rust/src/librustc/middle/trans/datum.rs
Björn Steinbrink 0d6f257657 Improve usage of lifetime intrinsics in match expressions
The allocas used in match expression currently don't get good lifetime
markers, in fact they only get lifetime start markers, because their
lifetimes don't match to cleanup scopes.

While the bindings themselves are bog standard and just need a matching
pair of start and end markers, they might need them twice, once for a
guard clause and once for the match body.

The __llmatch alloca OTOH needs a single lifetime start marker, but
when there's a guard clause, it needs two end markers, because its
lifetime ends either when the guard doesn't match or after the match
body.

With these intrinsics in place, LLVM can now, for example, optimize
code like this:

````rust
enum E {
  A1(int),
  A2(int),
  A3(int),
  A4(int),
}

pub fn variants(x: E) {
  match x {
    A1(m) => bar(&m),
    A2(m) => bar(&m),
    A3(m) => bar(&m),
    A4(m) => bar(&m),
  }
}
````

To a single call to bar, using only a single stack slot. It still fails
to eliminate some of checks.

````gas
.Ltmp5:
	.cfi_def_cfa_offset 16
	movb	(%rdi), %al
	testb	%al, %al
	je	.LBB3_5
	movzbl	%al, %eax
	cmpl	$1, %eax
	je	.LBB3_5
	cmpl	$2, %eax
.LBB3_5:
	movq	8(%rdi), %rax
	movq	%rax, (%rsp)
	leaq	(%rsp), %rdi
	callq	_ZN3bar20hcb7a0d8be8e17e37daaE@PLT
	popq	%rax
	retq
````
2014-07-23 17:39:13 +02:00

670 lines
21 KiB
Rust

// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
/*!
* See the section on datums in `doc.rs` for an overview of what
* Datums are and how they are intended to be used.
*/
use llvm::ValueRef;
use middle::trans::base::*;
use middle::trans::common::*;
use middle::trans::cleanup;
use middle::trans::cleanup::CleanupMethods;
use middle::trans::expr;
use middle::trans::glue;
use middle::trans::tvec;
use middle::trans::type_of;
use middle::ty;
use util::ppaux::{ty_to_string};
use syntax::ast;
/**
* A `Datum` encapsulates the result of evaluating an expression. It
* describes where the value is stored, what Rust type the value has,
* whether it is addressed by reference, and so forth. Please refer
* the section on datums in `doc.rs` for more details.
*/
#[deriving(Clone)]
pub struct Datum<K> {
/// The llvm value. This is either a pointer to the Rust value or
/// the value itself, depending on `kind` below.
pub val: ValueRef,
/// The rust type of the value.
pub ty: ty::t,
/// Indicates whether this is by-ref or by-value.
pub kind: K,
}
pub struct DatumBlock<'a, K> {
pub bcx: &'a Block<'a>,
pub datum: Datum<K>,
}
pub enum Expr {
/// a fresh value that was produced and which has no cleanup yet
/// because it has not yet "landed" into its permanent home
RvalueExpr(Rvalue),
/// `val` is a pointer into memory for which a cleanup is scheduled
/// (and thus has type *T). If you move out of an Lvalue, you must
/// zero out the memory (FIXME #5016).
LvalueExpr,
}
#[deriving(Clone)]
pub struct Lvalue;
pub struct Rvalue {
pub mode: RvalueMode
}
impl Rvalue {
pub fn new(m: RvalueMode) -> Rvalue {
Rvalue { mode: m }
}
}
// Make Datum linear for more type safety.
impl Drop for Rvalue {
fn drop(&mut self) { }
}
#[deriving(PartialEq, Eq, Hash)]
pub enum RvalueMode {
/// `val` is a pointer to the actual value (and thus has type *T)
ByRef,
/// `val` is the actual value (*only used for immediates* like ints, ptrs)
ByValue,
}
pub fn immediate_rvalue(val: ValueRef, ty: ty::t) -> Datum<Rvalue> {
return Datum::new(val, ty, Rvalue::new(ByValue));
}
pub fn immediate_rvalue_bcx<'a>(bcx: &'a Block<'a>,
val: ValueRef,
ty: ty::t)
-> DatumBlock<'a, Rvalue> {
return DatumBlock::new(bcx, immediate_rvalue(val, ty))
}
pub fn lvalue_scratch_datum<'a, A>(bcx: &'a Block<'a>,
ty: ty::t,
name: &str,
zero: bool,
scope: cleanup::ScopeId,
arg: A,
populate: |A, &'a Block<'a>, ValueRef|
-> &'a Block<'a>)
-> DatumBlock<'a, Lvalue> {
/*!
* Allocates temporary space on the stack using alloca() and
* returns a by-ref Datum pointing to it. The memory will be
* dropped upon exit from `scope`. The callback `populate` should
* initialize the memory. If `zero` is true, the space will be
* zeroed when it is allocated; this is not necessary unless `bcx`
* does not dominate the end of `scope`.
*/
let llty = type_of::type_of(bcx.ccx(), ty);
let scratch = if zero {
alloca_zeroed(bcx, llty, name)
} else {
alloca(bcx, llty, name)
};
// Subtle. Populate the scratch memory *before* scheduling cleanup.
let bcx = populate(arg, bcx, scratch);
bcx.fcx.schedule_lifetime_end(scope, scratch);
bcx.fcx.schedule_drop_mem(scope, scratch, ty);
DatumBlock::new(bcx, Datum::new(scratch, ty, Lvalue))
}
pub fn rvalue_scratch_datum(bcx: &Block,
ty: ty::t,
name: &str)
-> Datum<Rvalue> {
/*!
* Allocates temporary space on the stack using alloca() and
* returns a by-ref Datum pointing to it. If `zero` is true, the
* space will be zeroed when it is allocated; this is normally not
* necessary, but in the case of automatic rooting in match
* statements it is possible to have temporaries that may not get
* initialized if a certain arm is not taken, so we must zero
* them. You must arrange any cleanups etc yourself!
*/
let llty = type_of::type_of(bcx.ccx(), ty);
let scratch = alloca(bcx, llty, name);
Datum::new(scratch, ty, Rvalue::new(ByRef))
}
pub fn appropriate_rvalue_mode(ccx: &CrateContext, ty: ty::t) -> RvalueMode {
/*!
* Indicates the "appropriate" mode for this value,
* which is either by ref or by value, depending
* on whether type is immediate or not.
*/
if type_is_immediate(ccx, ty) {
ByValue
} else {
ByRef
}
}
fn add_rvalue_clean(mode: RvalueMode,
fcx: &FunctionContext,
scope: cleanup::ScopeId,
val: ValueRef,
ty: ty::t) {
match mode {
ByValue => { fcx.schedule_drop_immediate(scope, val, ty); }
ByRef => {
fcx.schedule_lifetime_end(scope, val);
fcx.schedule_drop_mem(scope, val, ty);
}
}
}
pub trait KindOps {
/**
* Take appropriate action after the value in `datum` has been
* stored to a new location.
*/
fn post_store<'a>(&self,
bcx: &'a Block<'a>,
val: ValueRef,
ty: ty::t)
-> &'a Block<'a>;
/**
* True if this mode is a reference mode, meaning that the datum's
* val field is a pointer to the actual value
*/
fn is_by_ref(&self) -> bool;
/**
* Converts to an Expr kind
*/
fn to_expr_kind(self) -> Expr;
}
impl KindOps for Rvalue {
fn post_store<'a>(&self,
bcx: &'a Block<'a>,
_val: ValueRef,
_ty: ty::t)
-> &'a Block<'a> {
// No cleanup is scheduled for an rvalue, so we don't have
// to do anything after a move to cancel or duplicate it.
bcx
}
fn is_by_ref(&self) -> bool {
self.mode == ByRef
}
fn to_expr_kind(self) -> Expr {
RvalueExpr(self)
}
}
impl KindOps for Lvalue {
fn post_store<'a>(&self,
bcx: &'a Block<'a>,
val: ValueRef,
ty: ty::t)
-> &'a Block<'a> {
/*!
* If an lvalue is moved, we must zero out the memory in which
* it resides so as to cancel cleanup. If an @T lvalue is
* copied, we must increment the reference count.
*/
if ty::type_needs_drop(bcx.tcx(), ty) {
if ty::type_moves_by_default(bcx.tcx(), ty) {
// cancel cleanup of affine values by zeroing out
let () = zero_mem(bcx, val, ty);
bcx
} else {
// incr. refcount for @T or newtype'd @T
glue::take_ty(bcx, val, ty)
}
} else {
bcx
}
}
fn is_by_ref(&self) -> bool {
true
}
fn to_expr_kind(self) -> Expr {
LvalueExpr
}
}
impl KindOps for Expr {
fn post_store<'a>(&self,
bcx: &'a Block<'a>,
val: ValueRef,
ty: ty::t)
-> &'a Block<'a> {
match *self {
LvalueExpr => Lvalue.post_store(bcx, val, ty),
RvalueExpr(ref r) => r.post_store(bcx, val, ty),
}
}
fn is_by_ref(&self) -> bool {
match *self {
LvalueExpr => Lvalue.is_by_ref(),
RvalueExpr(ref r) => r.is_by_ref()
}
}
fn to_expr_kind(self) -> Expr {
self
}
}
impl Datum<Rvalue> {
pub fn add_clean(self,
fcx: &FunctionContext,
scope: cleanup::ScopeId)
-> ValueRef {
/*!
* Schedules a cleanup for this datum in the given scope.
* That means that this datum is no longer an rvalue datum;
* hence, this function consumes the datum and returns the
* contained ValueRef.
*/
add_rvalue_clean(self.kind.mode, fcx, scope, self.val, self.ty);
self.val
}
pub fn to_lvalue_datum_in_scope<'a>(self,
bcx: &'a Block<'a>,
name: &str,
scope: cleanup::ScopeId)
-> DatumBlock<'a, Lvalue> {
/*!
* Returns an lvalue datum (that is, a by ref datum with
* cleanup scheduled). If `self` is not already an lvalue,
* cleanup will be scheduled in the temporary scope for `expr_id`.
*/
let fcx = bcx.fcx;
match self.kind.mode {
ByRef => {
add_rvalue_clean(ByRef, fcx, scope, self.val, self.ty);
DatumBlock::new(bcx, Datum::new(self.val, self.ty, Lvalue))
}
ByValue => {
lvalue_scratch_datum(
bcx, self.ty, name, false, scope, self,
|this, bcx, llval| this.store_to(bcx, llval))
}
}
}
pub fn to_ref_datum<'a>(self, bcx: &'a Block<'a>) -> DatumBlock<'a, Rvalue> {
let mut bcx = bcx;
match self.kind.mode {
ByRef => DatumBlock::new(bcx, self),
ByValue => {
let scratch = rvalue_scratch_datum(bcx, self.ty, "to_ref");
bcx = self.store_to(bcx, scratch.val);
DatumBlock::new(bcx, scratch)
}
}
}
pub fn to_appropriate_datum<'a>(self,
bcx: &'a Block<'a>)
-> DatumBlock<'a, Rvalue> {
match self.appropriate_rvalue_mode(bcx.ccx()) {
ByRef => {
self.to_ref_datum(bcx)
}
ByValue => {
match self.kind.mode {
ByValue => DatumBlock::new(bcx, self),
ByRef => {
let llval = load_ty(bcx, self.val, self.ty);
DatumBlock::new(bcx, Datum::new(llval, self.ty, Rvalue::new(ByValue)))
}
}
}
}
}
}
/**
* Methods suitable for "expr" datums that could be either lvalues or
* rvalues. These include coercions into lvalues/rvalues but also a number
* of more general operations. (Some of those operations could be moved to
* the more general `impl<K> Datum<K>`, but it's convenient to have them
* here since we can `match self.kind` rather than having to implement
* generic methods in `KindOps`.)
*/
impl Datum<Expr> {
fn match_kind<R>(self,
if_lvalue: |Datum<Lvalue>| -> R,
if_rvalue: |Datum<Rvalue>| -> R)
-> R {
let Datum { val, ty, kind } = self;
match kind {
LvalueExpr => if_lvalue(Datum::new(val, ty, Lvalue)),
RvalueExpr(r) => if_rvalue(Datum::new(val, ty, r)),
}
}
#[allow(dead_code)] // potentially useful
pub fn assert_lvalue(self, bcx: &Block) -> Datum<Lvalue> {
/*!
* Asserts that this datum *is* an lvalue and returns it.
*/
self.match_kind(
|d| d,
|_| bcx.sess().bug("assert_lvalue given rvalue"))
}
pub fn assert_rvalue(self, bcx: &Block) -> Datum<Rvalue> {
/*!
* Asserts that this datum *is* an lvalue and returns it.
*/
self.match_kind(
|_| bcx.sess().bug("assert_rvalue given lvalue"),
|r| r)
}
pub fn store_to_dest<'a>(self,
bcx: &'a Block<'a>,
dest: expr::Dest,
expr_id: ast::NodeId)
-> &'a Block<'a> {
match dest {
expr::Ignore => {
self.add_clean_if_rvalue(bcx, expr_id);
bcx
}
expr::SaveIn(addr) => {
self.store_to(bcx, addr)
}
}
}
pub fn add_clean_if_rvalue<'a>(self,
bcx: &'a Block<'a>,
expr_id: ast::NodeId) {
/*!
* Arranges cleanup for `self` if it is an rvalue. Use when
* you are done working with a value that may need drop.
*/
self.match_kind(
|_| { /* Nothing to do, cleanup already arranged */ },
|r| {
let scope = cleanup::temporary_scope(bcx.tcx(), expr_id);
r.add_clean(bcx.fcx, scope);
})
}
pub fn clean<'a>(self,
bcx: &'a Block<'a>,
name: &'static str,
expr_id: ast::NodeId)
-> &'a Block<'a> {
/*!
* Ensures that `self` will get cleaned up, if it is not an lvalue
* already.
*/
self.to_lvalue_datum(bcx, name, expr_id).bcx
}
pub fn to_lvalue_datum<'a>(self,
bcx: &'a Block<'a>,
name: &str,
expr_id: ast::NodeId)
-> DatumBlock<'a, Lvalue> {
self.match_kind(
|l| DatumBlock::new(bcx, l),
|r| {
let scope = cleanup::temporary_scope(bcx.tcx(), expr_id);
r.to_lvalue_datum_in_scope(bcx, name, scope)
})
}
pub fn to_rvalue_datum<'a>(self,
bcx: &'a Block<'a>,
name: &'static str)
-> DatumBlock<'a, Rvalue> {
/*!
* Ensures that we have an rvalue datum (that is, a datum with
* no cleanup scheduled).
*/
self.match_kind(
|l| {
let mut bcx = bcx;
match l.appropriate_rvalue_mode(bcx.ccx()) {
ByRef => {
let scratch = rvalue_scratch_datum(bcx, l.ty, name);
bcx = l.store_to(bcx, scratch.val);
DatumBlock::new(bcx, scratch)
}
ByValue => {
let v = load_ty(bcx, l.val, l.ty);
bcx = l.kind.post_store(bcx, l.val, l.ty);
DatumBlock::new(bcx, Datum::new(v, l.ty, Rvalue::new(ByValue)))
}
}
},
|r| DatumBlock::new(bcx, r))
}
}
/**
* Methods suitable only for lvalues. These include the various
* operations to extract components out of compound data structures,
* such as extracting the field from a struct or a particular element
* from an array.
*/
impl Datum<Lvalue> {
pub fn to_llref(self) -> ValueRef {
/*!
* Converts a datum into a by-ref value. The datum type must
* be one which is always passed by reference.
*/
self.val
}
pub fn get_element(&self,
ty: ty::t,
gep: |ValueRef| -> ValueRef)
-> Datum<Lvalue> {
Datum {
val: gep(self.val),
kind: Lvalue,
ty: ty,
}
}
pub fn get_vec_base_and_len<'a>(&self, bcx: &'a Block<'a>) -> (ValueRef, ValueRef) {
//! Converts a vector into the slice pair.
tvec::get_base_and_len(bcx, self.val, self.ty)
}
}
/**
* Generic methods applicable to any sort of datum.
*/
impl<K:KindOps> Datum<K> {
pub fn new(val: ValueRef, ty: ty::t, kind: K) -> Datum<K> {
Datum { val: val, ty: ty, kind: kind }
}
pub fn to_expr_datum(self) -> Datum<Expr> {
let Datum { val, ty, kind } = self;
Datum { val: val, ty: ty, kind: kind.to_expr_kind() }
}
pub fn store_to<'a>(self,
bcx: &'a Block<'a>,
dst: ValueRef)
-> &'a Block<'a> {
/*!
* Moves or copies this value into a new home, as appropriate
* depending on the type of the datum. This method consumes
* the datum, since it would be incorrect to go on using the
* datum if the value represented is affine (and hence the value
* is moved).
*/
self.shallow_copy(bcx, dst);
self.kind.post_store(bcx, self.val, self.ty)
}
fn shallow_copy<'a>(&self,
bcx: &'a Block<'a>,
dst: ValueRef)
-> &'a Block<'a> {
/*!
* Helper function that performs a shallow copy of this value
* into `dst`, which should be a pointer to a memory location
* suitable for `self.ty`. `dst` should contain uninitialized
* memory (either newly allocated, zeroed, or dropped).
*
* This function is private to datums because it leaves memory
* in an unstable state, where the source value has been
* copied but not zeroed. Public methods are `store_to` (if
* you no longer need the source value) or
* `shallow_copy_and_take` (if you wish the source value to
* remain valid).
*/
let _icx = push_ctxt("copy_to_no_check");
if type_is_zero_size(bcx.ccx(), self.ty) {
return bcx;
}
if self.kind.is_by_ref() {
memcpy_ty(bcx, dst, self.val, self.ty);
} else {
store_ty(bcx, self.val, dst, self.ty);
}
return bcx;
}
pub fn shallow_copy_and_take<'a>(&self,
bcx: &'a Block<'a>,
dst: ValueRef)
-> &'a Block<'a> {
/*!
* Copies the value into a new location and runs any necessary
* take glue on the new location. This function always
* preserves the existing datum as a valid value. Therefore,
* it does not consume `self` and, also, cannot be applied to
* affine values (since they must never be duplicated).
*/
assert!(!ty::type_moves_by_default(bcx.tcx(), self.ty));
let mut bcx = bcx;
bcx = self.shallow_copy(bcx, dst);
glue::take_ty(bcx, dst, self.ty)
}
#[allow(dead_code)] // useful for debugging
pub fn to_string(&self, ccx: &CrateContext) -> String {
format!("Datum({}, {}, {:?})",
ccx.tn.val_to_string(self.val),
ty_to_string(ccx.tcx(), self.ty),
self.kind)
}
pub fn appropriate_rvalue_mode(&self, ccx: &CrateContext) -> RvalueMode {
/*! See the `appropriate_rvalue_mode()` function */
appropriate_rvalue_mode(ccx, self.ty)
}
pub fn to_llscalarish<'a>(self, bcx: &'a Block<'a>) -> ValueRef {
/*!
* Converts `self` into a by-value `ValueRef`. Consumes this
* datum (i.e., absolves you of responsibility to cleanup the
* value). For this to work, the value must be something
* scalar-ish (like an int or a pointer) which (1) does not
* require drop glue and (2) is naturally passed around by
* value, and not by reference.
*/
assert!(!ty::type_needs_drop(bcx.tcx(), self.ty));
assert!(self.appropriate_rvalue_mode(bcx.ccx()) == ByValue);
if self.kind.is_by_ref() {
load_ty(bcx, self.val, self.ty)
} else {
self.val
}
}
pub fn to_llbool<'a>(self, bcx: &'a Block<'a>) -> ValueRef {
assert!(ty::type_is_bool(self.ty) || ty::type_is_bot(self.ty))
self.to_llscalarish(bcx)
}
}
impl <'a, K> DatumBlock<'a, K> {
pub fn new(bcx: &'a Block<'a>, datum: Datum<K>) -> DatumBlock<'a, K> {
DatumBlock { bcx: bcx, datum: datum }
}
}
impl<'a, K:KindOps> DatumBlock<'a, K> {
pub fn to_expr_datumblock(self) -> DatumBlock<'a, Expr> {
DatumBlock::new(self.bcx, self.datum.to_expr_datum())
}
}
impl<'a> DatumBlock<'a, Expr> {
pub fn store_to_dest(self,
dest: expr::Dest,
expr_id: ast::NodeId) -> &'a Block<'a> {
let DatumBlock { bcx, datum } = self;
datum.store_to_dest(bcx, dest, expr_id)
}
pub fn to_llbool(self) -> Result<'a> {
let DatumBlock { datum, bcx } = self;
Result::new(bcx, datum.to_llbool(bcx))
}
}