2027 lines
64 KiB
Rust
2027 lines
64 KiB
Rust
// Copyright 2013-2014 The Rust Project Developers. See the COPYRIGHT
|
|
// file at the top-level directory of this distribution and at
|
|
// http://rust-lang.org/COPYRIGHT.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
|
|
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
|
|
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
|
|
// option. This file may not be copied, modified, or distributed
|
|
// except according to those terms.
|
|
|
|
//! Communication primitives for concurrent tasks
|
|
//!
|
|
//! Rust makes it very difficult to share data among tasks to prevent race
|
|
//! conditions and to improve parallelism, but there is often a need for
|
|
//! communication between concurrent tasks. The primitives defined in this
|
|
//! module are the building blocks for synchronization in rust.
|
|
//!
|
|
//! This module provides message-based communication over channels, concretely
|
|
//! defined among three types:
|
|
//!
|
|
//! * `Sender`
|
|
//! * `SyncSender`
|
|
//! * `Receiver`
|
|
//!
|
|
//! A `Sender` or `SyncSender` is used to send data to a `Receiver`. Both
|
|
//! senders are clone-able such that many tasks can send simultaneously to one
|
|
//! receiver. These channels are *task blocking*, not *thread blocking*. This
|
|
//! means that if one task is blocked on a channel, other tasks can continue to
|
|
//! make progress.
|
|
//!
|
|
//! Rust channels come in one of two flavors:
|
|
//!
|
|
//! 1. An asynchronous, infinitely buffered channel. The `channel()` function
|
|
//! will return a `(Sender, Receiver)` tuple where all sends will be
|
|
//! **asynchronous** (they never block). The channel conceptually has an
|
|
//! infinite buffer.
|
|
//!
|
|
//! 2. A synchronous, bounded channel. The `sync_channel()` function will return
|
|
//! a `(SyncSender, Receiver)` tuple where the storage for pending messages
|
|
//! is a pre-allocated buffer of a fixed size. All sends will be
|
|
//! **synchronous** by blocking until there is buffer space available. Note
|
|
//! that a bound of 0 is allowed, causing the channel to become a
|
|
//! "rendezvous" channel where each sender atomically hands off a message to
|
|
//! a receiver.
|
|
//!
|
|
//! ## Failure Propagation
|
|
//!
|
|
//! In addition to being a core primitive for communicating in rust, channels
|
|
//! are the points at which failure is propagated among tasks. Whenever the one
|
|
//! half of channel is closed, the other half will have its next operation
|
|
//! `fail!`. The purpose of this is to allow propagation of failure among tasks
|
|
//! that are linked to one another via channels.
|
|
//!
|
|
//! There are methods on both of senders and receivers to perform their
|
|
//! respective operations without failing, however.
|
|
//!
|
|
//! ## Runtime Requirements
|
|
//!
|
|
//! The channel types defined in this module generally have very few runtime
|
|
//! requirements in order to operate. The major requirement they have is for a
|
|
//! local rust `Task` to be available if any *blocking* operation is performed.
|
|
//!
|
|
//! If a local `Task` is not available (for example an FFI callback), then the
|
|
//! `send` operation is safe on a `Sender` (as well as a `send_opt`) as well as
|
|
//! the `try_send` method on a `SyncSender`, but no other operations are
|
|
//! guaranteed to be safe.
|
|
//!
|
|
//! Additionally, channels can interoperate between runtimes. If one task in a
|
|
//! program is running on libnative and another is running on libgreen, they can
|
|
//! still communicate with one another using channels.
|
|
//!
|
|
//! # Example
|
|
//!
|
|
//! Simple usage:
|
|
//!
|
|
//! ```
|
|
//! // Create a simple streaming channel
|
|
//! let (tx, rx) = channel();
|
|
//! spawn(proc() {
|
|
//! tx.send(10);
|
|
//! });
|
|
//! assert_eq!(rx.recv(), 10);
|
|
//! ```
|
|
//!
|
|
//! Shared usage:
|
|
//!
|
|
//! ```
|
|
//! // Create a shared channel which can be sent along from many tasks
|
|
//! let (tx, rx) = channel();
|
|
//! for i in range(0, 10) {
|
|
//! let tx = tx.clone();
|
|
//! spawn(proc() {
|
|
//! tx.send(i);
|
|
//! })
|
|
//! }
|
|
//!
|
|
//! for _ in range(0, 10) {
|
|
//! let j = rx.recv();
|
|
//! assert!(0 <= j && j < 10);
|
|
//! }
|
|
//! ```
|
|
//!
|
|
//! Propagating failure:
|
|
//!
|
|
//! ```should_fail
|
|
//! // The call to recv() will fail!() because the channel has already hung
|
|
//! // up (or been deallocated)
|
|
//! let (tx, rx) = channel::<int>();
|
|
//! drop(tx);
|
|
//! rx.recv();
|
|
//! ```
|
|
//!
|
|
//! Synchronous channels:
|
|
//!
|
|
//! ```
|
|
//! let (tx, rx) = sync_channel(0);
|
|
//! spawn(proc() {
|
|
//! // This will wait for the parent task to start receiving
|
|
//! tx.send(53);
|
|
//! });
|
|
//! rx.recv();
|
|
//! ```
|
|
|
|
// A description of how Rust's channel implementation works
|
|
//
|
|
// Channels are supposed to be the basic building block for all other
|
|
// concurrent primitives that are used in Rust. As a result, the channel type
|
|
// needs to be highly optimized, flexible, and broad enough for use everywhere.
|
|
//
|
|
// The choice of implementation of all channels is to be built on lock-free data
|
|
// structures. The channels themselves are then consequently also lock-free data
|
|
// structures. As always with lock-free code, this is a very "here be dragons"
|
|
// territory, especially because I'm unaware of any academic papers which have
|
|
// gone into great length about channels of these flavors.
|
|
//
|
|
// ## Flavors of channels
|
|
//
|
|
// From the perspective of a consumer of this library, there is only one flavor
|
|
// of channel. This channel can be used as a stream and cloned to allow multiple
|
|
// senders. Under the hood, however, there are actually three flavors of
|
|
// channels in play.
|
|
//
|
|
// * Oneshots - these channels are highly optimized for the one-send use case.
|
|
// They contain as few atomics as possible and involve one and
|
|
// exactly one allocation.
|
|
// * Streams - these channels are optimized for the non-shared use case. They
|
|
// use a different concurrent queue which is more tailored for this
|
|
// use case. The initial allocation of this flavor of channel is not
|
|
// optimized.
|
|
// * Shared - this is the most general form of channel that this module offers,
|
|
// a channel with multiple senders. This type is as optimized as it
|
|
// can be, but the previous two types mentioned are much faster for
|
|
// their use-cases.
|
|
//
|
|
// ## Concurrent queues
|
|
//
|
|
// The basic idea of Rust's Sender/Receiver types is that send() never blocks, but
|
|
// recv() obviously blocks. This means that under the hood there must be some
|
|
// shared and concurrent queue holding all of the actual data.
|
|
//
|
|
// With two flavors of channels, two flavors of queues are also used. We have
|
|
// chosen to use queues from a well-known author which are abbreviated as SPSC
|
|
// and MPSC (single producer, single consumer and multiple producer, single
|
|
// consumer). SPSC queues are used for streams while MPSC queues are used for
|
|
// shared channels.
|
|
//
|
|
// ### SPSC optimizations
|
|
//
|
|
// The SPSC queue found online is essentially a linked list of nodes where one
|
|
// half of the nodes are the "queue of data" and the other half of nodes are a
|
|
// cache of unused nodes. The unused nodes are used such that an allocation is
|
|
// not required on every push() and a free doesn't need to happen on every
|
|
// pop().
|
|
//
|
|
// As found online, however, the cache of nodes is of an infinite size. This
|
|
// means that if a channel at one point in its life had 50k items in the queue,
|
|
// then the queue will always have the capacity for 50k items. I believed that
|
|
// this was an unnecessary limitation of the implementation, so I have altered
|
|
// the queue to optionally have a bound on the cache size.
|
|
//
|
|
// By default, streams will have an unbounded SPSC queue with a small-ish cache
|
|
// size. The hope is that the cache is still large enough to have very fast
|
|
// send() operations while not too large such that millions of channels can
|
|
// coexist at once.
|
|
//
|
|
// ### MPSC optimizations
|
|
//
|
|
// Right now the MPSC queue has not been optimized. Like the SPSC queue, it uses
|
|
// a linked list under the hood to earn its unboundedness, but I have not put
|
|
// forth much effort into having a cache of nodes similar to the SPSC queue.
|
|
//
|
|
// For now, I believe that this is "ok" because shared channels are not the most
|
|
// common type, but soon we may wish to revisit this queue choice and determine
|
|
// another candidate for backend storage of shared channels.
|
|
//
|
|
// ## Overview of the Implementation
|
|
//
|
|
// Now that there's a little background on the concurrent queues used, it's
|
|
// worth going into much more detail about the channels themselves. The basic
|
|
// pseudocode for a send/recv are:
|
|
//
|
|
//
|
|
// send(t) recv()
|
|
// queue.push(t) return if queue.pop()
|
|
// if increment() == -1 deschedule {
|
|
// wakeup() if decrement() > 0
|
|
// cancel_deschedule()
|
|
// }
|
|
// queue.pop()
|
|
//
|
|
// As mentioned before, there are no locks in this implementation, only atomic
|
|
// instructions are used.
|
|
//
|
|
// ### The internal atomic counter
|
|
//
|
|
// Every channel has a shared counter with each half to keep track of the size
|
|
// of the queue. This counter is used to abort descheduling by the receiver and
|
|
// to know when to wake up on the sending side.
|
|
//
|
|
// As seen in the pseudocode, senders will increment this count and receivers
|
|
// will decrement the count. The theory behind this is that if a sender sees a
|
|
// -1 count, it will wake up the receiver, and if the receiver sees a 1+ count,
|
|
// then it doesn't need to block.
|
|
//
|
|
// The recv() method has a beginning call to pop(), and if successful, it needs
|
|
// to decrement the count. It is a crucial implementation detail that this
|
|
// decrement does *not* happen to the shared counter. If this were the case,
|
|
// then it would be possible for the counter to be very negative when there were
|
|
// no receivers waiting, in which case the senders would have to determine when
|
|
// it was actually appropriate to wake up a receiver.
|
|
//
|
|
// Instead, the "steal count" is kept track of separately (not atomically
|
|
// because it's only used by receivers), and then the decrement() call when
|
|
// descheduling will lump in all of the recent steals into one large decrement.
|
|
//
|
|
// The implication of this is that if a sender sees a -1 count, then there's
|
|
// guaranteed to be a waiter waiting!
|
|
//
|
|
// ## Native Implementation
|
|
//
|
|
// A major goal of these channels is to work seamlessly on and off the runtime.
|
|
// All of the previous race conditions have been worded in terms of
|
|
// scheduler-isms (which is obviously not available without the runtime).
|
|
//
|
|
// For now, native usage of channels (off the runtime) will fall back onto
|
|
// mutexes/cond vars for descheduling/atomic decisions. The no-contention path
|
|
// is still entirely lock-free, the "deschedule" blocks above are surrounded by
|
|
// a mutex and the "wakeup" blocks involve grabbing a mutex and signaling on a
|
|
// condition variable.
|
|
//
|
|
// ## Select
|
|
//
|
|
// Being able to support selection over channels has greatly influenced this
|
|
// design, and not only does selection need to work inside the runtime, but also
|
|
// outside the runtime.
|
|
//
|
|
// The implementation is fairly straightforward. The goal of select() is not to
|
|
// return some data, but only to return which channel can receive data without
|
|
// blocking. The implementation is essentially the entire blocking procedure
|
|
// followed by an increment as soon as its woken up. The cancellation procedure
|
|
// involves an increment and swapping out of to_wake to acquire ownership of the
|
|
// task to unblock.
|
|
//
|
|
// Sadly this current implementation requires multiple allocations, so I have
|
|
// seen the throughput of select() be much worse than it should be. I do not
|
|
// believe that there is anything fundamental which needs to change about these
|
|
// channels, however, in order to support a more efficient select().
|
|
//
|
|
// # Conclusion
|
|
//
|
|
// And now that you've seen all the races that I found and attempted to fix,
|
|
// here's the code for you to find some more!
|
|
|
|
use cell::Cell;
|
|
use clone::Clone;
|
|
use iter::Iterator;
|
|
use kinds::Send;
|
|
use kinds::marker;
|
|
use mem;
|
|
use ops::Drop;
|
|
use option::{Some, None, Option};
|
|
use owned::Box;
|
|
use result::{Ok, Err, Result};
|
|
use rt::local::Local;
|
|
use rt::task::{Task, BlockedTask};
|
|
use sync::arc::UnsafeArc;
|
|
use ty::Unsafe;
|
|
|
|
pub use comm::select::{Select, Handle};
|
|
|
|
macro_rules! test (
|
|
{ fn $name:ident() $b:block $(#[$a:meta])*} => (
|
|
mod $name {
|
|
#![allow(unused_imports)]
|
|
|
|
use native;
|
|
use comm::*;
|
|
use prelude::*;
|
|
use super::*;
|
|
use super::super::*;
|
|
use owned::Box;
|
|
use task;
|
|
|
|
fn f() $b
|
|
|
|
$(#[$a])* #[test] fn uv() { f() }
|
|
$(#[$a])* #[test] fn native() {
|
|
use native;
|
|
let (tx, rx) = channel();
|
|
native::task::spawn(proc() { tx.send(f()) });
|
|
rx.recv();
|
|
}
|
|
}
|
|
)
|
|
)
|
|
|
|
mod select;
|
|
mod oneshot;
|
|
mod stream;
|
|
mod shared;
|
|
mod sync;
|
|
|
|
// Use a power of 2 to allow LLVM to optimize to something that's not a
|
|
// division, this is hit pretty regularly.
|
|
static RESCHED_FREQ: int = 256;
|
|
|
|
/// The receiving-half of Rust's channel type. This half can only be owned by
|
|
/// one task
|
|
pub struct Receiver<T> {
|
|
inner: Unsafe<Flavor<T>>,
|
|
receives: Cell<uint>,
|
|
// can't share in an arc
|
|
marker: marker::NoShare,
|
|
}
|
|
|
|
/// An iterator over messages on a receiver, this iterator will block
|
|
/// whenever `next` is called, waiting for a new message, and `None` will be
|
|
/// returned when the corresponding channel has hung up.
|
|
pub struct Messages<'a, T> {
|
|
rx: &'a Receiver<T>
|
|
}
|
|
|
|
/// The sending-half of Rust's asynchronous channel type. This half can only be
|
|
/// owned by one task, but it can be cloned to send to other tasks.
|
|
pub struct Sender<T> {
|
|
inner: Unsafe<Flavor<T>>,
|
|
sends: Cell<uint>,
|
|
// can't share in an arc
|
|
marker: marker::NoShare,
|
|
}
|
|
|
|
/// The sending-half of Rust's synchronous channel type. This half can only be
|
|
/// owned by one task, but it can be cloned to send to other tasks.
|
|
pub struct SyncSender<T> {
|
|
inner: UnsafeArc<sync::Packet<T>>,
|
|
// can't share in an arc
|
|
marker: marker::NoShare,
|
|
}
|
|
|
|
/// This enumeration is the list of the possible reasons that try_recv could not
|
|
/// return data when called.
|
|
#[deriving(Eq, Clone, Show)]
|
|
pub enum TryRecvError {
|
|
/// This channel is currently empty, but the sender(s) have not yet
|
|
/// disconnected, so data may yet become available.
|
|
Empty,
|
|
/// This channel's sending half has become disconnected, and there will
|
|
/// never be any more data received on this channel
|
|
Disconnected,
|
|
}
|
|
|
|
/// This enumeration is the list of the possible error outcomes for the
|
|
/// `SyncSender::try_send` method.
|
|
#[deriving(Eq, Clone, Show)]
|
|
pub enum TrySendError<T> {
|
|
/// The data could not be sent on the channel because it would require that
|
|
/// the callee block to send the data.
|
|
///
|
|
/// If this is a buffered channel, then the buffer is full at this time. If
|
|
/// this is not a buffered channel, then there is no receiver available to
|
|
/// acquire the data.
|
|
Full(T),
|
|
/// This channel's receiving half has disconnected, so the data could not be
|
|
/// sent. The data is returned back to the callee in this case.
|
|
RecvDisconnected(T),
|
|
}
|
|
|
|
enum Flavor<T> {
|
|
Oneshot(UnsafeArc<oneshot::Packet<T>>),
|
|
Stream(UnsafeArc<stream::Packet<T>>),
|
|
Shared(UnsafeArc<shared::Packet<T>>),
|
|
Sync(UnsafeArc<sync::Packet<T>>),
|
|
}
|
|
|
|
#[doc(hidden)]
|
|
trait UnsafeFlavor<T> {
|
|
fn inner_unsafe<'a>(&'a self) -> &'a Unsafe<Flavor<T>>;
|
|
unsafe fn mut_inner<'a>(&'a self) -> &'a mut Flavor<T> {
|
|
&mut *self.inner_unsafe().get()
|
|
}
|
|
unsafe fn inner<'a>(&'a self) -> &'a Flavor<T> {
|
|
&*self.inner_unsafe().get()
|
|
}
|
|
}
|
|
impl<T> UnsafeFlavor<T> for Sender<T> {
|
|
fn inner_unsafe<'a>(&'a self) -> &'a Unsafe<Flavor<T>> {
|
|
&self.inner
|
|
}
|
|
}
|
|
impl<T> UnsafeFlavor<T> for Receiver<T> {
|
|
fn inner_unsafe<'a>(&'a self) -> &'a Unsafe<Flavor<T>> {
|
|
&self.inner
|
|
}
|
|
}
|
|
|
|
/// Creates a new asynchronous channel, returning the sender/receiver halves.
|
|
///
|
|
/// All data sent on the sender will become available on the receiver, and no
|
|
/// send will block the calling task (this channel has an "infinite buffer").
|
|
///
|
|
/// # Example
|
|
///
|
|
/// ```
|
|
/// let (tx, rx) = channel();
|
|
///
|
|
/// // Spawn off an expensive computation
|
|
/// spawn(proc() {
|
|
/// # fn expensive_computation() {}
|
|
/// tx.send(expensive_computation());
|
|
/// });
|
|
///
|
|
/// // Do some useful work for awhile
|
|
///
|
|
/// // Let's see what that answer was
|
|
/// println!("{}", rx.recv());
|
|
/// ```
|
|
pub fn channel<T: Send>() -> (Sender<T>, Receiver<T>) {
|
|
let (a, b) = UnsafeArc::new2(oneshot::Packet::new());
|
|
(Sender::new(Oneshot(b)), Receiver::new(Oneshot(a)))
|
|
}
|
|
|
|
/// Creates a new synchronous, bounded channel.
|
|
///
|
|
/// Like asynchronous channels, the `Receiver` will block until a message
|
|
/// becomes available. These channels differ greatly in the semantics of the
|
|
/// sender from asynchronous channels, however.
|
|
///
|
|
/// This channel has an internal buffer on which messages will be queued. When
|
|
/// the internal buffer becomes full, future sends will *block* waiting for the
|
|
/// buffer to open up. Note that a buffer size of 0 is valid, in which case this
|
|
/// becomes "rendezvous channel" where each send will not return until a recv
|
|
/// is paired with it.
|
|
///
|
|
/// As with asynchronous channels, all senders will fail in `send` if the
|
|
/// `Receiver` has been destroyed.
|
|
///
|
|
/// # Example
|
|
///
|
|
/// ```
|
|
/// let (tx, rx) = sync_channel(1);
|
|
///
|
|
/// // this returns immediately
|
|
/// tx.send(1);
|
|
///
|
|
/// spawn(proc() {
|
|
/// // this will block until the previous message has been received
|
|
/// tx.send(2);
|
|
/// });
|
|
///
|
|
/// assert_eq!(rx.recv(), 1);
|
|
/// assert_eq!(rx.recv(), 2);
|
|
/// ```
|
|
pub fn sync_channel<T: Send>(bound: uint) -> (SyncSender<T>, Receiver<T>) {
|
|
let (a, b) = UnsafeArc::new2(sync::Packet::new(bound));
|
|
(SyncSender::new(a), Receiver::new(Sync(b)))
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Sender
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
impl<T: Send> Sender<T> {
|
|
fn new(inner: Flavor<T>) -> Sender<T> {
|
|
Sender { inner: Unsafe::new(inner), sends: Cell::new(0), marker: marker::NoShare }
|
|
}
|
|
|
|
/// Sends a value along this channel to be received by the corresponding
|
|
/// receiver.
|
|
///
|
|
/// Rust channels are infinitely buffered so this method will never block.
|
|
///
|
|
/// # Failure
|
|
///
|
|
/// This function will fail if the other end of the channel has hung up.
|
|
/// This means that if the corresponding receiver has fallen out of scope,
|
|
/// this function will trigger a fail message saying that a message is
|
|
/// being sent on a closed channel.
|
|
///
|
|
/// Note that if this function does *not* fail, it does not mean that the
|
|
/// data will be successfully received. All sends are placed into a queue,
|
|
/// so it is possible for a send to succeed (the other end is alive), but
|
|
/// then the other end could immediately disconnect.
|
|
///
|
|
/// The purpose of this functionality is to propagate failure among tasks.
|
|
/// If failure is not desired, then consider using the `send_opt` method
|
|
pub fn send(&self, t: T) {
|
|
if self.send_opt(t).is_err() {
|
|
fail!("sending on a closed channel");
|
|
}
|
|
}
|
|
|
|
/// Attempts to send a value on this channel, returning it back if it could
|
|
/// not be sent.
|
|
///
|
|
/// A successful send occurs when it is determined that the other end of
|
|
/// the channel has not hung up already. An unsuccessful send would be one
|
|
/// where the corresponding receiver has already been deallocated. Note
|
|
/// that a return value of `Err` means that the data will never be
|
|
/// received, but a return value of `Ok` does *not* mean that the data
|
|
/// will be received. It is possible for the corresponding receiver to
|
|
/// hang up immediately after this function returns `Ok`.
|
|
///
|
|
/// Like `send`, this method will never block.
|
|
///
|
|
/// # Failure
|
|
///
|
|
/// This method will never fail, it will return the message back to the
|
|
/// caller if the other end is disconnected
|
|
///
|
|
/// # Example
|
|
///
|
|
/// ```
|
|
/// let (tx, rx) = channel();
|
|
///
|
|
/// // This send is always successful
|
|
/// assert_eq!(tx.send_opt(1), Ok(()));
|
|
///
|
|
/// // This send will fail because the receiver is gone
|
|
/// drop(rx);
|
|
/// assert_eq!(tx.send_opt(1), Err(1));
|
|
/// ```
|
|
pub fn send_opt(&self, t: T) -> Result<(), T> {
|
|
// In order to prevent starvation of other tasks in situations where
|
|
// a task sends repeatedly without ever receiving, we occassionally
|
|
// yield instead of doing a send immediately.
|
|
//
|
|
// Don't unconditionally attempt to yield because the TLS overhead can
|
|
// be a bit much, and also use `try_take` instead of `take` because
|
|
// there's no reason that this send shouldn't be usable off the
|
|
// runtime.
|
|
let cnt = self.sends.get() + 1;
|
|
self.sends.set(cnt);
|
|
if cnt % (RESCHED_FREQ as uint) == 0 {
|
|
let task: Option<Box<Task>> = Local::try_take();
|
|
task.map(|t| t.maybe_yield());
|
|
}
|
|
|
|
let (new_inner, ret) = match *unsafe { self.inner() } {
|
|
Oneshot(ref p) => {
|
|
let p = p.get();
|
|
unsafe {
|
|
if !(*p).sent() {
|
|
return (*p).send(t);
|
|
} else {
|
|
let (a, b) = UnsafeArc::new2(stream::Packet::new());
|
|
match (*p).upgrade(Receiver::new(Stream(b))) {
|
|
oneshot::UpSuccess => {
|
|
let ret = (*a.get()).send(t);
|
|
(a, ret)
|
|
}
|
|
oneshot::UpDisconnected => (a, Err(t)),
|
|
oneshot::UpWoke(task) => {
|
|
// This send cannot fail because the task is
|
|
// asleep (we're looking at it), so the receiver
|
|
// can't go away.
|
|
(*a.get()).send(t).ok().unwrap();
|
|
task.wake().map(|t| t.reawaken());
|
|
(a, Ok(()))
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
Stream(ref p) => return unsafe { (*p.get()).send(t) },
|
|
Shared(ref p) => return unsafe { (*p.get()).send(t) },
|
|
Sync(..) => unreachable!(),
|
|
};
|
|
|
|
unsafe {
|
|
let tmp = Sender::new(Stream(new_inner));
|
|
mem::swap(self.mut_inner(), tmp.mut_inner());
|
|
}
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
impl<T: Send> Clone for Sender<T> {
|
|
fn clone(&self) -> Sender<T> {
|
|
let (packet, sleeper) = match *unsafe { self.inner() } {
|
|
Oneshot(ref p) => {
|
|
let (a, b) = UnsafeArc::new2(shared::Packet::new());
|
|
match unsafe { (*p.get()).upgrade(Receiver::new(Shared(a))) } {
|
|
oneshot::UpSuccess | oneshot::UpDisconnected => (b, None),
|
|
oneshot::UpWoke(task) => (b, Some(task))
|
|
}
|
|
}
|
|
Stream(ref p) => {
|
|
let (a, b) = UnsafeArc::new2(shared::Packet::new());
|
|
match unsafe { (*p.get()).upgrade(Receiver::new(Shared(a))) } {
|
|
stream::UpSuccess | stream::UpDisconnected => (b, None),
|
|
stream::UpWoke(task) => (b, Some(task)),
|
|
}
|
|
}
|
|
Shared(ref p) => {
|
|
unsafe { (*p.get()).clone_chan(); }
|
|
return Sender::new(Shared(p.clone()));
|
|
}
|
|
Sync(..) => unreachable!(),
|
|
};
|
|
|
|
unsafe {
|
|
(*packet.get()).inherit_blocker(sleeper);
|
|
|
|
let tmp = Sender::new(Shared(packet.clone()));
|
|
mem::swap(self.mut_inner(), tmp.mut_inner());
|
|
}
|
|
Sender::new(Shared(packet))
|
|
}
|
|
}
|
|
|
|
#[unsafe_destructor]
|
|
impl<T: Send> Drop for Sender<T> {
|
|
fn drop(&mut self) {
|
|
match *unsafe { self.mut_inner() } {
|
|
Oneshot(ref mut p) => unsafe { (*p.get()).drop_chan(); },
|
|
Stream(ref mut p) => unsafe { (*p.get()).drop_chan(); },
|
|
Shared(ref mut p) => unsafe { (*p.get()).drop_chan(); },
|
|
Sync(..) => unreachable!(),
|
|
}
|
|
}
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// SyncSender
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
impl<T: Send> SyncSender<T> {
|
|
fn new(inner: UnsafeArc<sync::Packet<T>>) -> SyncSender<T> {
|
|
SyncSender { inner: inner, marker: marker::NoShare }
|
|
}
|
|
|
|
/// Sends a value on this synchronous channel.
|
|
///
|
|
/// This function will *block* until space in the internal buffer becomes
|
|
/// available or a receiver is available to hand off the message to.
|
|
///
|
|
/// Note that a successful send does *not* guarantee that the receiver will
|
|
/// ever see the data if there is a buffer on this channel. Messages may be
|
|
/// enqueued in the internal buffer for the receiver to receive at a later
|
|
/// time. If the buffer size is 0, however, it can be guaranteed that the
|
|
/// receiver has indeed received the data if this function returns success.
|
|
///
|
|
/// # Failure
|
|
///
|
|
/// Similarly to `Sender::send`, this function will fail if the
|
|
/// corresponding `Receiver` for this channel has disconnected. This
|
|
/// behavior is used to propagate failure among tasks.
|
|
///
|
|
/// If failure is not desired, you can achieve the same semantics with the
|
|
/// `SyncSender::send_opt` method which will not fail if the receiver
|
|
/// disconnects.
|
|
pub fn send(&self, t: T) {
|
|
if self.send_opt(t).is_err() {
|
|
fail!("sending on a closed channel");
|
|
}
|
|
}
|
|
|
|
/// Send a value on a channel, returning it back if the receiver
|
|
/// disconnected
|
|
///
|
|
/// This method will *block* to send the value `t` on the channel, but if
|
|
/// the value could not be sent due to the receiver disconnecting, the value
|
|
/// is returned back to the callee. This function is similar to `try_send`,
|
|
/// except that it will block if the channel is currently full.
|
|
///
|
|
/// # Failure
|
|
///
|
|
/// This function cannot fail.
|
|
pub fn send_opt(&self, t: T) -> Result<(), T> {
|
|
unsafe { (*self.inner.get()).send(t) }
|
|
}
|
|
|
|
/// Attempts to send a value on this channel without blocking.
|
|
///
|
|
/// This method differs from `send_opt` by returning immediately if the
|
|
/// channel's buffer is full or no receiver is waiting to acquire some
|
|
/// data. Compared with `send_opt`, this function has two failure cases
|
|
/// instead of one (one for disconnection, one for a full buffer).
|
|
///
|
|
/// See `SyncSender::send` for notes about guarantees of whether the
|
|
/// receiver has received the data or not if this function is successful.
|
|
///
|
|
/// # Failure
|
|
///
|
|
/// This function cannot fail
|
|
pub fn try_send(&self, t: T) -> Result<(), TrySendError<T>> {
|
|
unsafe { (*self.inner.get()).try_send(t) }
|
|
}
|
|
}
|
|
|
|
impl<T: Send> Clone for SyncSender<T> {
|
|
fn clone(&self) -> SyncSender<T> {
|
|
unsafe { (*self.inner.get()).clone_chan(); }
|
|
return SyncSender::new(self.inner.clone());
|
|
}
|
|
}
|
|
|
|
#[unsafe_destructor]
|
|
impl<T: Send> Drop for SyncSender<T> {
|
|
fn drop(&mut self) {
|
|
unsafe { (*self.inner.get()).drop_chan(); }
|
|
}
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Receiver
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
impl<T: Send> Receiver<T> {
|
|
fn new(inner: Flavor<T>) -> Receiver<T> {
|
|
Receiver { inner: Unsafe::new(inner), receives: Cell::new(0), marker: marker::NoShare }
|
|
}
|
|
|
|
/// Blocks waiting for a value on this receiver
|
|
///
|
|
/// This function will block if necessary to wait for a corresponding send
|
|
/// on the channel from its paired `Sender` structure. This receiver will
|
|
/// be woken up when data is ready, and the data will be returned.
|
|
///
|
|
/// # Failure
|
|
///
|
|
/// Similar to channels, this method will trigger a task failure if the
|
|
/// other end of the channel has hung up (been deallocated). The purpose of
|
|
/// this is to propagate failure among tasks.
|
|
///
|
|
/// If failure is not desired, then there are two options:
|
|
///
|
|
/// * If blocking is still desired, the `recv_opt` method will return `None`
|
|
/// when the other end hangs up
|
|
///
|
|
/// * If blocking is not desired, then the `try_recv` method will attempt to
|
|
/// peek at a value on this receiver.
|
|
pub fn recv(&self) -> T {
|
|
match self.recv_opt() {
|
|
Ok(t) => t,
|
|
Err(()) => fail!("receiving on a closed channel"),
|
|
}
|
|
}
|
|
|
|
/// Attempts to return a pending value on this receiver without blocking
|
|
///
|
|
/// This method will never block the caller in order to wait for data to
|
|
/// become available. Instead, this will always return immediately with a
|
|
/// possible option of pending data on the channel.
|
|
///
|
|
/// This is useful for a flavor of "optimistic check" before deciding to
|
|
/// block on a receiver.
|
|
///
|
|
/// This function cannot fail.
|
|
pub fn try_recv(&self) -> Result<T, TryRecvError> {
|
|
// If a thread is spinning in try_recv, we should take the opportunity
|
|
// to reschedule things occasionally. See notes above in scheduling on
|
|
// sends for why this doesn't always hit TLS, and also for why this uses
|
|
// `try_take` instead of `take`.
|
|
let cnt = self.receives.get() + 1;
|
|
self.receives.set(cnt);
|
|
if cnt % (RESCHED_FREQ as uint) == 0 {
|
|
let task: Option<Box<Task>> = Local::try_take();
|
|
task.map(|t| t.maybe_yield());
|
|
}
|
|
|
|
loop {
|
|
let new_port = match *unsafe { self.inner() } {
|
|
Oneshot(ref p) => {
|
|
match unsafe { (*p.get()).try_recv() } {
|
|
Ok(t) => return Ok(t),
|
|
Err(oneshot::Empty) => return Err(Empty),
|
|
Err(oneshot::Disconnected) => return Err(Disconnected),
|
|
Err(oneshot::Upgraded(rx)) => rx,
|
|
}
|
|
}
|
|
Stream(ref p) => {
|
|
match unsafe { (*p.get()).try_recv() } {
|
|
Ok(t) => return Ok(t),
|
|
Err(stream::Empty) => return Err(Empty),
|
|
Err(stream::Disconnected) => return Err(Disconnected),
|
|
Err(stream::Upgraded(rx)) => rx,
|
|
}
|
|
}
|
|
Shared(ref p) => {
|
|
match unsafe { (*p.get()).try_recv() } {
|
|
Ok(t) => return Ok(t),
|
|
Err(shared::Empty) => return Err(Empty),
|
|
Err(shared::Disconnected) => return Err(Disconnected),
|
|
}
|
|
}
|
|
Sync(ref p) => {
|
|
match unsafe { (*p.get()).try_recv() } {
|
|
Ok(t) => return Ok(t),
|
|
Err(sync::Empty) => return Err(Empty),
|
|
Err(sync::Disconnected) => return Err(Disconnected),
|
|
}
|
|
}
|
|
};
|
|
unsafe {
|
|
mem::swap(self.mut_inner(),
|
|
new_port.mut_inner());
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Attempt to wait for a value on this receiver, but does not fail if the
|
|
/// corresponding channel has hung up.
|
|
///
|
|
/// This implementation of iterators for ports will always block if there is
|
|
/// not data available on the receiver, but it will not fail in the case
|
|
/// that the channel has been deallocated.
|
|
///
|
|
/// In other words, this function has the same semantics as the `recv`
|
|
/// method except for the failure aspect.
|
|
///
|
|
/// If the channel has hung up, then `Err` is returned. Otherwise `Ok` of
|
|
/// the value found on the receiver is returned.
|
|
pub fn recv_opt(&self) -> Result<T, ()> {
|
|
loop {
|
|
let new_port = match *unsafe { self.inner() } {
|
|
Oneshot(ref p) => {
|
|
match unsafe { (*p.get()).recv() } {
|
|
Ok(t) => return Ok(t),
|
|
Err(oneshot::Empty) => return unreachable!(),
|
|
Err(oneshot::Disconnected) => return Err(()),
|
|
Err(oneshot::Upgraded(rx)) => rx,
|
|
}
|
|
}
|
|
Stream(ref p) => {
|
|
match unsafe { (*p.get()).recv() } {
|
|
Ok(t) => return Ok(t),
|
|
Err(stream::Empty) => return unreachable!(),
|
|
Err(stream::Disconnected) => return Err(()),
|
|
Err(stream::Upgraded(rx)) => rx,
|
|
}
|
|
}
|
|
Shared(ref p) => {
|
|
match unsafe { (*p.get()).recv() } {
|
|
Ok(t) => return Ok(t),
|
|
Err(shared::Empty) => return unreachable!(),
|
|
Err(shared::Disconnected) => return Err(()),
|
|
}
|
|
}
|
|
Sync(ref p) => return unsafe { (*p.get()).recv() }
|
|
};
|
|
unsafe {
|
|
mem::swap(self.mut_inner(), new_port.mut_inner());
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Returns an iterator which will block waiting for messages, but never
|
|
/// `fail!`. It will return `None` when the channel has hung up.
|
|
pub fn iter<'a>(&'a self) -> Messages<'a, T> {
|
|
Messages { rx: self }
|
|
}
|
|
}
|
|
|
|
impl<T: Send> select::Packet for Receiver<T> {
|
|
fn can_recv(&self) -> bool {
|
|
loop {
|
|
let new_port = match *unsafe { self.inner() } {
|
|
Oneshot(ref p) => {
|
|
match unsafe { (*p.get()).can_recv() } {
|
|
Ok(ret) => return ret,
|
|
Err(upgrade) => upgrade,
|
|
}
|
|
}
|
|
Stream(ref p) => {
|
|
match unsafe { (*p.get()).can_recv() } {
|
|
Ok(ret) => return ret,
|
|
Err(upgrade) => upgrade,
|
|
}
|
|
}
|
|
Shared(ref p) => {
|
|
return unsafe { (*p.get()).can_recv() };
|
|
}
|
|
Sync(ref p) => {
|
|
return unsafe { (*p.get()).can_recv() };
|
|
}
|
|
};
|
|
unsafe {
|
|
mem::swap(self.mut_inner(),
|
|
new_port.mut_inner());
|
|
}
|
|
}
|
|
}
|
|
|
|
fn start_selection(&self, mut task: BlockedTask) -> Result<(), BlockedTask>{
|
|
loop {
|
|
let (t, new_port) = match *unsafe { self.inner() } {
|
|
Oneshot(ref p) => {
|
|
match unsafe { (*p.get()).start_selection(task) } {
|
|
oneshot::SelSuccess => return Ok(()),
|
|
oneshot::SelCanceled(task) => return Err(task),
|
|
oneshot::SelUpgraded(t, rx) => (t, rx),
|
|
}
|
|
}
|
|
Stream(ref p) => {
|
|
match unsafe { (*p.get()).start_selection(task) } {
|
|
stream::SelSuccess => return Ok(()),
|
|
stream::SelCanceled(task) => return Err(task),
|
|
stream::SelUpgraded(t, rx) => (t, rx),
|
|
}
|
|
}
|
|
Shared(ref p) => {
|
|
return unsafe { (*p.get()).start_selection(task) };
|
|
}
|
|
Sync(ref p) => {
|
|
return unsafe { (*p.get()).start_selection(task) };
|
|
}
|
|
};
|
|
task = t;
|
|
unsafe {
|
|
mem::swap(self.mut_inner(),
|
|
new_port.mut_inner());
|
|
}
|
|
}
|
|
}
|
|
|
|
fn abort_selection(&self) -> bool {
|
|
let mut was_upgrade = false;
|
|
loop {
|
|
let result = match *unsafe { self.inner() } {
|
|
Oneshot(ref p) => unsafe { (*p.get()).abort_selection() },
|
|
Stream(ref p) => unsafe {
|
|
(*p.get()).abort_selection(was_upgrade)
|
|
},
|
|
Shared(ref p) => return unsafe {
|
|
(*p.get()).abort_selection(was_upgrade)
|
|
},
|
|
Sync(ref p) => return unsafe {
|
|
(*p.get()).abort_selection()
|
|
},
|
|
};
|
|
let new_port = match result { Ok(b) => return b, Err(p) => p };
|
|
was_upgrade = true;
|
|
unsafe {
|
|
mem::swap(self.mut_inner(),
|
|
new_port.mut_inner());
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<'a, T: Send> Iterator<T> for Messages<'a, T> {
|
|
fn next(&mut self) -> Option<T> { self.rx.recv_opt().ok() }
|
|
}
|
|
|
|
#[unsafe_destructor]
|
|
impl<T: Send> Drop for Receiver<T> {
|
|
fn drop(&mut self) {
|
|
match *unsafe { self.mut_inner() } {
|
|
Oneshot(ref mut p) => unsafe { (*p.get()).drop_port(); },
|
|
Stream(ref mut p) => unsafe { (*p.get()).drop_port(); },
|
|
Shared(ref mut p) => unsafe { (*p.get()).drop_port(); },
|
|
Sync(ref mut p) => unsafe { (*p.get()).drop_port(); },
|
|
}
|
|
}
|
|
}
|
|
|
|
#[cfg(test)]
|
|
mod test {
|
|
use prelude::*;
|
|
|
|
use native;
|
|
use os;
|
|
use super::*;
|
|
|
|
pub fn stress_factor() -> uint {
|
|
match os::getenv("RUST_TEST_STRESS") {
|
|
Some(val) => from_str::<uint>(val).unwrap(),
|
|
None => 1,
|
|
}
|
|
}
|
|
|
|
test!(fn smoke() {
|
|
let (tx, rx) = channel();
|
|
tx.send(1);
|
|
assert_eq!(rx.recv(), 1);
|
|
})
|
|
|
|
test!(fn drop_full() {
|
|
let (tx, _rx) = channel();
|
|
tx.send(box 1);
|
|
})
|
|
|
|
test!(fn drop_full_shared() {
|
|
let (tx, _rx) = channel();
|
|
drop(tx.clone());
|
|
drop(tx.clone());
|
|
tx.send(box 1);
|
|
})
|
|
|
|
test!(fn smoke_shared() {
|
|
let (tx, rx) = channel();
|
|
tx.send(1);
|
|
assert_eq!(rx.recv(), 1);
|
|
let tx = tx.clone();
|
|
tx.send(1);
|
|
assert_eq!(rx.recv(), 1);
|
|
})
|
|
|
|
test!(fn smoke_threads() {
|
|
let (tx, rx) = channel();
|
|
spawn(proc() {
|
|
tx.send(1);
|
|
});
|
|
assert_eq!(rx.recv(), 1);
|
|
})
|
|
|
|
test!(fn smoke_port_gone() {
|
|
let (tx, rx) = channel();
|
|
drop(rx);
|
|
tx.send(1);
|
|
} #[should_fail])
|
|
|
|
test!(fn smoke_shared_port_gone() {
|
|
let (tx, rx) = channel();
|
|
drop(rx);
|
|
tx.send(1);
|
|
} #[should_fail])
|
|
|
|
test!(fn smoke_shared_port_gone2() {
|
|
let (tx, rx) = channel();
|
|
drop(rx);
|
|
let tx2 = tx.clone();
|
|
drop(tx);
|
|
tx2.send(1);
|
|
} #[should_fail])
|
|
|
|
test!(fn port_gone_concurrent() {
|
|
let (tx, rx) = channel();
|
|
spawn(proc() {
|
|
rx.recv();
|
|
});
|
|
loop { tx.send(1) }
|
|
} #[should_fail])
|
|
|
|
test!(fn port_gone_concurrent_shared() {
|
|
let (tx, rx) = channel();
|
|
let tx2 = tx.clone();
|
|
spawn(proc() {
|
|
rx.recv();
|
|
});
|
|
loop {
|
|
tx.send(1);
|
|
tx2.send(1);
|
|
}
|
|
} #[should_fail])
|
|
|
|
test!(fn smoke_chan_gone() {
|
|
let (tx, rx) = channel::<int>();
|
|
drop(tx);
|
|
rx.recv();
|
|
} #[should_fail])
|
|
|
|
test!(fn smoke_chan_gone_shared() {
|
|
let (tx, rx) = channel::<()>();
|
|
let tx2 = tx.clone();
|
|
drop(tx);
|
|
drop(tx2);
|
|
rx.recv();
|
|
} #[should_fail])
|
|
|
|
test!(fn chan_gone_concurrent() {
|
|
let (tx, rx) = channel();
|
|
spawn(proc() {
|
|
tx.send(1);
|
|
tx.send(1);
|
|
});
|
|
loop { rx.recv(); }
|
|
} #[should_fail])
|
|
|
|
test!(fn stress() {
|
|
let (tx, rx) = channel();
|
|
spawn(proc() {
|
|
for _ in range(0, 10000) { tx.send(1); }
|
|
});
|
|
for _ in range(0, 10000) {
|
|
assert_eq!(rx.recv(), 1);
|
|
}
|
|
})
|
|
|
|
test!(fn stress_shared() {
|
|
static AMT: uint = 10000;
|
|
static NTHREADS: uint = 8;
|
|
let (tx, rx) = channel::<int>();
|
|
let (dtx, drx) = channel::<()>();
|
|
|
|
spawn(proc() {
|
|
for _ in range(0, AMT * NTHREADS) {
|
|
assert_eq!(rx.recv(), 1);
|
|
}
|
|
match rx.try_recv() {
|
|
Ok(..) => fail!(),
|
|
_ => {}
|
|
}
|
|
dtx.send(());
|
|
});
|
|
|
|
for _ in range(0, NTHREADS) {
|
|
let tx = tx.clone();
|
|
spawn(proc() {
|
|
for _ in range(0, AMT) { tx.send(1); }
|
|
});
|
|
}
|
|
drop(tx);
|
|
drx.recv();
|
|
})
|
|
|
|
#[test]
|
|
fn send_from_outside_runtime() {
|
|
let (tx1, rx1) = channel::<()>();
|
|
let (tx2, rx2) = channel::<int>();
|
|
let (tx3, rx3) = channel::<()>();
|
|
let tx4 = tx3.clone();
|
|
spawn(proc() {
|
|
tx1.send(());
|
|
for _ in range(0, 40) {
|
|
assert_eq!(rx2.recv(), 1);
|
|
}
|
|
tx3.send(());
|
|
});
|
|
rx1.recv();
|
|
native::task::spawn(proc() {
|
|
for _ in range(0, 40) {
|
|
tx2.send(1);
|
|
}
|
|
tx4.send(());
|
|
});
|
|
rx3.recv();
|
|
rx3.recv();
|
|
}
|
|
|
|
#[test]
|
|
fn recv_from_outside_runtime() {
|
|
let (tx, rx) = channel::<int>();
|
|
let (dtx, drx) = channel();
|
|
native::task::spawn(proc() {
|
|
for _ in range(0, 40) {
|
|
assert_eq!(rx.recv(), 1);
|
|
}
|
|
dtx.send(());
|
|
});
|
|
for _ in range(0, 40) {
|
|
tx.send(1);
|
|
}
|
|
drx.recv();
|
|
}
|
|
|
|
#[test]
|
|
fn no_runtime() {
|
|
let (tx1, rx1) = channel::<int>();
|
|
let (tx2, rx2) = channel::<int>();
|
|
let (tx3, rx3) = channel::<()>();
|
|
let tx4 = tx3.clone();
|
|
native::task::spawn(proc() {
|
|
assert_eq!(rx1.recv(), 1);
|
|
tx2.send(2);
|
|
tx4.send(());
|
|
});
|
|
native::task::spawn(proc() {
|
|
tx1.send(1);
|
|
assert_eq!(rx2.recv(), 2);
|
|
tx3.send(());
|
|
});
|
|
rx3.recv();
|
|
rx3.recv();
|
|
}
|
|
|
|
test!(fn oneshot_single_thread_close_port_first() {
|
|
// Simple test of closing without sending
|
|
let (_tx, rx) = channel::<int>();
|
|
drop(rx);
|
|
})
|
|
|
|
test!(fn oneshot_single_thread_close_chan_first() {
|
|
// Simple test of closing without sending
|
|
let (tx, _rx) = channel::<int>();
|
|
drop(tx);
|
|
})
|
|
|
|
test!(fn oneshot_single_thread_send_port_close() {
|
|
// Testing that the sender cleans up the payload if receiver is closed
|
|
let (tx, rx) = channel::<Box<int>>();
|
|
drop(rx);
|
|
tx.send(box 0);
|
|
} #[should_fail])
|
|
|
|
test!(fn oneshot_single_thread_recv_chan_close() {
|
|
// Receiving on a closed chan will fail
|
|
let res = task::try(proc() {
|
|
let (tx, rx) = channel::<int>();
|
|
drop(tx);
|
|
rx.recv();
|
|
});
|
|
// What is our res?
|
|
assert!(res.is_err());
|
|
})
|
|
|
|
test!(fn oneshot_single_thread_send_then_recv() {
|
|
let (tx, rx) = channel::<Box<int>>();
|
|
tx.send(box 10);
|
|
assert!(rx.recv() == box 10);
|
|
})
|
|
|
|
test!(fn oneshot_single_thread_try_send_open() {
|
|
let (tx, rx) = channel::<int>();
|
|
assert!(tx.send_opt(10).is_ok());
|
|
assert!(rx.recv() == 10);
|
|
})
|
|
|
|
test!(fn oneshot_single_thread_try_send_closed() {
|
|
let (tx, rx) = channel::<int>();
|
|
drop(rx);
|
|
assert!(tx.send_opt(10).is_err());
|
|
})
|
|
|
|
test!(fn oneshot_single_thread_try_recv_open() {
|
|
let (tx, rx) = channel::<int>();
|
|
tx.send(10);
|
|
assert!(rx.recv_opt() == Ok(10));
|
|
})
|
|
|
|
test!(fn oneshot_single_thread_try_recv_closed() {
|
|
let (tx, rx) = channel::<int>();
|
|
drop(tx);
|
|
assert!(rx.recv_opt() == Err(()));
|
|
})
|
|
|
|
test!(fn oneshot_single_thread_peek_data() {
|
|
let (tx, rx) = channel::<int>();
|
|
assert_eq!(rx.try_recv(), Err(Empty))
|
|
tx.send(10);
|
|
assert_eq!(rx.try_recv(), Ok(10));
|
|
})
|
|
|
|
test!(fn oneshot_single_thread_peek_close() {
|
|
let (tx, rx) = channel::<int>();
|
|
drop(tx);
|
|
assert_eq!(rx.try_recv(), Err(Disconnected));
|
|
assert_eq!(rx.try_recv(), Err(Disconnected));
|
|
})
|
|
|
|
test!(fn oneshot_single_thread_peek_open() {
|
|
let (_tx, rx) = channel::<int>();
|
|
assert_eq!(rx.try_recv(), Err(Empty));
|
|
})
|
|
|
|
test!(fn oneshot_multi_task_recv_then_send() {
|
|
let (tx, rx) = channel::<Box<int>>();
|
|
spawn(proc() {
|
|
assert!(rx.recv() == box 10);
|
|
});
|
|
|
|
tx.send(box 10);
|
|
})
|
|
|
|
test!(fn oneshot_multi_task_recv_then_close() {
|
|
let (tx, rx) = channel::<Box<int>>();
|
|
spawn(proc() {
|
|
drop(tx);
|
|
});
|
|
let res = task::try(proc() {
|
|
assert!(rx.recv() == box 10);
|
|
});
|
|
assert!(res.is_err());
|
|
})
|
|
|
|
test!(fn oneshot_multi_thread_close_stress() {
|
|
for _ in range(0, stress_factor()) {
|
|
let (tx, rx) = channel::<int>();
|
|
spawn(proc() {
|
|
drop(rx);
|
|
});
|
|
drop(tx);
|
|
}
|
|
})
|
|
|
|
test!(fn oneshot_multi_thread_send_close_stress() {
|
|
for _ in range(0, stress_factor()) {
|
|
let (tx, rx) = channel::<int>();
|
|
spawn(proc() {
|
|
drop(rx);
|
|
});
|
|
let _ = task::try(proc() {
|
|
tx.send(1);
|
|
});
|
|
}
|
|
})
|
|
|
|
test!(fn oneshot_multi_thread_recv_close_stress() {
|
|
for _ in range(0, stress_factor()) {
|
|
let (tx, rx) = channel::<int>();
|
|
spawn(proc() {
|
|
let res = task::try(proc() {
|
|
rx.recv();
|
|
});
|
|
assert!(res.is_err());
|
|
});
|
|
spawn(proc() {
|
|
spawn(proc() {
|
|
drop(tx);
|
|
});
|
|
});
|
|
}
|
|
})
|
|
|
|
test!(fn oneshot_multi_thread_send_recv_stress() {
|
|
for _ in range(0, stress_factor()) {
|
|
let (tx, rx) = channel();
|
|
spawn(proc() {
|
|
tx.send(box 10);
|
|
});
|
|
spawn(proc() {
|
|
assert!(rx.recv() == box 10);
|
|
});
|
|
}
|
|
})
|
|
|
|
test!(fn stream_send_recv_stress() {
|
|
for _ in range(0, stress_factor()) {
|
|
let (tx, rx) = channel();
|
|
|
|
send(tx, 0);
|
|
recv(rx, 0);
|
|
|
|
fn send(tx: Sender<Box<int>>, i: int) {
|
|
if i == 10 { return }
|
|
|
|
spawn(proc() {
|
|
tx.send(box i);
|
|
send(tx, i + 1);
|
|
});
|
|
}
|
|
|
|
fn recv(rx: Receiver<Box<int>>, i: int) {
|
|
if i == 10 { return }
|
|
|
|
spawn(proc() {
|
|
assert!(rx.recv() == box i);
|
|
recv(rx, i + 1);
|
|
});
|
|
}
|
|
}
|
|
})
|
|
|
|
test!(fn recv_a_lot() {
|
|
// Regression test that we don't run out of stack in scheduler context
|
|
let (tx, rx) = channel();
|
|
for _ in range(0, 10000) { tx.send(()); }
|
|
for _ in range(0, 10000) { rx.recv(); }
|
|
})
|
|
|
|
test!(fn shared_chan_stress() {
|
|
let (tx, rx) = channel();
|
|
let total = stress_factor() + 100;
|
|
for _ in range(0, total) {
|
|
let tx = tx.clone();
|
|
spawn(proc() {
|
|
tx.send(());
|
|
});
|
|
}
|
|
|
|
for _ in range(0, total) {
|
|
rx.recv();
|
|
}
|
|
})
|
|
|
|
test!(fn test_nested_recv_iter() {
|
|
let (tx, rx) = channel::<int>();
|
|
let (total_tx, total_rx) = channel::<int>();
|
|
|
|
spawn(proc() {
|
|
let mut acc = 0;
|
|
for x in rx.iter() {
|
|
acc += x;
|
|
}
|
|
total_tx.send(acc);
|
|
});
|
|
|
|
tx.send(3);
|
|
tx.send(1);
|
|
tx.send(2);
|
|
drop(tx);
|
|
assert_eq!(total_rx.recv(), 6);
|
|
})
|
|
|
|
test!(fn test_recv_iter_break() {
|
|
let (tx, rx) = channel::<int>();
|
|
let (count_tx, count_rx) = channel();
|
|
|
|
spawn(proc() {
|
|
let mut count = 0;
|
|
for x in rx.iter() {
|
|
if count >= 3 {
|
|
break;
|
|
} else {
|
|
count += x;
|
|
}
|
|
}
|
|
count_tx.send(count);
|
|
});
|
|
|
|
tx.send(2);
|
|
tx.send(2);
|
|
tx.send(2);
|
|
let _ = tx.send_opt(2);
|
|
drop(tx);
|
|
assert_eq!(count_rx.recv(), 4);
|
|
})
|
|
|
|
test!(fn try_recv_states() {
|
|
let (tx1, rx1) = channel::<int>();
|
|
let (tx2, rx2) = channel::<()>();
|
|
let (tx3, rx3) = channel::<()>();
|
|
spawn(proc() {
|
|
rx2.recv();
|
|
tx1.send(1);
|
|
tx3.send(());
|
|
rx2.recv();
|
|
drop(tx1);
|
|
tx3.send(());
|
|
});
|
|
|
|
assert_eq!(rx1.try_recv(), Err(Empty));
|
|
tx2.send(());
|
|
rx3.recv();
|
|
assert_eq!(rx1.try_recv(), Ok(1));
|
|
assert_eq!(rx1.try_recv(), Err(Empty));
|
|
tx2.send(());
|
|
rx3.recv();
|
|
assert_eq!(rx1.try_recv(), Err(Disconnected));
|
|
})
|
|
|
|
// This bug used to end up in a livelock inside of the Receiver destructor
|
|
// because the internal state of the Shared packet was corrupted
|
|
test!(fn destroy_upgraded_shared_port_when_sender_still_active() {
|
|
let (tx, rx) = channel();
|
|
let (tx2, rx2) = channel();
|
|
spawn(proc() {
|
|
rx.recv(); // wait on a oneshot
|
|
drop(rx); // destroy a shared
|
|
tx2.send(());
|
|
});
|
|
// make sure the other task has gone to sleep
|
|
for _ in range(0, 5000) { task::deschedule(); }
|
|
|
|
// upgrade to a shared chan and send a message
|
|
let t = tx.clone();
|
|
drop(tx);
|
|
t.send(());
|
|
|
|
// wait for the child task to exit before we exit
|
|
rx2.recv();
|
|
})
|
|
|
|
test!(fn sends_off_the_runtime() {
|
|
use rt::thread::Thread;
|
|
|
|
let (tx, rx) = channel();
|
|
let t = Thread::start(proc() {
|
|
for _ in range(0, 1000) {
|
|
tx.send(());
|
|
}
|
|
});
|
|
for _ in range(0, 1000) {
|
|
rx.recv();
|
|
}
|
|
t.join();
|
|
})
|
|
|
|
test!(fn try_recvs_off_the_runtime() {
|
|
use rt::thread::Thread;
|
|
|
|
let (tx, rx) = channel();
|
|
let (cdone, pdone) = channel();
|
|
let t = Thread::start(proc() {
|
|
let mut hits = 0;
|
|
while hits < 10 {
|
|
match rx.try_recv() {
|
|
Ok(()) => { hits += 1; }
|
|
Err(Empty) => { Thread::yield_now(); }
|
|
Err(Disconnected) => return,
|
|
}
|
|
}
|
|
cdone.send(());
|
|
});
|
|
for _ in range(0, 10) {
|
|
tx.send(());
|
|
}
|
|
t.join();
|
|
pdone.recv();
|
|
})
|
|
}
|
|
|
|
#[cfg(test)]
|
|
mod sync_tests {
|
|
use prelude::*;
|
|
use os;
|
|
|
|
pub fn stress_factor() -> uint {
|
|
match os::getenv("RUST_TEST_STRESS") {
|
|
Some(val) => from_str::<uint>(val).unwrap(),
|
|
None => 1,
|
|
}
|
|
}
|
|
|
|
test!(fn smoke() {
|
|
let (tx, rx) = sync_channel(1);
|
|
tx.send(1);
|
|
assert_eq!(rx.recv(), 1);
|
|
})
|
|
|
|
test!(fn drop_full() {
|
|
let (tx, _rx) = sync_channel(1);
|
|
tx.send(box 1);
|
|
})
|
|
|
|
test!(fn smoke_shared() {
|
|
let (tx, rx) = sync_channel(1);
|
|
tx.send(1);
|
|
assert_eq!(rx.recv(), 1);
|
|
let tx = tx.clone();
|
|
tx.send(1);
|
|
assert_eq!(rx.recv(), 1);
|
|
})
|
|
|
|
test!(fn smoke_threads() {
|
|
let (tx, rx) = sync_channel(0);
|
|
spawn(proc() {
|
|
tx.send(1);
|
|
});
|
|
assert_eq!(rx.recv(), 1);
|
|
})
|
|
|
|
test!(fn smoke_port_gone() {
|
|
let (tx, rx) = sync_channel(0);
|
|
drop(rx);
|
|
tx.send(1);
|
|
} #[should_fail])
|
|
|
|
test!(fn smoke_shared_port_gone2() {
|
|
let (tx, rx) = sync_channel(0);
|
|
drop(rx);
|
|
let tx2 = tx.clone();
|
|
drop(tx);
|
|
tx2.send(1);
|
|
} #[should_fail])
|
|
|
|
test!(fn port_gone_concurrent() {
|
|
let (tx, rx) = sync_channel(0);
|
|
spawn(proc() {
|
|
rx.recv();
|
|
});
|
|
loop { tx.send(1) }
|
|
} #[should_fail])
|
|
|
|
test!(fn port_gone_concurrent_shared() {
|
|
let (tx, rx) = sync_channel(0);
|
|
let tx2 = tx.clone();
|
|
spawn(proc() {
|
|
rx.recv();
|
|
});
|
|
loop {
|
|
tx.send(1);
|
|
tx2.send(1);
|
|
}
|
|
} #[should_fail])
|
|
|
|
test!(fn smoke_chan_gone() {
|
|
let (tx, rx) = sync_channel::<int>(0);
|
|
drop(tx);
|
|
rx.recv();
|
|
} #[should_fail])
|
|
|
|
test!(fn smoke_chan_gone_shared() {
|
|
let (tx, rx) = sync_channel::<()>(0);
|
|
let tx2 = tx.clone();
|
|
drop(tx);
|
|
drop(tx2);
|
|
rx.recv();
|
|
} #[should_fail])
|
|
|
|
test!(fn chan_gone_concurrent() {
|
|
let (tx, rx) = sync_channel(0);
|
|
spawn(proc() {
|
|
tx.send(1);
|
|
tx.send(1);
|
|
});
|
|
loop { rx.recv(); }
|
|
} #[should_fail])
|
|
|
|
test!(fn stress() {
|
|
let (tx, rx) = sync_channel(0);
|
|
spawn(proc() {
|
|
for _ in range(0, 10000) { tx.send(1); }
|
|
});
|
|
for _ in range(0, 10000) {
|
|
assert_eq!(rx.recv(), 1);
|
|
}
|
|
})
|
|
|
|
test!(fn stress_shared() {
|
|
static AMT: uint = 1000;
|
|
static NTHREADS: uint = 8;
|
|
let (tx, rx) = sync_channel::<int>(0);
|
|
let (dtx, drx) = sync_channel::<()>(0);
|
|
|
|
spawn(proc() {
|
|
for _ in range(0, AMT * NTHREADS) {
|
|
assert_eq!(rx.recv(), 1);
|
|
}
|
|
match rx.try_recv() {
|
|
Ok(..) => fail!(),
|
|
_ => {}
|
|
}
|
|
dtx.send(());
|
|
});
|
|
|
|
for _ in range(0, NTHREADS) {
|
|
let tx = tx.clone();
|
|
spawn(proc() {
|
|
for _ in range(0, AMT) { tx.send(1); }
|
|
});
|
|
}
|
|
drop(tx);
|
|
drx.recv();
|
|
})
|
|
|
|
test!(fn oneshot_single_thread_close_port_first() {
|
|
// Simple test of closing without sending
|
|
let (_tx, rx) = sync_channel::<int>(0);
|
|
drop(rx);
|
|
})
|
|
|
|
test!(fn oneshot_single_thread_close_chan_first() {
|
|
// Simple test of closing without sending
|
|
let (tx, _rx) = sync_channel::<int>(0);
|
|
drop(tx);
|
|
})
|
|
|
|
test!(fn oneshot_single_thread_send_port_close() {
|
|
// Testing that the sender cleans up the payload if receiver is closed
|
|
let (tx, rx) = sync_channel::<Box<int>>(0);
|
|
drop(rx);
|
|
tx.send(box 0);
|
|
} #[should_fail])
|
|
|
|
test!(fn oneshot_single_thread_recv_chan_close() {
|
|
// Receiving on a closed chan will fail
|
|
let res = task::try(proc() {
|
|
let (tx, rx) = sync_channel::<int>(0);
|
|
drop(tx);
|
|
rx.recv();
|
|
});
|
|
// What is our res?
|
|
assert!(res.is_err());
|
|
})
|
|
|
|
test!(fn oneshot_single_thread_send_then_recv() {
|
|
let (tx, rx) = sync_channel::<Box<int>>(1);
|
|
tx.send(box 10);
|
|
assert!(rx.recv() == box 10);
|
|
})
|
|
|
|
test!(fn oneshot_single_thread_try_send_open() {
|
|
let (tx, rx) = sync_channel::<int>(1);
|
|
assert_eq!(tx.try_send(10), Ok(()));
|
|
assert!(rx.recv() == 10);
|
|
})
|
|
|
|
test!(fn oneshot_single_thread_try_send_closed() {
|
|
let (tx, rx) = sync_channel::<int>(0);
|
|
drop(rx);
|
|
assert_eq!(tx.try_send(10), Err(RecvDisconnected(10)));
|
|
})
|
|
|
|
test!(fn oneshot_single_thread_try_send_closed2() {
|
|
let (tx, _rx) = sync_channel::<int>(0);
|
|
assert_eq!(tx.try_send(10), Err(Full(10)));
|
|
})
|
|
|
|
test!(fn oneshot_single_thread_try_recv_open() {
|
|
let (tx, rx) = sync_channel::<int>(1);
|
|
tx.send(10);
|
|
assert!(rx.recv_opt() == Ok(10));
|
|
})
|
|
|
|
test!(fn oneshot_single_thread_try_recv_closed() {
|
|
let (tx, rx) = sync_channel::<int>(0);
|
|
drop(tx);
|
|
assert!(rx.recv_opt() == Err(()));
|
|
})
|
|
|
|
test!(fn oneshot_single_thread_peek_data() {
|
|
let (tx, rx) = sync_channel::<int>(1);
|
|
assert_eq!(rx.try_recv(), Err(Empty))
|
|
tx.send(10);
|
|
assert_eq!(rx.try_recv(), Ok(10));
|
|
})
|
|
|
|
test!(fn oneshot_single_thread_peek_close() {
|
|
let (tx, rx) = sync_channel::<int>(0);
|
|
drop(tx);
|
|
assert_eq!(rx.try_recv(), Err(Disconnected));
|
|
assert_eq!(rx.try_recv(), Err(Disconnected));
|
|
})
|
|
|
|
test!(fn oneshot_single_thread_peek_open() {
|
|
let (_tx, rx) = sync_channel::<int>(0);
|
|
assert_eq!(rx.try_recv(), Err(Empty));
|
|
})
|
|
|
|
test!(fn oneshot_multi_task_recv_then_send() {
|
|
let (tx, rx) = sync_channel::<Box<int>>(0);
|
|
spawn(proc() {
|
|
assert!(rx.recv() == box 10);
|
|
});
|
|
|
|
tx.send(box 10);
|
|
})
|
|
|
|
test!(fn oneshot_multi_task_recv_then_close() {
|
|
let (tx, rx) = sync_channel::<Box<int>>(0);
|
|
spawn(proc() {
|
|
drop(tx);
|
|
});
|
|
let res = task::try(proc() {
|
|
assert!(rx.recv() == box 10);
|
|
});
|
|
assert!(res.is_err());
|
|
})
|
|
|
|
test!(fn oneshot_multi_thread_close_stress() {
|
|
for _ in range(0, stress_factor()) {
|
|
let (tx, rx) = sync_channel::<int>(0);
|
|
spawn(proc() {
|
|
drop(rx);
|
|
});
|
|
drop(tx);
|
|
}
|
|
})
|
|
|
|
test!(fn oneshot_multi_thread_send_close_stress() {
|
|
for _ in range(0, stress_factor()) {
|
|
let (tx, rx) = sync_channel::<int>(0);
|
|
spawn(proc() {
|
|
drop(rx);
|
|
});
|
|
let _ = task::try(proc() {
|
|
tx.send(1);
|
|
});
|
|
}
|
|
})
|
|
|
|
test!(fn oneshot_multi_thread_recv_close_stress() {
|
|
for _ in range(0, stress_factor()) {
|
|
let (tx, rx) = sync_channel::<int>(0);
|
|
spawn(proc() {
|
|
let res = task::try(proc() {
|
|
rx.recv();
|
|
});
|
|
assert!(res.is_err());
|
|
});
|
|
spawn(proc() {
|
|
spawn(proc() {
|
|
drop(tx);
|
|
});
|
|
});
|
|
}
|
|
})
|
|
|
|
test!(fn oneshot_multi_thread_send_recv_stress() {
|
|
for _ in range(0, stress_factor()) {
|
|
let (tx, rx) = sync_channel(0);
|
|
spawn(proc() {
|
|
tx.send(box 10);
|
|
});
|
|
spawn(proc() {
|
|
assert!(rx.recv() == box 10);
|
|
});
|
|
}
|
|
})
|
|
|
|
test!(fn stream_send_recv_stress() {
|
|
for _ in range(0, stress_factor()) {
|
|
let (tx, rx) = sync_channel(0);
|
|
|
|
send(tx, 0);
|
|
recv(rx, 0);
|
|
|
|
fn send(tx: SyncSender<Box<int>>, i: int) {
|
|
if i == 10 { return }
|
|
|
|
spawn(proc() {
|
|
tx.send(box i);
|
|
send(tx, i + 1);
|
|
});
|
|
}
|
|
|
|
fn recv(rx: Receiver<Box<int>>, i: int) {
|
|
if i == 10 { return }
|
|
|
|
spawn(proc() {
|
|
assert!(rx.recv() == box i);
|
|
recv(rx, i + 1);
|
|
});
|
|
}
|
|
}
|
|
})
|
|
|
|
test!(fn recv_a_lot() {
|
|
// Regression test that we don't run out of stack in scheduler context
|
|
let (tx, rx) = sync_channel(10000);
|
|
for _ in range(0, 10000) { tx.send(()); }
|
|
for _ in range(0, 10000) { rx.recv(); }
|
|
})
|
|
|
|
test!(fn shared_chan_stress() {
|
|
let (tx, rx) = sync_channel(0);
|
|
let total = stress_factor() + 100;
|
|
for _ in range(0, total) {
|
|
let tx = tx.clone();
|
|
spawn(proc() {
|
|
tx.send(());
|
|
});
|
|
}
|
|
|
|
for _ in range(0, total) {
|
|
rx.recv();
|
|
}
|
|
})
|
|
|
|
test!(fn test_nested_recv_iter() {
|
|
let (tx, rx) = sync_channel::<int>(0);
|
|
let (total_tx, total_rx) = sync_channel::<int>(0);
|
|
|
|
spawn(proc() {
|
|
let mut acc = 0;
|
|
for x in rx.iter() {
|
|
acc += x;
|
|
}
|
|
total_tx.send(acc);
|
|
});
|
|
|
|
tx.send(3);
|
|
tx.send(1);
|
|
tx.send(2);
|
|
drop(tx);
|
|
assert_eq!(total_rx.recv(), 6);
|
|
})
|
|
|
|
test!(fn test_recv_iter_break() {
|
|
let (tx, rx) = sync_channel::<int>(0);
|
|
let (count_tx, count_rx) = sync_channel(0);
|
|
|
|
spawn(proc() {
|
|
let mut count = 0;
|
|
for x in rx.iter() {
|
|
if count >= 3 {
|
|
break;
|
|
} else {
|
|
count += x;
|
|
}
|
|
}
|
|
count_tx.send(count);
|
|
});
|
|
|
|
tx.send(2);
|
|
tx.send(2);
|
|
tx.send(2);
|
|
let _ = tx.try_send(2);
|
|
drop(tx);
|
|
assert_eq!(count_rx.recv(), 4);
|
|
})
|
|
|
|
test!(fn try_recv_states() {
|
|
let (tx1, rx1) = sync_channel::<int>(1);
|
|
let (tx2, rx2) = sync_channel::<()>(1);
|
|
let (tx3, rx3) = sync_channel::<()>(1);
|
|
spawn(proc() {
|
|
rx2.recv();
|
|
tx1.send(1);
|
|
tx3.send(());
|
|
rx2.recv();
|
|
drop(tx1);
|
|
tx3.send(());
|
|
});
|
|
|
|
assert_eq!(rx1.try_recv(), Err(Empty));
|
|
tx2.send(());
|
|
rx3.recv();
|
|
assert_eq!(rx1.try_recv(), Ok(1));
|
|
assert_eq!(rx1.try_recv(), Err(Empty));
|
|
tx2.send(());
|
|
rx3.recv();
|
|
assert_eq!(rx1.try_recv(), Err(Disconnected));
|
|
})
|
|
|
|
// This bug used to end up in a livelock inside of the Receiver destructor
|
|
// because the internal state of the Shared packet was corrupted
|
|
test!(fn destroy_upgraded_shared_port_when_sender_still_active() {
|
|
let (tx, rx) = sync_channel(0);
|
|
let (tx2, rx2) = sync_channel(0);
|
|
spawn(proc() {
|
|
rx.recv(); // wait on a oneshot
|
|
drop(rx); // destroy a shared
|
|
tx2.send(());
|
|
});
|
|
// make sure the other task has gone to sleep
|
|
for _ in range(0, 5000) { task::deschedule(); }
|
|
|
|
// upgrade to a shared chan and send a message
|
|
let t = tx.clone();
|
|
drop(tx);
|
|
t.send(());
|
|
|
|
// wait for the child task to exit before we exit
|
|
rx2.recv();
|
|
})
|
|
|
|
test!(fn try_recvs_off_the_runtime() {
|
|
use std::rt::thread::Thread;
|
|
|
|
let (tx, rx) = sync_channel(0);
|
|
let (cdone, pdone) = channel();
|
|
let t = Thread::start(proc() {
|
|
let mut hits = 0;
|
|
while hits < 10 {
|
|
match rx.try_recv() {
|
|
Ok(()) => { hits += 1; }
|
|
Err(Empty) => { Thread::yield_now(); }
|
|
Err(Disconnected) => return,
|
|
}
|
|
}
|
|
cdone.send(());
|
|
});
|
|
for _ in range(0, 10) {
|
|
tx.send(());
|
|
}
|
|
t.join();
|
|
pdone.recv();
|
|
})
|
|
|
|
test!(fn send_opt1() {
|
|
let (tx, rx) = sync_channel(0);
|
|
spawn(proc() { rx.recv(); });
|
|
assert_eq!(tx.send_opt(1), Ok(()));
|
|
})
|
|
|
|
test!(fn send_opt2() {
|
|
let (tx, rx) = sync_channel(0);
|
|
spawn(proc() { drop(rx); });
|
|
assert_eq!(tx.send_opt(1), Err(1));
|
|
})
|
|
|
|
test!(fn send_opt3() {
|
|
let (tx, rx) = sync_channel(1);
|
|
assert_eq!(tx.send_opt(1), Ok(()));
|
|
spawn(proc() { drop(rx); });
|
|
assert_eq!(tx.send_opt(1), Err(1));
|
|
})
|
|
|
|
test!(fn send_opt4() {
|
|
let (tx, rx) = sync_channel(0);
|
|
let tx2 = tx.clone();
|
|
let (done, donerx) = channel();
|
|
let done2 = done.clone();
|
|
spawn(proc() {
|
|
assert_eq!(tx.send_opt(1), Err(1));
|
|
done.send(());
|
|
});
|
|
spawn(proc() {
|
|
assert_eq!(tx2.send_opt(2), Err(2));
|
|
done2.send(());
|
|
});
|
|
drop(rx);
|
|
donerx.recv();
|
|
donerx.recv();
|
|
})
|
|
|
|
test!(fn try_send1() {
|
|
let (tx, _rx) = sync_channel(0);
|
|
assert_eq!(tx.try_send(1), Err(Full(1)));
|
|
})
|
|
|
|
test!(fn try_send2() {
|
|
let (tx, _rx) = sync_channel(1);
|
|
assert_eq!(tx.try_send(1), Ok(()));
|
|
assert_eq!(tx.try_send(1), Err(Full(1)));
|
|
})
|
|
|
|
test!(fn try_send3() {
|
|
let (tx, rx) = sync_channel(1);
|
|
assert_eq!(tx.try_send(1), Ok(()));
|
|
drop(rx);
|
|
assert_eq!(tx.try_send(1), Err(RecvDisconnected(1)));
|
|
})
|
|
|
|
test!(fn try_send4() {
|
|
let (tx, rx) = sync_channel(0);
|
|
spawn(proc() {
|
|
for _ in range(0, 1000) { task::deschedule(); }
|
|
assert_eq!(tx.try_send(1), Ok(()));
|
|
});
|
|
assert_eq!(rx.recv(), 1);
|
|
} #[ignore(reason = "flaky on libnative")])
|
|
}
|