e01897edcb
This allows to compute the `BodyOwnerKind` from `DefKind` only, and removes a direct dependency of some MIR queries onto HIR. As a side effect, it also simplifies metadata, since we don't need 4 flavours of `EntryKind::*Static` any more.
171 lines
6.5 KiB
Rust
171 lines
6.5 KiB
Rust
use clippy_utils::consts::constant_simple;
|
|
use clippy_utils::diagnostics::span_lint;
|
|
use rustc_hir as hir;
|
|
use rustc_lint::{LateContext, LateLintPass};
|
|
use rustc_session::{declare_tool_lint, impl_lint_pass};
|
|
use rustc_span::source_map::Span;
|
|
|
|
declare_clippy_lint! {
|
|
/// ### What it does
|
|
/// Checks for integer arithmetic operations which could overflow or panic.
|
|
///
|
|
/// Specifically, checks for any operators (`+`, `-`, `*`, `<<`, etc) which are capable
|
|
/// of overflowing according to the [Rust
|
|
/// Reference](https://doc.rust-lang.org/reference/expressions/operator-expr.html#overflow),
|
|
/// or which can panic (`/`, `%`). No bounds analysis or sophisticated reasoning is
|
|
/// attempted.
|
|
///
|
|
/// ### Why is this bad?
|
|
/// Integer overflow will trigger a panic in debug builds or will wrap in
|
|
/// release mode. Division by zero will cause a panic in either mode. In some applications one
|
|
/// wants explicitly checked, wrapping or saturating arithmetic.
|
|
///
|
|
/// ### Example
|
|
/// ```rust
|
|
/// # let a = 0;
|
|
/// a + 1;
|
|
/// ```
|
|
#[clippy::version = "pre 1.29.0"]
|
|
pub INTEGER_ARITHMETIC,
|
|
restriction,
|
|
"any integer arithmetic expression which could overflow or panic"
|
|
}
|
|
|
|
declare_clippy_lint! {
|
|
/// ### What it does
|
|
/// Checks for float arithmetic.
|
|
///
|
|
/// ### Why is this bad?
|
|
/// For some embedded systems or kernel development, it
|
|
/// can be useful to rule out floating-point numbers.
|
|
///
|
|
/// ### Example
|
|
/// ```rust
|
|
/// # let a = 0.0;
|
|
/// a + 1.0;
|
|
/// ```
|
|
#[clippy::version = "pre 1.29.0"]
|
|
pub FLOAT_ARITHMETIC,
|
|
restriction,
|
|
"any floating-point arithmetic statement"
|
|
}
|
|
|
|
#[derive(Copy, Clone, Default)]
|
|
pub struct Arithmetic {
|
|
expr_span: Option<Span>,
|
|
/// This field is used to check whether expressions are constants, such as in enum discriminants
|
|
/// and consts
|
|
const_span: Option<Span>,
|
|
}
|
|
|
|
impl_lint_pass!(Arithmetic => [INTEGER_ARITHMETIC, FLOAT_ARITHMETIC]);
|
|
|
|
impl<'tcx> LateLintPass<'tcx> for Arithmetic {
|
|
fn check_expr(&mut self, cx: &LateContext<'tcx>, expr: &'tcx hir::Expr<'_>) {
|
|
if self.expr_span.is_some() {
|
|
return;
|
|
}
|
|
|
|
if let Some(span) = self.const_span {
|
|
if span.contains(expr.span) {
|
|
return;
|
|
}
|
|
}
|
|
match &expr.kind {
|
|
hir::ExprKind::Binary(op, l, r) | hir::ExprKind::AssignOp(op, l, r) => {
|
|
match op.node {
|
|
hir::BinOpKind::And
|
|
| hir::BinOpKind::Or
|
|
| hir::BinOpKind::BitAnd
|
|
| hir::BinOpKind::BitOr
|
|
| hir::BinOpKind::BitXor
|
|
| hir::BinOpKind::Eq
|
|
| hir::BinOpKind::Lt
|
|
| hir::BinOpKind::Le
|
|
| hir::BinOpKind::Ne
|
|
| hir::BinOpKind::Ge
|
|
| hir::BinOpKind::Gt => return,
|
|
_ => (),
|
|
}
|
|
|
|
let (l_ty, r_ty) = (cx.typeck_results().expr_ty(l), cx.typeck_results().expr_ty(r));
|
|
if l_ty.peel_refs().is_integral() && r_ty.peel_refs().is_integral() {
|
|
match op.node {
|
|
hir::BinOpKind::Div | hir::BinOpKind::Rem => match &r.kind {
|
|
hir::ExprKind::Lit(_lit) => (),
|
|
hir::ExprKind::Unary(hir::UnOp::Neg, expr) => {
|
|
if let hir::ExprKind::Lit(lit) = &expr.kind {
|
|
if let rustc_ast::ast::LitKind::Int(1, _) = lit.node {
|
|
span_lint(cx, INTEGER_ARITHMETIC, expr.span, "integer arithmetic detected");
|
|
self.expr_span = Some(expr.span);
|
|
}
|
|
}
|
|
},
|
|
_ => {
|
|
span_lint(cx, INTEGER_ARITHMETIC, expr.span, "integer arithmetic detected");
|
|
self.expr_span = Some(expr.span);
|
|
},
|
|
},
|
|
_ => {
|
|
span_lint(cx, INTEGER_ARITHMETIC, expr.span, "integer arithmetic detected");
|
|
self.expr_span = Some(expr.span);
|
|
},
|
|
}
|
|
} else if r_ty.peel_refs().is_floating_point() && r_ty.peel_refs().is_floating_point() {
|
|
span_lint(cx, FLOAT_ARITHMETIC, expr.span, "floating-point arithmetic detected");
|
|
self.expr_span = Some(expr.span);
|
|
}
|
|
},
|
|
hir::ExprKind::Unary(hir::UnOp::Neg, arg) => {
|
|
let ty = cx.typeck_results().expr_ty(arg);
|
|
if constant_simple(cx, cx.typeck_results(), expr).is_none() {
|
|
if ty.is_integral() {
|
|
span_lint(cx, INTEGER_ARITHMETIC, expr.span, "integer arithmetic detected");
|
|
self.expr_span = Some(expr.span);
|
|
} else if ty.is_floating_point() {
|
|
span_lint(cx, FLOAT_ARITHMETIC, expr.span, "floating-point arithmetic detected");
|
|
self.expr_span = Some(expr.span);
|
|
}
|
|
}
|
|
},
|
|
_ => (),
|
|
}
|
|
}
|
|
|
|
fn check_expr_post(&mut self, _: &LateContext<'tcx>, expr: &'tcx hir::Expr<'_>) {
|
|
if Some(expr.span) == self.expr_span {
|
|
self.expr_span = None;
|
|
}
|
|
}
|
|
|
|
fn check_body(&mut self, cx: &LateContext<'_>, body: &hir::Body<'_>) {
|
|
let body_owner = cx.tcx.hir().body_owner_def_id(body.id());
|
|
|
|
match cx.tcx.hir().body_owner_kind(body_owner) {
|
|
hir::BodyOwnerKind::Static(_) | hir::BodyOwnerKind::Const => {
|
|
let body_span = cx.tcx.def_span(body_owner);
|
|
|
|
if let Some(span) = self.const_span {
|
|
if span.contains(body_span) {
|
|
return;
|
|
}
|
|
}
|
|
self.const_span = Some(body_span);
|
|
},
|
|
hir::BodyOwnerKind::Fn | hir::BodyOwnerKind::Closure => (),
|
|
}
|
|
}
|
|
|
|
fn check_body_post(&mut self, cx: &LateContext<'_>, body: &hir::Body<'_>) {
|
|
let body_owner = cx.tcx.hir().body_owner(body.id());
|
|
let body_span = cx.tcx.hir().span(body_owner);
|
|
|
|
if let Some(span) = self.const_span {
|
|
if span.contains(body_span) {
|
|
return;
|
|
}
|
|
}
|
|
self.const_span = None;
|
|
}
|
|
}
|