rust/src/librustc_driver/test.rs

834 lines
28 KiB
Rust

// Copyright 2012 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! # Standalone Tests for the Inference Module
use diagnostic;
use diagnostic::Emitter;
use driver;
use rustc_resolve as resolve;
use rustc_typeck::middle::lang_items;
use rustc_typeck::middle::region::{mod, CodeExtent};
use rustc_typeck::middle::resolve_lifetime;
use rustc_typeck::middle::stability;
use rustc_typeck::middle::subst;
use rustc_typeck::middle::subst::Subst;
use rustc_typeck::middle::ty::{mod, Ty};
use rustc_typeck::middle::infer::combine::Combine;
use rustc_typeck::middle::infer;
use rustc_typeck::middle::infer::lub::Lub;
use rustc_typeck::middle::infer::glb::Glb;
use rustc_typeck::middle::infer::sub::Sub;
use rustc_typeck::util::ppaux::{ty_to_string, Repr, UserString};
use rustc::session::{mod,config};
use syntax::{abi, ast, ast_map};
use syntax::codemap;
use syntax::codemap::{Span, CodeMap, DUMMY_SP};
use syntax::diagnostic::{Level, RenderSpan, Bug, Fatal, Error, Warning, Note, Help};
use syntax::parse::token;
use arena::TypedArena;
struct Env<'a, 'tcx: 'a> {
infcx: &'a infer::InferCtxt<'a, 'tcx>,
}
struct RH<'a> {
id: ast::NodeId,
sub: &'a [RH<'a>]
}
static EMPTY_SOURCE_STR: &'static str = "#![no_std]";
struct ExpectErrorEmitter {
messages: Vec<String>
}
fn remove_message(e: &mut ExpectErrorEmitter, msg: &str, lvl: Level) {
match lvl {
Bug | Fatal | Error => { }
Warning | Note | Help => { return; }
}
debug!("Error: {}", msg);
match e.messages.iter().position(|m| msg.contains(m.as_slice())) {
Some(i) => {
e.messages.remove(i);
}
None => {
panic!("Unexpected error: {} Expected: {}",
msg, e.messages);
}
}
}
impl Emitter for ExpectErrorEmitter {
fn emit(&mut self,
_cmsp: Option<(&codemap::CodeMap, Span)>,
msg: &str,
_: Option<&str>,
lvl: Level)
{
remove_message(self, msg, lvl);
}
fn custom_emit(&mut self,
_cm: &codemap::CodeMap,
_sp: RenderSpan,
msg: &str,
lvl: Level)
{
remove_message(self, msg, lvl);
}
}
fn errors(msgs: &[&str]) -> (Box<Emitter+Send>, uint) {
let v = msgs.iter().map(|m| m.to_string()).collect();
(box ExpectErrorEmitter { messages: v } as Box<Emitter+Send>, msgs.len())
}
fn test_env<F>(source_string: &str,
(emitter, expected_err_count): (Box<Emitter+Send>, uint),
body: F) where
F: FnOnce(Env),
{
let mut options =
config::basic_options();
options.debugging_opts |= config::VERBOSE;
let codemap =
CodeMap::new();
let diagnostic_handler =
diagnostic::mk_handler(emitter);
let span_diagnostic_handler =
diagnostic::mk_span_handler(diagnostic_handler, codemap);
let sess = session::build_session_(options, None, span_diagnostic_handler);
let krate_config = Vec::new();
let input = config::Input::Str(source_string.to_string());
let krate = driver::phase_1_parse_input(&sess, krate_config, &input);
let krate = driver::phase_2_configure_and_expand(&sess, krate, "test", None)
.expect("phase 2 aborted");
let mut forest = ast_map::Forest::new(krate);
let ast_map = driver::assign_node_ids_and_map(&sess, &mut forest);
let krate = ast_map.krate();
// run just enough stuff to build a tcx:
let lang_items = lang_items::collect_language_items(krate, &sess);
let resolve::CrateMap { def_map, freevars, capture_mode_map, .. } =
resolve::resolve_crate(&sess, &ast_map, &lang_items, krate, resolve::MakeGlobMap::No);
let named_region_map = resolve_lifetime::krate(&sess, krate, &def_map);
let region_map = region::resolve_crate(&sess, krate);
let stability_index = stability::Index::build(krate);
let arenas = ty::CtxtArenas::new();
let tcx = ty::mk_ctxt(sess,
&arenas,
def_map,
named_region_map,
ast_map,
freevars,
capture_mode_map,
region_map,
lang_items,
stability_index);
let infcx = infer::new_infer_ctxt(&tcx);
body(Env { infcx: &infcx });
infcx.resolve_regions_and_report_errors(ast::CRATE_NODE_ID);
assert_eq!(tcx.sess.err_count(), expected_err_count);
}
impl<'a, 'tcx> Env<'a, 'tcx> {
pub fn tcx(&self) -> &ty::ctxt<'tcx> {
self.infcx.tcx
}
pub fn create_region_hierarchy(&self, rh: &RH) {
for child_rh in rh.sub.iter() {
self.create_region_hierarchy(child_rh);
self.infcx.tcx.region_maps.record_encl_scope(
CodeExtent::from_node_id(child_rh.id),
CodeExtent::from_node_id(rh.id));
}
}
pub fn create_simple_region_hierarchy(&self) {
// creates a region hierarchy where 1 is root, 10 and 11 are
// children of 1, etc
self.create_region_hierarchy(
&RH {id: 1,
sub: &[RH {id: 10,
sub: &[]},
RH {id: 11,
sub: &[]}]});
}
#[allow(dead_code)] // this seems like it could be useful, even if we don't use it now
pub fn lookup_item(&self, names: &[String]) -> ast::NodeId {
return match search_mod(self, &self.infcx.tcx.map.krate().module, 0, names) {
Some(id) => id,
None => {
panic!("no item found: `{}`", names.connect("::"));
}
};
fn search_mod(this: &Env,
m: &ast::Mod,
idx: uint,
names: &[String])
-> Option<ast::NodeId> {
assert!(idx < names.len());
for item in m.items.iter() {
if item.ident.user_string(this.infcx.tcx) == names[idx] {
return search(this, &**item, idx+1, names);
}
}
return None;
}
fn search(this: &Env,
it: &ast::Item,
idx: uint,
names: &[String])
-> Option<ast::NodeId> {
if idx == names.len() {
return Some(it.id);
}
return match it.node {
ast::ItemConst(..) | ast::ItemStatic(..) | ast::ItemFn(..) |
ast::ItemForeignMod(..) | ast::ItemTy(..) => {
None
}
ast::ItemEnum(..) | ast::ItemStruct(..) |
ast::ItemTrait(..) | ast::ItemImpl(..) |
ast::ItemMac(..) => {
None
}
ast::ItemMod(ref m) => {
search_mod(this, m, idx, names)
}
};
}
}
pub fn make_subtype(&self, a: Ty<'tcx>, b: Ty<'tcx>) -> bool {
match infer::mk_subty(self.infcx, true, infer::Misc(DUMMY_SP), a, b) {
Ok(_) => true,
Err(ref e) => panic!("Encountered error: {}",
ty::type_err_to_str(self.infcx.tcx, e))
}
}
pub fn is_subtype(&self, a: Ty<'tcx>, b: Ty<'tcx>) -> bool {
match infer::can_mk_subty(self.infcx, a, b) {
Ok(_) => true,
Err(_) => false
}
}
pub fn assert_subtype(&self, a: Ty<'tcx>, b: Ty<'tcx>) {
if !self.is_subtype(a, b) {
panic!("{} is not a subtype of {}, but it should be",
self.ty_to_string(a),
self.ty_to_string(b));
}
}
pub fn assert_eq(&self, a: Ty<'tcx>, b: Ty<'tcx>) {
self.assert_subtype(a, b);
self.assert_subtype(b, a);
}
pub fn ty_to_string(&self, a: Ty<'tcx>) -> String {
ty_to_string(self.infcx.tcx, a)
}
pub fn t_fn(&self,
input_tys: &[Ty<'tcx>],
output_ty: Ty<'tcx>)
-> Ty<'tcx>
{
let input_args = input_tys.iter().map(|ty| *ty).collect();
ty::mk_bare_fn(self.infcx.tcx,
None,
self.infcx.tcx.mk_bare_fn(ty::BareFnTy {
unsafety: ast::Unsafety::Normal,
abi: abi::Rust,
sig: ty::Binder(ty::FnSig {
inputs: input_args,
output: ty::FnConverging(output_ty),
variadic: false
})
}))
}
pub fn t_nil(&self) -> Ty<'tcx> {
ty::mk_nil(self.infcx.tcx)
}
pub fn t_pair(&self, ty1: Ty<'tcx>, ty2: Ty<'tcx>) -> Ty<'tcx> {
ty::mk_tup(self.infcx.tcx, vec![ty1, ty2])
}
pub fn t_closure(&self,
input_tys: &[Ty<'tcx>],
output_ty: Ty<'tcx>,
region_bound: ty::Region)
-> Ty<'tcx>
{
ty::mk_closure(self.infcx.tcx, ty::ClosureTy {
unsafety: ast::Unsafety::Normal,
onceness: ast::Many,
store: ty::RegionTraitStore(region_bound, ast::MutMutable),
bounds: ty::region_existential_bound(region_bound),
sig: ty::Binder(ty::FnSig {
inputs: input_tys.to_vec(),
output: ty::FnConverging(output_ty),
variadic: false,
}),
abi: abi::Rust,
})
}
pub fn t_param(&self, space: subst::ParamSpace, index: u32) -> Ty<'tcx> {
let name = format!("T{}", index);
ty::mk_param(self.infcx.tcx, space, index, token::intern(name[]))
}
pub fn re_early_bound(&self,
space: subst::ParamSpace,
index: u32,
name: &'static str)
-> ty::Region
{
let name = token::intern(name);
ty::ReEarlyBound(ast::DUMMY_NODE_ID, space, index, name)
}
pub fn re_late_bound_with_debruijn(&self, id: u32, debruijn: ty::DebruijnIndex) -> ty::Region {
ty::ReLateBound(debruijn, ty::BrAnon(id))
}
pub fn t_rptr(&self, r: ty::Region) -> Ty<'tcx> {
ty::mk_imm_rptr(self.infcx.tcx,
self.infcx.tcx.mk_region(r),
self.tcx().types.int)
}
pub fn t_rptr_late_bound(&self, id: u32) -> Ty<'tcx> {
let r = self.re_late_bound_with_debruijn(id, ty::DebruijnIndex::new(1));
ty::mk_imm_rptr(self.infcx.tcx,
self.infcx.tcx.mk_region(r),
self.tcx().types.int)
}
pub fn t_rptr_late_bound_with_debruijn(&self,
id: u32,
debruijn: ty::DebruijnIndex)
-> Ty<'tcx> {
let r = self.re_late_bound_with_debruijn(id, debruijn);
ty::mk_imm_rptr(self.infcx.tcx,
self.infcx.tcx.mk_region(r),
self.tcx().types.int)
}
pub fn t_rptr_scope(&self, id: ast::NodeId) -> Ty<'tcx> {
let r = ty::ReScope(CodeExtent::from_node_id(id));
ty::mk_imm_rptr(self.infcx.tcx, self.infcx.tcx.mk_region(r),
self.tcx().types.int)
}
pub fn re_free(&self, nid: ast::NodeId, id: u32) -> ty::Region {
ty::ReFree(ty::FreeRegion { scope: CodeExtent::from_node_id(nid),
bound_region: ty::BrAnon(id)})
}
pub fn t_rptr_free(&self, nid: ast::NodeId, id: u32) -> Ty<'tcx> {
let r = self.re_free(nid, id);
ty::mk_imm_rptr(self.infcx.tcx,
self.infcx.tcx.mk_region(r),
self.tcx().types.int)
}
pub fn t_rptr_static(&self) -> Ty<'tcx> {
ty::mk_imm_rptr(self.infcx.tcx,
self.infcx.tcx.mk_region(ty::ReStatic),
self.tcx().types.int)
}
pub fn dummy_type_trace(&self) -> infer::TypeTrace<'tcx> {
infer::TypeTrace::dummy(self.tcx())
}
pub fn sub(&self) -> Sub<'a, 'tcx> {
let trace = self.dummy_type_trace();
Sub(self.infcx.combine_fields(true, trace))
}
pub fn lub(&self) -> Lub<'a, 'tcx> {
let trace = self.dummy_type_trace();
Lub(self.infcx.combine_fields(true, trace))
}
pub fn glb(&self) -> Glb<'a, 'tcx> {
let trace = self.dummy_type_trace();
Glb(self.infcx.combine_fields(true, trace))
}
pub fn make_lub_ty(&self, t1: Ty<'tcx>, t2: Ty<'tcx>) -> Ty<'tcx> {
match self.lub().tys(t1, t2) {
Ok(t) => t,
Err(ref e) => panic!("unexpected error computing LUB: {}",
ty::type_err_to_str(self.infcx.tcx, e))
}
}
/// Checks that `t1 <: t2` is true (this may register additional
/// region checks).
pub fn check_sub(&self, t1: Ty<'tcx>, t2: Ty<'tcx>) {
match self.sub().tys(t1, t2) {
Ok(_) => { }
Err(ref e) => {
panic!("unexpected error computing sub({},{}): {}",
t1.repr(self.infcx.tcx),
t2.repr(self.infcx.tcx),
ty::type_err_to_str(self.infcx.tcx, e));
}
}
}
/// Checks that `t1 <: t2` is false (this may register additional
/// region checks).
pub fn check_not_sub(&self, t1: Ty<'tcx>, t2: Ty<'tcx>) {
match self.sub().tys(t1, t2) {
Err(_) => { }
Ok(_) => {
panic!("unexpected success computing sub({},{})",
t1.repr(self.infcx.tcx),
t2.repr(self.infcx.tcx));
}
}
}
/// Checks that `LUB(t1,t2) == t_lub`
pub fn check_lub(&self, t1: Ty<'tcx>, t2: Ty<'tcx>, t_lub: Ty<'tcx>) {
match self.lub().tys(t1, t2) {
Ok(t) => {
self.assert_eq(t, t_lub);
}
Err(ref e) => {
panic!("unexpected error in LUB: {}",
ty::type_err_to_str(self.infcx.tcx, e))
}
}
}
/// Checks that `GLB(t1,t2) == t_glb`
pub fn check_glb(&self, t1: Ty<'tcx>, t2: Ty<'tcx>, t_glb: Ty<'tcx>) {
debug!("check_glb(t1={}, t2={}, t_glb={})",
self.ty_to_string(t1),
self.ty_to_string(t2),
self.ty_to_string(t_glb));
match self.glb().tys(t1, t2) {
Err(e) => {
panic!("unexpected error computing LUB: {}", e)
}
Ok(t) => {
self.assert_eq(t, t_glb);
// sanity check for good measure:
self.assert_subtype(t, t1);
self.assert_subtype(t, t2);
}
}
}
}
#[test]
fn contravariant_region_ptr_ok() {
test_env(EMPTY_SOURCE_STR, errors(&[]), |env| {
env.create_simple_region_hierarchy();
let t_rptr1 = env.t_rptr_scope(1);
let t_rptr10 = env.t_rptr_scope(10);
env.assert_eq(t_rptr1, t_rptr1);
env.assert_eq(t_rptr10, t_rptr10);
env.make_subtype(t_rptr1, t_rptr10);
})
}
#[test]
fn contravariant_region_ptr_err() {
test_env(EMPTY_SOURCE_STR,
errors(&["lifetime mismatch"]),
|env| {
env.create_simple_region_hierarchy();
let t_rptr1 = env.t_rptr_scope(1);
let t_rptr10 = env.t_rptr_scope(10);
env.assert_eq(t_rptr1, t_rptr1);
env.assert_eq(t_rptr10, t_rptr10);
// will cause an error when regions are resolved
env.make_subtype(t_rptr10, t_rptr1);
})
}
#[test]
fn sub_free_bound_false() {
//! Test that:
//!
//! fn(&'a int) <: for<'b> fn(&'b int)
//!
//! does NOT hold.
test_env(EMPTY_SOURCE_STR, errors(&[]), |env| {
let t_rptr_free1 = env.t_rptr_free(0, 1);
let t_rptr_bound1 = env.t_rptr_late_bound(1);
env.check_not_sub(env.t_fn(&[t_rptr_free1], env.tcx().types.int),
env.t_fn(&[t_rptr_bound1], env.tcx().types.int));
})
}
#[test]
fn sub_bound_free_true() {
//! Test that:
//!
//! for<'a> fn(&'a int) <: fn(&'b int)
//!
//! DOES hold.
test_env(EMPTY_SOURCE_STR, errors(&[]), |env| {
let t_rptr_bound1 = env.t_rptr_late_bound(1);
let t_rptr_free1 = env.t_rptr_free(0, 1);
env.check_sub(env.t_fn(&[t_rptr_bound1], env.tcx().types.int),
env.t_fn(&[t_rptr_free1], env.tcx().types.int));
})
}
#[test]
fn sub_free_bound_false_infer() {
//! Test that:
//!
//! fn(_#1) <: for<'b> fn(&'b int)
//!
//! does NOT hold for any instantiation of `_#1`.
test_env(EMPTY_SOURCE_STR, errors(&[]), |env| {
let t_infer1 = env.infcx.next_ty_var();
let t_rptr_bound1 = env.t_rptr_late_bound(1);
env.check_not_sub(env.t_fn(&[t_infer1], env.tcx().types.int),
env.t_fn(&[t_rptr_bound1], env.tcx().types.int));
})
}
#[test]
fn lub_free_bound_infer() {
//! Test result of:
//!
//! LUB(fn(_#1), for<'b> fn(&'b int))
//!
//! This should yield `fn(&'_ int)`. We check
//! that it yields `fn(&'x int)` for some free `'x`,
//! anyhow.
test_env(EMPTY_SOURCE_STR, errors(&[]), |env| {
let t_infer1 = env.infcx.next_ty_var();
let t_rptr_bound1 = env.t_rptr_late_bound(1);
let t_rptr_free1 = env.t_rptr_free(0, 1);
env.check_lub(env.t_fn(&[t_infer1], env.tcx().types.int),
env.t_fn(&[t_rptr_bound1], env.tcx().types.int),
env.t_fn(&[t_rptr_free1], env.tcx().types.int));
});
}
#[test]
fn lub_bound_bound() {
test_env(EMPTY_SOURCE_STR, errors(&[]), |env| {
let t_rptr_bound1 = env.t_rptr_late_bound(1);
let t_rptr_bound2 = env.t_rptr_late_bound(2);
env.check_lub(env.t_fn(&[t_rptr_bound1], env.tcx().types.int),
env.t_fn(&[t_rptr_bound2], env.tcx().types.int),
env.t_fn(&[t_rptr_bound1], env.tcx().types.int));
})
}
#[test]
fn lub_bound_free() {
test_env(EMPTY_SOURCE_STR, errors(&[]), |env| {
let t_rptr_bound1 = env.t_rptr_late_bound(1);
let t_rptr_free1 = env.t_rptr_free(0, 1);
env.check_lub(env.t_fn(&[t_rptr_bound1], env.tcx().types.int),
env.t_fn(&[t_rptr_free1], env.tcx().types.int),
env.t_fn(&[t_rptr_free1], env.tcx().types.int));
})
}
#[test]
fn lub_bound_static() {
test_env(EMPTY_SOURCE_STR, errors(&[]), |env| {
let t_rptr_bound1 = env.t_rptr_late_bound(1);
let t_rptr_static = env.t_rptr_static();
env.check_lub(env.t_fn(&[t_rptr_bound1], env.tcx().types.int),
env.t_fn(&[t_rptr_static], env.tcx().types.int),
env.t_fn(&[t_rptr_static], env.tcx().types.int));
})
}
#[test]
fn lub_bound_bound_inverse_order() {
test_env(EMPTY_SOURCE_STR, errors(&[]), |env| {
let t_rptr_bound1 = env.t_rptr_late_bound(1);
let t_rptr_bound2 = env.t_rptr_late_bound(2);
env.check_lub(env.t_fn(&[t_rptr_bound1, t_rptr_bound2], t_rptr_bound1),
env.t_fn(&[t_rptr_bound2, t_rptr_bound1], t_rptr_bound1),
env.t_fn(&[t_rptr_bound1, t_rptr_bound1], t_rptr_bound1));
})
}
#[test]
fn lub_free_free() {
test_env(EMPTY_SOURCE_STR, errors(&[]), |env| {
let t_rptr_free1 = env.t_rptr_free(0, 1);
let t_rptr_free2 = env.t_rptr_free(0, 2);
let t_rptr_static = env.t_rptr_static();
env.check_lub(env.t_fn(&[t_rptr_free1], env.tcx().types.int),
env.t_fn(&[t_rptr_free2], env.tcx().types.int),
env.t_fn(&[t_rptr_static], env.tcx().types.int));
})
}
#[test]
fn lub_returning_scope() {
test_env(EMPTY_SOURCE_STR,
errors(&["cannot infer an appropriate lifetime"]), |env| {
let t_rptr_scope10 = env.t_rptr_scope(10);
let t_rptr_scope11 = env.t_rptr_scope(11);
// this should generate an error when regions are resolved
env.make_lub_ty(env.t_fn(&[], t_rptr_scope10),
env.t_fn(&[], t_rptr_scope11));
})
}
#[test]
fn glb_free_free_with_common_scope() {
test_env(EMPTY_SOURCE_STR, errors(&[]), |env| {
let t_rptr_free1 = env.t_rptr_free(0, 1);
let t_rptr_free2 = env.t_rptr_free(0, 2);
let t_rptr_scope = env.t_rptr_scope(0);
env.check_glb(env.t_fn(&[t_rptr_free1], env.tcx().types.int),
env.t_fn(&[t_rptr_free2], env.tcx().types.int),
env.t_fn(&[t_rptr_scope], env.tcx().types.int));
})
}
#[test]
fn glb_bound_bound() {
test_env(EMPTY_SOURCE_STR, errors(&[]), |env| {
let t_rptr_bound1 = env.t_rptr_late_bound(1);
let t_rptr_bound2 = env.t_rptr_late_bound(2);
env.check_glb(env.t_fn(&[t_rptr_bound1], env.tcx().types.int),
env.t_fn(&[t_rptr_bound2], env.tcx().types.int),
env.t_fn(&[t_rptr_bound1], env.tcx().types.int));
})
}
#[test]
fn glb_bound_free() {
test_env(EMPTY_SOURCE_STR, errors(&[]), |env| {
let t_rptr_bound1 = env.t_rptr_late_bound(1);
let t_rptr_free1 = env.t_rptr_free(0, 1);
env.check_glb(env.t_fn(&[t_rptr_bound1], env.tcx().types.int),
env.t_fn(&[t_rptr_free1], env.tcx().types.int),
env.t_fn(&[t_rptr_bound1], env.tcx().types.int));
})
}
#[test]
fn glb_bound_free_infer() {
test_env(EMPTY_SOURCE_STR, errors(&[]), |env| {
let t_rptr_bound1 = env.t_rptr_late_bound(1);
let t_infer1 = env.infcx.next_ty_var();
// compute GLB(fn(_) -> int, for<'b> fn(&'b int) -> int),
// which should yield for<'b> fn(&'b int) -> int
env.check_glb(env.t_fn(&[t_rptr_bound1], env.tcx().types.int),
env.t_fn(&[t_infer1], env.tcx().types.int),
env.t_fn(&[t_rptr_bound1], env.tcx().types.int));
// as a side-effect, computing GLB should unify `_` with
// `&'_ int`
let t_resolve1 = env.infcx.shallow_resolve(t_infer1);
match t_resolve1.sty {
ty::ty_rptr(..) => { }
_ => { panic!("t_resolve1={}", t_resolve1.repr(env.infcx.tcx)); }
}
})
}
#[test]
fn glb_bound_static() {
test_env(EMPTY_SOURCE_STR, errors(&[]), |env| {
let t_rptr_bound1 = env.t_rptr_late_bound(1);
let t_rptr_static = env.t_rptr_static();
env.check_glb(env.t_fn(&[t_rptr_bound1], env.tcx().types.int),
env.t_fn(&[t_rptr_static], env.tcx().types.int),
env.t_fn(&[t_rptr_bound1], env.tcx().types.int));
})
}
/// Test substituting a bound region into a function, which introduces another level of binding.
/// This requires adjusting the Debruijn index.
#[test]
fn subst_ty_renumber_bound() {
test_env(EMPTY_SOURCE_STR, errors(&[]), |env| {
// Situation:
// Theta = [A -> &'a foo]
let t_rptr_bound1 = env.t_rptr_late_bound(1);
// t_source = fn(A)
let t_source = {
let t_param = env.t_param(subst::TypeSpace, 0);
env.t_fn(&[t_param], env.t_nil())
};
let substs = subst::Substs::new_type(vec![t_rptr_bound1], vec![]);
let t_substituted = t_source.subst(env.infcx.tcx, &substs);
// t_expected = fn(&'a int)
let t_expected = {
let t_ptr_bound2 = env.t_rptr_late_bound_with_debruijn(1, ty::DebruijnIndex::new(2));
env.t_fn(&[t_ptr_bound2], env.t_nil())
};
debug!("subst_bound: t_source={} substs={} t_substituted={} t_expected={}",
t_source.repr(env.infcx.tcx),
substs.repr(env.infcx.tcx),
t_substituted.repr(env.infcx.tcx),
t_expected.repr(env.infcx.tcx));
assert_eq!(t_substituted, t_expected);
})
}
/// Test substituting a bound region into a function, which introduces another level of binding.
/// This requires adjusting the Debruijn index.
#[test]
fn subst_ty_renumber_some_bounds() {
test_env(EMPTY_SOURCE_STR, errors(&[]), |env| {
// Situation:
// Theta = [A -> &'a foo]
let t_rptr_bound1 = env.t_rptr_late_bound(1);
// t_source = (A, fn(A))
let t_source = {
let t_param = env.t_param(subst::TypeSpace, 0);
env.t_pair(t_param, env.t_fn(&[t_param], env.t_nil()))
};
let substs = subst::Substs::new_type(vec![t_rptr_bound1], vec![]);
let t_substituted = t_source.subst(env.infcx.tcx, &substs);
// t_expected = (&'a int, fn(&'a int))
//
// but not that the Debruijn index is different in the different cases.
let t_expected = {
let t_rptr_bound2 = env.t_rptr_late_bound_with_debruijn(1, ty::DebruijnIndex::new(2));
env.t_pair(t_rptr_bound1, env.t_fn(&[t_rptr_bound2], env.t_nil()))
};
debug!("subst_bound: t_source={} substs={} t_substituted={} t_expected={}",
t_source.repr(env.infcx.tcx),
substs.repr(env.infcx.tcx),
t_substituted.repr(env.infcx.tcx),
t_expected.repr(env.infcx.tcx));
assert_eq!(t_substituted, t_expected);
})
}
/// Test that we correctly compute whether a type has escaping regions or not.
#[test]
fn escaping() {
test_env(EMPTY_SOURCE_STR, errors(&[]), |env| {
// Situation:
// Theta = [A -> &'a foo]
assert!(!ty::type_has_escaping_regions(env.t_nil()));
let t_rptr_free1 = env.t_rptr_free(0, 1);
assert!(!ty::type_has_escaping_regions(t_rptr_free1));
let t_rptr_bound1 = env.t_rptr_late_bound_with_debruijn(1, ty::DebruijnIndex::new(1));
assert!(ty::type_has_escaping_regions(t_rptr_bound1));
let t_rptr_bound2 = env.t_rptr_late_bound_with_debruijn(1, ty::DebruijnIndex::new(2));
assert!(ty::type_has_escaping_regions(t_rptr_bound2));
// t_fn = fn(A)
let t_param = env.t_param(subst::TypeSpace, 0);
assert!(!ty::type_has_escaping_regions(t_param));
let t_fn = env.t_fn(&[t_param], env.t_nil());
assert!(!ty::type_has_escaping_regions(t_fn));
// t_fn = |&int|+'a
let t_fn = env.t_closure(&[t_rptr_bound1], env.t_nil(), env.re_free(0, 1));
assert!(!ty::type_has_escaping_regions(t_fn));
// t_fn = |&int|+'a (where &int has depth 2)
let t_fn = env.t_closure(&[t_rptr_bound2], env.t_nil(), env.re_free(0, 1));
assert!(ty::type_has_escaping_regions(t_fn));
// t_fn = |&int|+&int
let t_fn = env.t_closure(&[t_rptr_bound1], env.t_nil(),
env.re_late_bound_with_debruijn(1, ty::DebruijnIndex::new(1)));
assert!(ty::type_has_escaping_regions(t_fn));
})
}
/// Test applying a substitution where the value being substituted for an early-bound region is a
/// late-bound region.
#[test]
fn subst_region_renumber_region() {
test_env(EMPTY_SOURCE_STR, errors(&[]), |env| {
let re_bound1 = env.re_late_bound_with_debruijn(1, ty::DebruijnIndex::new(1));
// type t_source<'a> = fn(&'a int)
let t_source = {
let re_early = env.re_early_bound(subst::TypeSpace, 0, "'a");
env.t_fn(&[env.t_rptr(re_early)], env.t_nil())
};
let substs = subst::Substs::new_type(vec![], vec![re_bound1]);
let t_substituted = t_source.subst(env.infcx.tcx, &substs);
// t_expected = fn(&'a int)
//
// but not that the Debruijn index is different in the different cases.
let t_expected = {
let t_rptr_bound2 = env.t_rptr_late_bound_with_debruijn(1, ty::DebruijnIndex::new(2));
env.t_fn(&[t_rptr_bound2], env.t_nil())
};
debug!("subst_bound: t_source={} substs={} t_substituted={} t_expected={}",
t_source.repr(env.infcx.tcx),
substs.repr(env.infcx.tcx),
t_substituted.repr(env.infcx.tcx),
t_expected.repr(env.infcx.tcx));
assert_eq!(t_substituted, t_expected);
})
}