to tail, head section:
//
// I H T
// [o o o A o o o o o o . . . o o o]
//
// H T
// [o o I A o o o o o o . . o o o o]
// M M M M M M
// copy elements up to new tail
self.copy(self.tail - 1, self.tail, self.cap - self.tail);
// copy last element into empty spot at bottom of buffer
self.copy(self.cap - 1, 0, 1);
// move elements from idx-1 to end forward not including ^ element
self.copy(0, 1, idx - 1);
self.tail -= 1;
},
(false, false, false) => unsafe {
// discontiguous, insert closer to head, head section:
//
// I H T
// [o o o o A o o . . . . . . o o o]
//
// H T
// [o o o o I A o o . . . . . o o o]
// M M M
self.copy(idx + 1, idx, self.head - idx);
self.head += 1;
}
}
// tail might've been changed so we need to recalculate
let new_idx = self.wrap_index(self.tail + i);
unsafe {
self.buffer_write(new_idx, t);
}
}
/// Removes and returns the element at position `i` from the ringbuf.
/// Whichever end is closer to the removal point will be moved to make
/// room, and all the affected elements will be moved to new positions.
/// Returns `None` if `i` is out of bounds.
///
/// # Example
/// ```rust
/// use std::collections::RingBuf;
///
/// let mut buf = RingBuf::new();
/// buf.push_back(5i);
/// buf.push_back(10i);
/// buf.push_back(12i);
/// buf.push_back(15);
/// buf.remove(2);
/// assert_eq!(Some(&15), buf.get(2));
/// ```
#[unstable = "matches collection reform specification; waiting on panic semantics"]
pub fn remove(&mut self, i: uint) -> Option<T> {
if self.is_empty() || self.len() <= i {
return None;
}
// There are three main cases:
// Elements are contiguous
// Elements are discontiguous and the removal is in the tail section
// Elements are discontiguous and the removal is in the head section
// - special case when elements are technically contiguous,
// but self.head = 0
//
// For each of those there are two more cases:
// Insert is closer to tail
// Insert is closer to head
//
// Key: H - self.head
// T - self.tail
// o - Valid element
// x - Element marked for removal
// R - Indicates element that is being removed
// M - Indicates element was moved
let idx = self.wrap_index(self.tail + i);
let elem = unsafe {
Some(self.buffer_read(idx))
};
let distance_to_tail = i;
let distance_to_head = self.len() - i;
let contiguous = self.tail <= self.head;
match (contiguous, distance_to_tail <= distance_to_head, idx >= self.tail) {
(true, true, _) => unsafe {
// contiguous, remove closer to tail:
//
// T R H
// [. . . o o x o o o o . . . . . .]
//
// T H
// [. . . . o o o o o o . . . . . .]
// M M
self.copy(self.tail + 1, self.tail, i);
self.tail += 1;
},
(true, false, _) => unsafe {
// contiguous, remove closer to head:
//
// T R H
// [. . . o o o o x o o . . . . . .]
//
// T H
// [. . . o o o o o o . . . . . . .]
// M M
self.copy(idx, idx + 1, self.head - idx - 1);
self.head -= 1;
},
(false, true, true) => unsafe {
// discontiguous, remove closer to tail, tail section:
//
// H T R
// [o o o o o o . . . . . o o x o o]
//
// H T
// [o o o o o o . . . . . . o o o o]
// M M
self.copy(self.tail + 1, self.tail, i);
self.tail = self.wrap_index(self.tail + 1);
},
(false, false, false) => unsafe {
// discontiguous, remove closer to head, head section:
//
// R H T
// [o o o o x o o . . . . . . o o o]
//
// H T
// [o o o o o o . . . . . . . o o o]
// M M
self.copy(idx, idx + 1, self.head - idx - 1);
self.head -= 1;
},
(false, false, true) => unsafe {
// discontiguous, remove closer to head, tail section:
//
// H T R
// [o o o . . . . . . o o o o o x o]
//
// H T
// [o o . . . . . . . o o o o o o o]
// M M M M
//
// or quasi-discontiguous, remove next to head, tail section:
//
// H T R
// [. . . . . . . . . o o o o o x o]
//
// T H
// [. . . . . . . . . o o o o o o .]
// M
// draw in elements in the tail section
self.copy(idx, idx + 1, self.cap - idx - 1);
// Prevents underflow.
if self.head != 0 {
// copy first element into empty spot
self.copy(self.cap - 1, 0, 1);
// move elements in the head section backwards
self.copy(0, 1, self.head - 1);
}
self.head = self.wrap_index(self.head - 1);
},
(false, true, false) => unsafe {
// discontiguous, remove closer to tail, head section:
//
// R H T
// [o o x o o o o o o o . . . o o o]
//
// H T
// [o o o o o o o o o o . . . . o o]
// M M M M M
// draw in elements up to idx
self.copy(1, 0, idx);
// copy last element into empty spot
self.copy(0, self.cap - 1, 1);
// move elements from tail to end forward, excluding the last one
self.copy(self.tail + 1, self.tail, self.cap - self.tail - 1);
self.tail = self.wrap_index(self.tail + 1);
}
}
return elem;
}
}
/// Returns the index in the underlying buffer for a given logical element index.
#[inline]
fn wrap_index(index: uint, size: uint) -> uint {
// size is always a power of 2
index & (size - 1)
}
/// Calculate the number of elements left to be read in the buffer
#[inline]
fn count(tail: uint, head: uint, size: uint) -> uint {
// size is always a power of 2
(head - tail) & (size - 1)
}
/// `RingBuf` iterator.
pub struct Items<'a, T:'a> {
ring: &'a [T],
tail: uint,
head: uint
}
impl<'a, T> Iterator<&'a T> for Items<'a, T> {
#[inline]
fn next(&mut self) -> Option<&'a T> {
if self.tail == self.head {
return None;
}
let tail = self.tail;
self.tail = wrap_index(self.tail + 1, self.ring.len());
unsafe { Some(self.ring.unsafe_get(tail)) }
}
#[inline]
fn size_hint(&self) -> (uint, Option<uint>) {
let len = count(self.tail, self.head, self.ring.len());
(len, Some(len))
}
}
impl<'a, T> DoubleEndedIterator<&'a T> for Items<'a, T> {
#[inline]
fn next_back(&mut self) -> Option<&'a T> {
if self.tail == self.head {
return None;
}
self.head = wrap_index(self.head - 1, self.ring.len());
unsafe { Some(self.ring.unsafe_get(self.head)) }
}
}
impl<'a, T> ExactSizeIterator<&'a T> for Items<'a, T> {}
impl<'a, T> RandomAccessIterator<&'a T> for Items<'a, T> {
#[inline]
fn indexable(&self) -> uint {
let (len, _) = self.size_hint();
len
}
#[inline]
fn idx(&mut self, j: uint) -> Option<&'a T> {
if j >= self.indexable() {
None
} else {
let idx = wrap_index(self.tail + j, self.ring.len());
unsafe { Some(self.ring.unsafe_get(idx)) }
}
}
}
// FIXME This was implemented differently from Items because of a problem
// with returning the mutable reference. I couldn't find a way to
// make the lifetime checker happy so, but there should be a way.
/// `RingBuf` mutable iterator.
pub struct MutItems<'a, T:'a> {
ptr: *mut T,
tail: uint,
head: uint,
cap: uint,
marker: marker::ContravariantLifetime<'a>,
}
impl<'a, T> Iterator<&'a mut T> for MutItems<'a, T> {
#[inline]
fn next(&mut self) -> Option<&'a mut T> {
if self.tail == self.head {
return None;
}
let tail = self.tail;
self.tail = wrap_index(self.tail + 1, self.cap);
unsafe {
Some(&mut *self.ptr.offset(tail as int))
}
}
#[inline]
fn size_hint(&self) -> (uint, Option<uint>) {
let len = count(self.tail, self.head, self.cap);
(len, Some(len))
}
}
impl<'a, T> DoubleEndedIterator<&'a mut T> for MutItems<'a, T> {
#[inline]
fn next_back(&mut self) -> Option<&'a mut T> {
if self.tail == self.head {
return None;
}
self.head = wrap_index(self.head - 1, self.cap);
unsafe {
Some(&mut *self.ptr.offset(self.head as int))
}
}
}
impl<'a, T> ExactSizeIterator<&'a mut T> for MutItems<'a, T> {}
// A by-value RingBuf iterator
pub struct MoveItems<T> {
inner: RingBuf<T>,
}
impl<T> Iterator<T> for MoveItems<T> {
#[inline]
fn next(&mut self) -> Option<T> {
self.inner.pop_front()
}
#[inline]
fn size_hint(&self) -> (uint, Option<uint>) {
let len = self.inner.len();
(len, Some(len))
}
}
impl<T> DoubleEndedIterator<T> for MoveItems<T> {
#[inline]
fn next_back(&mut self) -> Option<T> {
self.inner.pop_back()
}
}
impl<T> ExactSizeIterator<T> for MoveItems<T> {}
impl<A: PartialEq> PartialEq for RingBuf<A> {
fn eq(&self, other: &RingBuf<A>) -> bool {
self.len() == other.len() &&
self.iter().zip(other.iter()).all(|(a, b)| a.eq(b))
}
fn ne(&self, other: &RingBuf<A>) -> bool {
!self.eq(other)
}
}
impl<A: Eq> Eq for RingBuf<A> {}
impl<A: PartialOrd> PartialOrd for RingBuf<A> {
fn partial_cmp(&self, other: &RingBuf<A>) -> Option<Ordering> {
iter::order::partial_cmp(self.iter(), other.iter())
}
}
impl<A: Ord> Ord for RingBuf<A> {
#[inline]
fn cmp(&self, other: &RingBuf<A>) -> Ordering {
iter::order::cmp(self.iter(), other.iter())
}
}
impl<S: Writer, A: Hash<S>> Hash<S> for RingBuf<A> {
fn hash(&self, state: &mut S) {
self.len().hash(state);
for elt in self.iter() {
elt.hash(state);
}
}
}
impl<A> Index<uint, A> for RingBuf<A> {
#[inline]
fn index<'a>(&'a self, i: &uint) -> &'a A {
self.get(*i).expect("Out of bounds access")
}
}
impl<A> IndexMut<uint, A> for RingBuf<A> {
#[inline]
fn index_mut<'a>(&'a mut self, i: &uint) -> &'a mut A {
self.get_mut(*i).expect("Out of bounds access")
}
}
impl<A> FromIterator<A> for RingBuf<A> {
fn from_iter<T: Iterator<A>>(iterator: T) -> RingBuf<A> {
let (lower, _) = iterator.size_hint();
let mut deq = RingBuf::with_capacity(lower);
deq.extend(iterator);
deq
}
}
impl<A> Extend<A> for RingBuf<A> {
fn extend<T: Iterator<A>>(&mut self, mut iterator: T) {
for elt in iterator {
self.push_back(elt);
}
}
}
impl<T: fmt::Show> fmt::Show for RingBuf<T> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
try!(write!(f, "["));
for (i, e) in self.iter().enumerate() {
if i != 0 { try!(write!(f, ", ")); }
try!(write!(f, "{}", *e));
}
write!(f, "]")
}
}
#[cfg(test)]
mod tests {
use core::iter;
use self::Taggy::*;
use self::Taggypar::*;
use std::cmp;
use std::fmt::Show;
use std::prelude::*;
use std::hash;
use test::Bencher;
use test;
use super::RingBuf;
use vec::Vec;
#[test]
#[allow(deprecated)]
fn test_simple() {
let mut d = RingBuf::new();
assert_eq!(d.len(), 0u);
d.push_front(17i);
d.push_front(42i);
d.push_back(137);
assert_eq!(d.len(), 3u);
d.push_back(137);
assert_eq!(d.len(), 4u);
debug!("{}", d.front());
assert_eq!(*d.front().unwrap(), 42);
debug!("{}", d.back());
assert_eq!(*d.back().unwrap(), 137);
let mut i = d.pop_front();
debug!("{}", i);
assert_eq!(i, Some(42));
i = d.pop_back();
debug!("{}", i);
assert_eq!(i, Some(137));
i = d.pop_back();
debug!("{}", i);
assert_eq!(i, Some(137));
i = d.pop_back();
debug!("{}", i);
assert_eq!(i, Some(17));
assert_eq!(d.len(), 0u);
d.push_back(3);
assert_eq!(d.len(), 1u);
d.push_front(2);
assert_eq!(d.len(), 2u);
d.push_back(4);
assert_eq!(d.len(), 3u);
d.push_front(1);
assert_eq!(d.len(), 4u);
debug!("{}", d[0]);
debug!("{}", d[1]);
debug!("{}", d[2]);
debug!("{}", d[3]);
assert_eq!(d[0], 1);
assert_eq!(d[1], 2);
assert_eq!(d[2], 3);
assert_eq!(d[3], 4);
}
#[cfg(test)]
fn test_parameterized<T:Clone + PartialEq + Show>(a: T, b: T, c: T, d: T) {
let mut deq = RingBuf::new();
assert_eq!(deq.len(), 0);
deq.push_front(a.clone());
deq.push_front(b.clone());
deq.push_back(c.clone());
assert_eq!(deq.len(), 3);
deq.push_back(d.clone());
assert_eq!(deq.len(), 4);
assert_eq!((*deq.front().unwrap()).clone(), b.clone());
assert_eq!((*deq.back().unwrap()).clone(), d.clone());
assert_eq!(deq.pop_front().unwrap(), b.clone());
assert_eq!(deq.pop_back().unwrap(), d.clone());
assert_eq!(deq.pop_back().unwrap(), c.clone());
assert_eq!(deq.pop_back().unwrap(), a.clone());
assert_eq!(deq.len(), 0);
deq.push_back(c.clone());
assert_eq!(deq.len(), 1);
deq.push_front(b.clone());
assert_eq!(deq.len(), 2);
deq.push_back(d.clone());
assert_eq!(deq.len(), 3);
deq.push_front(a.clone());
assert_eq!(deq.len(), 4);
assert_eq!(deq[0].clone(), a.clone());
assert_eq!(deq[1].clone(), b.clone());
assert_eq!(deq[2].clone(), c.clone());
assert_eq!(deq[3].clone(), d.clone());
}
#[test]
fn test_push_front_grow() {
let mut deq = RingBuf::new();
for i in range(0u, 66) {
deq.push_front(i);
}
assert_eq!(deq.len(), 66);
for i in range(0u, 66) {
assert_eq!(deq[i], 65 - i);
}
let mut deq = RingBuf::new();
for i in range(0u, 66) {
deq.push_back(i);
}
for i in range(0u, 66) {
assert_eq!(deq[i], i);
}
}
#[test]
fn test_index() {
let mut deq = RingBuf::new();
for i in range(1u, 4) {
deq.push_front(i);
}
assert_eq!(deq[1], 2);
}
#[test]
#[should_fail]
fn test_index_out_of_bounds() {
let mut deq = RingBuf::new();
for i in range(1u, 4) {
deq.push_front(i);
}
deq[3];
}
#[bench]
fn bench_new(b: &mut test::Bencher) {
b.iter(|| {
let ring: RingBuf<u64> = RingBuf::new();
test::black_box(ring);
})
}
#[bench]
fn bench_push_back_100(b: &mut test::Bencher) {
let mut deq = RingBuf::with_capacity(101);
b.iter(|| {
for i in range(0i, 100) {
deq.push_back(i);
}
deq.head = 0;
deq.tail = 0;
})
}
#[bench]
fn bench_push_front_100(b: &mut test::Bencher) {
let mut deq = RingBuf::with_capacity(101);
b.iter(|| {
for i in range(0i, 100) {
deq.push_front(i);
}
deq.head = 0;
deq.tail = 0;
})
}
#[bench]
fn bench_pop_back_100(b: &mut test::Bencher) {
let mut deq: RingBuf<int> = RingBuf::with_capacity(101);
b.iter(|| {
deq.head = 100;
deq.tail = 0;
while !deq.is_empty() {
test::black_box(deq.pop_back());
}
})
}
#[bench]
fn bench_pop_front_100(b: &mut test::Bencher) {
let mut deq: RingBuf<int> = RingBuf::with_capacity(101);
b.iter(|| {
deq.head = 100;
deq.tail = 0;
while !deq.is_empty() {
test::black_box(deq.pop_front());
}
})
}
#[bench]
fn bench_grow_1025(b: &mut test::Bencher) {
b.iter(|| {
let mut deq = RingBuf::new();
for i in range(0i, 1025) {
deq.push_front(i);
}
test::black_box(deq);
})
}
#[bench]
fn bench_iter_1000(b: &mut test::Bencher) {
let ring: RingBuf<int> = range(0i, 1000).collect();
b.iter(|| {
let mut sum = 0;
for &i in ring.iter() {
sum += i;
}
test::black_box(sum);
})
}
#[bench]
fn bench_mut_iter_1000(b: &mut test::Bencher) {
let mut ring: RingBuf<int> = range(0i, 1000).collect();
b.iter(|| {
let mut sum = 0;
for i in ring.iter_mut() {
sum += *i;
}
test::black_box(sum);
})
}
#[deriving(Clone, PartialEq, Show)]
enum Taggy {
One(int),
Two(int, int),
Three(int, int, int),
}
#[deriving(Clone, PartialEq, Show)]
enum Taggypar<T> {
Onepar(int),
Twopar(int, int),
Threepar(int, int, int),
}
#[deriving(Clone, PartialEq, Show)]
struct RecCy {
x: int,
y: int,
t: Taggy
}
#[test]
fn test_param_int() {
test_parameterized::<int>(5, 72, 64, 175);
}
#[test]
fn test_param_taggy() {
test_parameterized::<Taggy>(One(1), Two(1, 2), Three(1, 2, 3), Two(17, 42));
}
#[test]
fn test_param_taggypar() {
test_parameterized::<Taggypar<int>>(Onepar::<int>(1),
Twopar::<int>(1, 2),
Threepar::<int>(1, 2, 3),
Twopar::<int>(17, 42));
}
#[test]
fn test_param_reccy() {
let reccy1 = RecCy { x: 1, y: 2, t: One(1) };
let reccy2 = RecCy { x: 345, y: 2, t: Two(1, 2) };
let reccy3 = RecCy { x: 1, y: 777, t: Three(1, 2, 3) };
let reccy4 = RecCy { x: 19, y: 252, t: Two(17, 42) };
test_parameterized::<RecCy>(reccy1, reccy2, reccy3, reccy4);
}
#[test]
fn test_with_capacity() {
let mut d = RingBuf::with_capacity(0);
d.push_back(1i);
assert_eq!(d.len(), 1);
let mut d = RingBuf::with_capacity(50);
d.push_back(1i);
assert_eq!(d.len(), 1);
}
#[test]
fn test_with_capacity_non_power_two() {
let mut d3 = RingBuf::with_capacity(3);
d3.push_back(1i);
// X = None, | = lo
// [|1, X, X]
assert_eq!(d3.pop_front(), Some(1));
// [X, |X, X]
assert_eq!(d3.front(), None);
// [X, |3, X]
d3.push_back(3);
// [X, |3, 6]
d3.push_back(6);
// [X, X, |6]
assert_eq!(d3.pop_front(), Some(3));
// Pushing the lo past half way point to trigger
// the 'B' scenario for growth
// [9, X, |6]
d3.push_back(9);
// [9, 12, |6]
d3.push_back(12);
d3.push_back(15);
// There used to be a bug here about how the
// RingBuf made growth assumptions about the
// underlying Vec which didn't hold and lead
// to corruption.
// (Vec grows to next power of two)
//good- [9, 12, 15, X, X, X, X, |6]
//bug- [15, 12, X, X, X, |6, X, X]
assert_eq!(d3.pop_front(), Some(6));
// Which leads us to the following state which
// would be a failure case.
//bug- [15, 12, X, X, X, X, |X, X]
assert_eq!(d3.front(), Some(&9));
}
#[test]
fn test_reserve_exact() {
let mut d = RingBuf::new();
d.push_back(0u64);
d.reserve_exact(50);
assert!(d.capacity() >= 51);
let mut d = RingBuf::new();
d.push_back(0u32);
d.reserve_exact(50);
assert!(d.capacity() >= 51);
}
#[test]
fn test_reserve() {
let mut d = RingBuf::new();
d.push_back(0u64);
d.reserve(50);
assert!(d.capacity() >= 51);
let mut d = RingBuf::new();
d.push_back(0u32);
d.reserve(50);
assert!(d.capacity() >= 51);
}
#[test]
fn test_swap() {
let mut d: RingBuf<int> = range(0i, 5).collect();
d.pop_front();
d.swap(0, 3);
assert_eq!(d.iter().map(|&x|x).collect::<Vec<int>>(), vec!(4, 2, 3, 1));
}
#[test]
fn test_iter() {
let mut d = RingBuf::new();
assert_eq!(d.iter().next(), None);
assert_eq!(d.iter().size_hint(), (0, Some(0)));
for i in range(0i, 5) {
d.push_back(i);
}
{
let b: &[_] = &[&0,&1,&2,&3,&4];
assert_eq!(d.iter().collect::<Vec<&int>>(), b);
}
for i in range(6i, 9) {
d.push_front(i);
}
{
let b: &[_] = &[&8,&7,&6,&0,&1,&2,&3,&4];
assert_eq!(d.iter().collect::<Vec<&int>>(), b);
}
let mut it = d.iter();
let mut len = d.len();
loop {
match it.next() {
None => break,
_ => { len -= 1; assert_eq!(it.size_hint(), (len, Some(len))) }
}
}
}
#[test]
fn test_rev_iter() {
let mut d = RingBuf::new();
assert_eq!(d.iter().rev().next(), None);
for i in range(0i, 5) {
d.push_back(i);
}
{
let b: &[_] = &[&4,&3,&2,&1,&0];
assert_eq!(d.iter().rev().collect::<Vec<&int>>(), b);
}
for i in range(6i, 9) {
d.push_front(i);
}
let b: &[_] = &[&4,&3,&2,&1,&0,&6,&7,&8];
assert_eq!(d.iter().rev().collect::<Vec<&int>>(), b);
}
#[test]
fn test_mut_rev_iter_wrap() {
let mut d = RingBuf::with_capacity(3);
assert!(d.iter_mut().rev().next().is_none());
d.push_back(1i);
d.push_back(2);
d.push_back(3);
assert_eq!(d.pop_front(), Some(1));
d.push_back(4);
assert_eq!(d.iter_mut().rev().map(|x| *x).collect::<Vec<int>>(),
vec!(4, 3, 2));
}
#[test]
fn test_mut_iter() {
let mut d = RingBuf::new();
assert!(d.iter_mut().next().is_none());
for i in range(0u, 3) {
d.push_front(i);
}
for (i, elt) in d.iter_mut().enumerate() {
assert_eq!(*elt, 2 - i);
*elt = i;
}
{
let mut it = d.iter_mut();
assert_eq!(*it.next().unwrap(), 0);
assert_eq!(*it.next().unwrap(), 1);
assert_eq!(*it.next().unwrap(), 2);
assert!(it.next().is_none());
}
}
#[test]
fn test_mut_rev_iter() {
let mut d = RingBuf::new();
assert!(d.iter_mut().rev().next().is_none());
for i in range(0u, 3) {
d.push_front(i);
}
for (i, elt) in d.iter_mut().rev().enumerate() {
assert_eq!(*elt, i);
*elt = i;
}
{
let mut it = d.iter_mut().rev();
assert_eq!(*it.next().unwrap(), 0);
assert_eq!(*it.next().unwrap(), 1);
assert_eq!(*it.next().unwrap(), 2);
assert!(it.next().is_none());
}
}
#[test]
fn test_into_iter() {
// Empty iter
{
let d: RingBuf<int> = RingBuf::new();
let mut iter = d.into_iter();
assert_eq!(iter.size_hint(), (0, Some(0)));
assert_eq!(iter.next(), None);
assert_eq!(iter.size_hint(), (0, Some(0)));
}
// simple iter
{
let mut d = RingBuf::new();
for i in range(0i, 5) {
d.push_back(i);
}
let b = vec![0,1,2,3,4];
assert_eq!(d.into_iter().collect::<Vec<int>>(), b);
}
// wrapped iter
{
let mut d = RingBuf::new();
for i in range(0i, 5) {
d.push_back(i);
}
for i in range(6, 9) {
d.push_front(i);
}
let b = vec![8,7,6,0,1,2,3,4];
assert_eq!(d.into_iter().collect::<Vec<int>>(), b);
}
// partially used
{
let mut d = RingBuf::new();
for i in range(0i, 5) {
d.push_back(i);
}
for i in range(6, 9) {
d.push_front(i);
}
let mut it = d.into_iter();
assert_eq!(it.size_hint(), (8, Some(8)));
assert_eq!(it.next(), Some(8));
assert_eq!(it.size_hint(), (7, Some(7)));
assert_eq!(it.next_back(), Some(4));
assert_eq!(it.size_hint(), (6, Some(6)));
assert_eq!(it.next(), Some(7));
assert_eq!(it.size_hint(), (5, Some(5)));
}
}
#[test]
fn test_from_iter() {
use std::iter;
let v = vec!(1i,2,3,4,5,6,7);
let deq: RingBuf<int> = v.iter().map(|&x| x).collect();
let u: Vec<int> = deq.iter().map(|&x| x).collect();
assert_eq!(u, v);
let seq = iter::count(0u, 2).take(256);
let deq: RingBuf<uint> = seq.collect();
for (i, &x) in deq.iter().enumerate() {
assert_eq!(2*i, x);
}
assert_eq!(deq.len(), 256);
}
#[test]
fn test_clone() {
let mut d = RingBuf::new();
d.push_front(17i);
d.push_front(42);
d.push_back(137);
d.push_back(137);
assert_eq!(d.len(), 4u);
let mut e = d.clone();
assert_eq!(e.len(), 4u);
while !d.is_empty() {
assert_eq!(d.pop_back(), e.pop_back());
}
assert_eq!(d.len(), 0u);
assert_eq!(e.len(), 0u);
}
#[test]
fn test_eq() {
let mut d = RingBuf::new();
assert!(d == RingBuf::with_capacity(0));
d.push_front(137i);
d.push_front(17);
d.push_front(42);
d.push_back(137);
let mut e = RingBuf::with_capacity(0);
e.push_back(42);
e.push_back(17);
e.push_back(137);
e.push_back(137);
assert!(&e == &d);
e.pop_back();
e.push_back(0);
assert!(e != d);
e.clear();
assert!(e == RingBuf::new());
}
#[test]
fn test_hash() {
let mut x = RingBuf::new();
let mut y = RingBuf::new();
x.push_back(1i);
x.push_back(2);
x.push_back(3);
y.push_back(0i);
y.push_back(1i);
y.pop_front();
y.push_back(2);
y.push_back(3);
assert!(hash::hash(&x) == hash::hash(&y));
}
#[test]
fn test_ord() {
let x = RingBuf::new();
let mut y = RingBuf::new();
y.push_back(1i);
y.push_back(2);
y.push_back(3);
assert!(x < y);
assert!(y > x);
assert!(x <= x);
assert!(x >= x);
}
#[test]
fn test_show() {
let ringbuf: RingBuf<int> = range(0i, 10).collect();
assert!(format!("{}", ringbuf) == "[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]");
let ringbuf: RingBuf<&str> = vec!["just", "one", "test", "more"].iter()
.map(|&s| s)
.collect();
assert!(format!("{}", ringbuf) == "[just, one, test, more]");
}
#[test]
fn test_drop() {
static mut drops: uint = 0;
struct Elem;
impl Drop for Elem {
fn drop(&mut self) {
unsafe { drops += 1; }
}
}
let mut ring = RingBuf::new();
ring.push_back(Elem);
ring.push_front(Elem);
ring.push_back(Elem);
ring.push_front(Elem);
drop(ring);
assert_eq!(unsafe {drops}, 4);
}
#[test]
fn test_drop_with_pop() {
static mut drops: uint = 0;
struct Elem;
impl Drop for Elem {
fn drop(&mut self) {
unsafe { drops += 1; }
}
}
let mut ring = RingBuf::new();
ring.push_back(Elem);
ring.push_front(Elem);
ring.push_back(Elem);
ring.push_front(Elem);
drop(ring.pop_back());
drop(ring.pop_front());
assert_eq!(unsafe {drops}, 2);
drop(ring);
assert_eq!(unsafe {drops}, 4);
}
#[test]
fn test_drop_clear() {
static mut drops: uint = 0;
struct Elem;
impl Drop for Elem {
fn drop(&mut self) {
unsafe { drops += 1; }
}
}
let mut ring = RingBuf::new();
ring.push_back(Elem);
ring.push_front(Elem);
ring.push_back(Elem);
ring.push_front(Elem);
ring.clear();
assert_eq!(unsafe {drops}, 4);
drop(ring);
assert_eq!(unsafe {drops}, 4);
}
#[test]
fn test_reserve_grow() {
// test growth path A
// [T o o H] -> [T o o H . . . . ]
let mut ring = RingBuf::with_capacity(4);
for i in range(0i, 3) {
ring.push_back(i);
}
ring.reserve(7);
for i in range(0i, 3) {
assert_eq!(ring.pop_front(), Some(i));
}
// test growth path B
// [H T o o] -> [. T o o H . . . ]
let mut ring = RingBuf::with_capacity(4);
for i in range(0i, 1) {
ring.push_back(i);
assert_eq!(ring.pop_front(), Some(i));
}
for i in range(0i, 3) {
ring.push_back(i);
}
ring.reserve(7);
for i in range(0i, 3) {
assert_eq!(ring.pop_front(), Some(i));
}
// test growth path C
// [o o H T] -> [o o H . . . . T ]
let mut ring = RingBuf::with_capacity(4);
for i in range(0i, 3) {
ring.push_back(i);
assert_eq!(ring.pop_front(), Some(i));
}
for i in range(0i, 3) {
ring.push_back(i);
}
ring.reserve(7);
for i in range(0i, 3) {
assert_eq!(ring.pop_front(), Some(i));
}
}
#[test]
fn test_get() {
let mut ring = RingBuf::new();
ring.push_back(0i);
assert_eq!(ring.get(0), Some(&0));
assert_eq!(ring.get(1), None);
ring.push_back(1);
assert_eq!(ring.get(0), Some(&0));
assert_eq!(ring.get(1), Some(&1));
assert_eq!(ring.get(2), None);
ring.push_back(2);
assert_eq!(ring.get(0), Some(&0));
assert_eq!(ring.get(1), Some(&1));
assert_eq!(ring.get(2), Some(&2));
assert_eq!(ring.get(3), None);
assert_eq!(ring.pop_front(), Some(0));
assert_eq!(ring.get(0), Some(&1));
assert_eq!(ring.get(1), Some(&2));
assert_eq!(ring.get(2), None);
assert_eq!(ring.pop_front(), Some(1));
assert_eq!(ring.get(0), Some(&2));
assert_eq!(ring.get(1), None);
assert_eq!(ring.pop_front(), Some(2));
assert_eq!(ring.get(0), None);
assert_eq!(ring.get(1), None);
}
#[test]
fn test_get_mut() {
let mut ring = RingBuf::new();
for i in range(0i, 3) {
ring.push_back(i);
}
match ring.get_mut(1) {
Some(x) => *x = -1,
None => ()
};
assert_eq!(ring.get_mut(0), Some(&mut 0));
assert_eq!(ring.get_mut(1), Some(&mut -1));
assert_eq!(ring.get_mut(2), Some(&mut 2));
assert_eq!(ring.get_mut(3), None);
assert_eq!(ring.pop_front(), Some(0));
assert_eq!(ring.get_mut(0), Some(&mut -1));
assert_eq!(ring.get_mut(1), Some(&mut 2));
assert_eq!(ring.get_mut(2), None);
}
#[test]
fn test_insert() {
// This test checks that every single combination of tail position, length, and
// insertion position is tested. Capacity 15 should be large enough to cover every case.
let mut tester = RingBuf::with_capacity(15);
// can't guarantee we got 15, so have to get what we got.
// 15 would be great, but we will definitely get 2^k - 1, for k >= 4, or else
// this test isn't covering what it wants to
let cap = tester.capacity();
// len is the length *after* insertion
for len in range(1, cap) {
// 0, 1, 2, .., len - 1
let expected = iter::count(0, 1).take(len).collect();
for tail_pos in range(0, cap) {
for to_insert in range(0, len) {
tester.tail = tail_pos;
tester.head = tail_pos;
for i in range(0, len) {
if i != to_insert {
tester.push_back(i);
}
}
tester.insert(to_insert, to_insert);
assert!(tester.tail < tester.cap);
assert!(tester.head < tester.cap);
assert_eq!(tester, expected);
}
}
}
}
#[test]
fn test_remove() {
// This test checks that every single combination of tail position, length, and
// removal position is tested. Capacity 15 should be large enough to cover every case.
let mut tester = RingBuf::with_capacity(15);
// can't guarantee we got 15, so have to get what we got.
// 15 would be great, but we will definitely get 2^k - 1, for k >= 4, or else
// this test isn't covering what it wants to
let cap = tester.capacity();
// len is the length *after* removal
for len in range(0, cap - 1) {
// 0, 1, 2, .., len - 1
let expected = iter::count(0, 1).take(len).collect();
for tail_pos in range(0, cap) {
for to_remove in range(0, len + 1) {
tester.tail = tail_pos;
tester.head = tail_pos;
for i in range(0, len) {
if i == to_remove {
tester.push_back(1234);
}
tester.push_back(i);
}
if to_remove == len {
tester.push_back(1234);
}
tester.remove(to_remove);
assert!(tester.tail < tester.cap);
assert!(tester.head < tester.cap);
assert_eq!(tester, expected);
}
}
}
}
#[test]
fn test_front() {
let mut ring = RingBuf::new();
ring.push_back(10i);
ring.push_back(20i);
assert_eq!(ring.front(), Some(&10));
ring.pop_front();
assert_eq!(ring.front(), Some(&20));
ring.pop_front();
assert_eq!(ring.front(), None);
}
}