Niko Matsakis dbf994bbaf Make RFC 1214 warnings into errors, and rip out the "warn or err"
associated machinery. Future such attempts should go through lints
anyhow.

There is a fair amount of fallout in the compile-fail tests, as WF
checking now occurs earlier in the process.
2015-12-18 12:41:02 -05:00

510 lines
21 KiB
Rust

// Copyright 2012-2013 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use middle::def_id::DefId;
use middle::infer::InferCtxt;
use middle::ty::outlives::{self, Component};
use middle::subst::Substs;
use middle::traits;
use middle::ty::{self, RegionEscape, ToPredicate, Ty};
use std::iter::once;
use syntax::ast;
use syntax::codemap::Span;
use util::common::ErrorReported;
/// Returns the set of obligations needed to make `ty` well-formed.
/// If `ty` contains unresolved inference variables, this may include
/// further WF obligations. However, if `ty` IS an unresolved
/// inference variable, returns `None`, because we are not able to
/// make any progress at all. This is to prevent "livelock" where we
/// say "$0 is WF if $0 is WF".
pub fn obligations<'a,'tcx>(infcx: &InferCtxt<'a, 'tcx>,
body_id: ast::NodeId,
ty: Ty<'tcx>,
span: Span)
-> Option<Vec<traits::PredicateObligation<'tcx>>>
{
let mut wf = WfPredicates { infcx: infcx,
body_id: body_id,
span: span,
out: vec![] };
if wf.compute(ty) {
debug!("wf::obligations({:?}, body_id={:?}) = {:?}", ty, body_id, wf.out);
let result = wf.normalize();
debug!("wf::obligations({:?}, body_id={:?}) ~~> {:?}", ty, body_id, result);
Some(result)
} else {
None // no progress made, return None
}
}
/// Returns the obligations that make this trait reference
/// well-formed. For example, if there is a trait `Set` defined like
/// `trait Set<K:Eq>`, then the trait reference `Foo: Set<Bar>` is WF
/// if `Bar: Eq`.
pub fn trait_obligations<'a,'tcx>(infcx: &InferCtxt<'a, 'tcx>,
body_id: ast::NodeId,
trait_ref: &ty::TraitRef<'tcx>,
span: Span)
-> Vec<traits::PredicateObligation<'tcx>>
{
let mut wf = WfPredicates { infcx: infcx, body_id: body_id, span: span, out: vec![] };
wf.compute_trait_ref(trait_ref);
wf.normalize()
}
pub fn predicate_obligations<'a,'tcx>(infcx: &InferCtxt<'a, 'tcx>,
body_id: ast::NodeId,
predicate: &ty::Predicate<'tcx>,
span: Span)
-> Vec<traits::PredicateObligation<'tcx>>
{
let mut wf = WfPredicates { infcx: infcx, body_id: body_id, span: span, out: vec![] };
// (*) ok to skip binders, because wf code is prepared for it
match *predicate {
ty::Predicate::Trait(ref t) => {
wf.compute_trait_ref(&t.skip_binder().trait_ref); // (*)
}
ty::Predicate::Equate(ref t) => {
wf.compute(t.skip_binder().0);
wf.compute(t.skip_binder().1);
}
ty::Predicate::RegionOutlives(..) => {
}
ty::Predicate::TypeOutlives(ref t) => {
wf.compute(t.skip_binder().0);
}
ty::Predicate::Projection(ref t) => {
let t = t.skip_binder(); // (*)
wf.compute_projection(t.projection_ty);
wf.compute(t.ty);
}
ty::Predicate::WellFormed(t) => {
wf.compute(t);
}
ty::Predicate::ObjectSafe(_) => {
}
}
wf.normalize()
}
/// Implied bounds are region relationships that we deduce
/// automatically. The idea is that (e.g.) a caller must check that a
/// function's argument types are well-formed immediately before
/// calling that fn, and hence the *callee* can assume that its
/// argument types are well-formed. This may imply certain relationships
/// between generic parameters. For example:
///
/// fn foo<'a,T>(x: &'a T)
///
/// can only be called with a `'a` and `T` such that `&'a T` is WF.
/// For `&'a T` to be WF, `T: 'a` must hold. So we can assume `T: 'a`.
#[derive(Debug)]
pub enum ImpliedBound<'tcx> {
RegionSubRegion(ty::Region, ty::Region),
RegionSubParam(ty::Region, ty::ParamTy),
RegionSubProjection(ty::Region, ty::ProjectionTy<'tcx>),
}
/// Compute the implied bounds that a callee/impl can assume based on
/// the fact that caller/projector has ensured that `ty` is WF. See
/// the `ImpliedBound` type for more details.
pub fn implied_bounds<'a,'tcx>(
infcx: &'a InferCtxt<'a,'tcx>,
body_id: ast::NodeId,
ty: Ty<'tcx>,
span: Span)
-> Vec<ImpliedBound<'tcx>>
{
// Sometimes when we ask what it takes for T: WF, we get back that
// U: WF is required; in that case, we push U onto this stack and
// process it next. Currently (at least) these resulting
// predicates are always guaranteed to be a subset of the original
// type, so we need not fear non-termination.
let mut wf_types = vec![ty];
let mut implied_bounds = vec![];
while let Some(ty) = wf_types.pop() {
// Compute the obligations for `ty` to be well-formed. If `ty` is
// an unresolved inference variable, just substituted an empty set
// -- because the return type here is going to be things we *add*
// to the environment, it's always ok for this set to be smaller
// than the ultimate set. (Note: normally there won't be
// unresolved inference variables here anyway, but there might be
// during typeck under some circumstances.)
let obligations = obligations(infcx, body_id, ty, span).unwrap_or(vec![]);
// From the full set of obligations, just filter down to the
// region relationships.
implied_bounds.extend(
obligations
.into_iter()
.flat_map(|obligation| {
assert!(!obligation.has_escaping_regions());
match obligation.predicate {
ty::Predicate::Trait(..) |
ty::Predicate::Equate(..) |
ty::Predicate::Projection(..) |
ty::Predicate::ObjectSafe(..) =>
vec![],
ty::Predicate::WellFormed(subty) => {
wf_types.push(subty);
vec![]
}
ty::Predicate::RegionOutlives(ref data) =>
match infcx.tcx.no_late_bound_regions(data) {
None =>
vec![],
Some(ty::OutlivesPredicate(r_a, r_b)) =>
vec![ImpliedBound::RegionSubRegion(r_b, r_a)],
},
ty::Predicate::TypeOutlives(ref data) =>
match infcx.tcx.no_late_bound_regions(data) {
None => vec![],
Some(ty::OutlivesPredicate(ty_a, r_b)) => {
let components = outlives::components(infcx, ty_a);
implied_bounds_from_components(r_b, components)
}
},
}}));
}
implied_bounds
}
/// When we have an implied bound that `T: 'a`, we can further break
/// this down to determine what relationships would have to hold for
/// `T: 'a` to hold. We get to assume that the caller has validated
/// those relationships.
fn implied_bounds_from_components<'tcx>(sub_region: ty::Region,
sup_components: Vec<Component<'tcx>>)
-> Vec<ImpliedBound<'tcx>>
{
sup_components
.into_iter()
.flat_map(|component| {
match component {
Component::Region(r) =>
vec!(ImpliedBound::RegionSubRegion(sub_region, r)),
Component::Param(p) =>
vec!(ImpliedBound::RegionSubParam(sub_region, p)),
Component::Projection(p) =>
vec!(ImpliedBound::RegionSubProjection(sub_region, p)),
Component::EscapingProjection(_) =>
// If the projection has escaping regions, don't
// try to infer any implied bounds even for its
// free components. This is conservative, because
// the caller will still have to prove that those
// free components outlive `sub_region`. But the
// idea is that the WAY that the caller proves
// that may change in the future and we want to
// give ourselves room to get smarter here.
vec!(),
Component::UnresolvedInferenceVariable(..) =>
vec!(),
}
})
.collect()
}
struct WfPredicates<'a,'tcx:'a> {
infcx: &'a InferCtxt<'a, 'tcx>,
body_id: ast::NodeId,
span: Span,
out: Vec<traits::PredicateObligation<'tcx>>,
}
impl<'a,'tcx> WfPredicates<'a,'tcx> {
fn cause(&mut self, code: traits::ObligationCauseCode<'tcx>) -> traits::ObligationCause<'tcx> {
traits::ObligationCause::new(self.span, self.body_id, code)
}
fn normalize(&mut self) -> Vec<traits::PredicateObligation<'tcx>> {
let cause = self.cause(traits::MiscObligation);
let infcx = &mut self.infcx;
self.out.iter()
.inspect(|pred| assert!(!pred.has_escaping_regions()))
.flat_map(|pred| {
let mut selcx = traits::SelectionContext::new(infcx);
let pred = traits::normalize(&mut selcx, cause.clone(), pred);
once(pred.value).chain(pred.obligations)
})
.collect()
}
/// Pushes the obligations required for `trait_ref` to be WF into
/// `self.out`.
fn compute_trait_ref(&mut self, trait_ref: &ty::TraitRef<'tcx>) {
let obligations = self.nominal_obligations(trait_ref.def_id, trait_ref.substs);
self.out.extend(obligations);
let cause = self.cause(traits::MiscObligation);
self.out.extend(
trait_ref.substs.types
.as_slice()
.iter()
.filter(|ty| !ty.has_escaping_regions())
.map(|ty| traits::Obligation::new(cause.clone(),
ty::Predicate::WellFormed(ty))));
}
/// Pushes the obligations required for `trait_ref::Item` to be WF
/// into `self.out`.
fn compute_projection(&mut self, data: ty::ProjectionTy<'tcx>) {
// A projection is well-formed if (a) the trait ref itself is
// WF WF and (b) the trait-ref holds. (It may also be
// normalizable and be WF that way.)
self.compute_trait_ref(&data.trait_ref);
if !data.has_escaping_regions() {
let predicate = data.trait_ref.to_predicate();
let cause = self.cause(traits::ProjectionWf(data));
self.out.push(traits::Obligation::new(cause, predicate));
}
}
/// Push new obligations into `out`. Returns true if it was able
/// to generate all the predicates needed to validate that `ty0`
/// is WF. Returns false if `ty0` is an unresolved type variable,
/// in which case we are not able to simplify at all.
fn compute(&mut self, ty0: Ty<'tcx>) -> bool {
let mut subtys = ty0.walk();
while let Some(ty) = subtys.next() {
match ty.sty {
ty::TyBool |
ty::TyChar |
ty::TyInt(..) |
ty::TyUint(..) |
ty::TyFloat(..) |
ty::TyError |
ty::TyStr |
ty::TyParam(_) => {
// WfScalar, WfParameter, etc
}
ty::TySlice(subty) |
ty::TyArray(subty, _) => {
if !subty.has_escaping_regions() {
let cause = self.cause(traits::SliceOrArrayElem);
match traits::trait_ref_for_builtin_bound(self.infcx.tcx,
ty::BoundSized,
subty) {
Ok(trait_ref) => {
self.out.push(
traits::Obligation::new(cause,
trait_ref.to_predicate()));
}
Err(ErrorReported) => { }
}
}
}
ty::TyBox(_) |
ty::TyTuple(_) |
ty::TyRawPtr(_) => {
// simple cases that are WF if their type args are WF
}
ty::TyProjection(data) => {
subtys.skip_current_subtree(); // subtree handled by compute_projection
self.compute_projection(data);
}
ty::TyEnum(def, substs) |
ty::TyStruct(def, substs) => {
// WfNominalType
let obligations = self.nominal_obligations(def.did, substs);
self.out.extend(obligations);
}
ty::TyRef(r, mt) => {
// WfReference
if !r.has_escaping_regions() && !mt.ty.has_escaping_regions() {
let cause = self.cause(traits::ReferenceOutlivesReferent(ty));
self.out.push(
traits::Obligation::new(
cause,
ty::Predicate::TypeOutlives(
ty::Binder(
ty::OutlivesPredicate(mt.ty, *r)))));
}
}
ty::TyClosure(..) => {
// the types in a closure are always the types of
// local variables (or possibly references to local
// variables), we'll walk those.
//
// (Though, local variables are probably not
// needed, as they are separately checked w/r/t
// WFedness.)
}
ty::TyBareFn(..) => {
// let the loop iterator into the argument/return
// types appearing in the fn signature
}
ty::TyTrait(ref data) => {
// WfObject
//
// Here, we defer WF checking due to higher-ranked
// regions. This is perhaps not ideal.
self.from_object_ty(ty, data);
// FIXME(#27579) RFC also considers adding trait
// obligations that don't refer to Self and
// checking those
let cause = self.cause(traits::MiscObligation);
self.out.push(
traits::Obligation::new(
cause,
ty::Predicate::ObjectSafe(data.principal_def_id())));
}
// Inference variables are the complicated case, since we don't
// know what type they are. We do two things:
//
// 1. Check if they have been resolved, and if so proceed with
// THAT type.
// 2. If not, check whether this is the type that we
// started with (ty0). In that case, we've made no
// progress at all, so return false. Otherwise,
// we've at least simplified things (i.e., we went
// from `Vec<$0>: WF` to `$0: WF`, so we can
// register a pending obligation and keep
// moving. (Goal is that an "inductive hypothesis"
// is satisfied to ensure termination.)
ty::TyInfer(_) => {
let ty = self.infcx.shallow_resolve(ty);
if let ty::TyInfer(_) = ty.sty { // not yet resolved...
if ty == ty0 { // ...this is the type we started from! no progress.
return false;
}
let cause = self.cause(traits::MiscObligation);
self.out.push( // ...not the type we started from, so we made progress.
traits::Obligation::new(cause, ty::Predicate::WellFormed(ty)));
} else {
// Yes, resolved, proceed with the
// result. Should never return false because
// `ty` is not a TyInfer.
assert!(self.compute(ty));
}
}
}
}
// if we made it through that loop above, we made progress!
return true;
}
fn nominal_obligations(&mut self,
def_id: DefId,
substs: &Substs<'tcx>)
-> Vec<traits::PredicateObligation<'tcx>>
{
let predicates =
self.infcx.tcx.lookup_predicates(def_id)
.instantiate(self.infcx.tcx, substs);
let cause = self.cause(traits::ItemObligation(def_id));
predicates.predicates
.into_iter()
.map(|pred| traits::Obligation::new(cause.clone(), pred))
.filter(|pred| !pred.has_escaping_regions())
.collect()
}
fn from_object_ty(&mut self, ty: Ty<'tcx>, data: &ty::TraitTy<'tcx>) {
// Imagine a type like this:
//
// trait Foo { }
// trait Bar<'c> : 'c { }
//
// &'b (Foo+'c+Bar<'d>)
// ^
//
// In this case, the following relationships must hold:
//
// 'b <= 'c
// 'd <= 'c
//
// The first conditions is due to the normal region pointer
// rules, which say that a reference cannot outlive its
// referent.
//
// The final condition may be a bit surprising. In particular,
// you may expect that it would have been `'c <= 'd`, since
// usually lifetimes of outer things are conservative
// approximations for inner things. However, it works somewhat
// differently with trait objects: here the idea is that if the
// user specifies a region bound (`'c`, in this case) it is the
// "master bound" that *implies* that bounds from other traits are
// all met. (Remember that *all bounds* in a type like
// `Foo+Bar+Zed` must be met, not just one, hence if we write
// `Foo<'x>+Bar<'y>`, we know that the type outlives *both* 'x and
// 'y.)
//
// Note: in fact we only permit builtin traits, not `Bar<'d>`, I
// am looking forward to the future here.
if !data.has_escaping_regions() {
let implicit_bounds =
object_region_bounds(self.infcx.tcx,
&data.principal,
data.bounds.builtin_bounds);
let explicit_bound = data.bounds.region_bound;
for implicit_bound in implicit_bounds {
let cause = self.cause(traits::ReferenceOutlivesReferent(ty));
let outlives = ty::Binder(ty::OutlivesPredicate(explicit_bound, implicit_bound));
self.out.push(traits::Obligation::new(cause, outlives.to_predicate()));
}
}
}
}
/// Given an object type like `SomeTrait+Send`, computes the lifetime
/// bounds that must hold on the elided self type. These are derived
/// from the declarations of `SomeTrait`, `Send`, and friends -- if
/// they declare `trait SomeTrait : 'static`, for example, then
/// `'static` would appear in the list. The hard work is done by
/// `ty::required_region_bounds`, see that for more information.
pub fn object_region_bounds<'tcx>(
tcx: &ty::ctxt<'tcx>,
principal: &ty::PolyTraitRef<'tcx>,
others: ty::BuiltinBounds)
-> Vec<ty::Region>
{
// Since we don't actually *know* the self type for an object,
// this "open(err)" serves as a kind of dummy standin -- basically
// a skolemized type.
let open_ty = tcx.mk_infer(ty::FreshTy(0));
// Note that we preserve the overall binding levels here.
assert!(!open_ty.has_escaping_regions());
let substs = tcx.mk_substs(principal.0.substs.with_self_ty(open_ty));
let trait_refs = vec!(ty::Binder(ty::TraitRef::new(principal.0.def_id, substs)));
let mut predicates = others.to_predicates(tcx, open_ty);
predicates.extend(trait_refs.iter().map(|t| t.to_predicate()));
tcx.required_region_bounds(open_ty, predicates)
}