I've implemented the new collection views API for TrieMap. I more or less followed the approach set out by @Gankro in BTreeMap, by using a `SearchStack`. There's quite a bit of unsafe code, but I've wrapped it safely where I think is appropriate. I've added tests to ensure everything works, and performance seems quite good. ``` test trie::bench_map::bench_find ... bench: 67879 ns/iter (+/- 4192) test trie::bench_map::bench_find_entry ... bench: 186814 ns/iter (+/- 18748) test trie::bench_map::bench_insert_large ... bench: 716612 ns/iter (+/- 160121) test trie::bench_map::bench_insert_large_entry ... bench: 851219 ns/iter (+/- 20331) test trie::bench_map::bench_remove ... bench: 838856 ns/iter (+/- 27998) test trie::bench_map::bench_remove_entry ... bench: 981711 ns/iter (+/- 53046) ``` Using an entry is slow compared to a plain find, but is only ~15% slower for inserts and removes, which is where this API is most useful. I'm tempted to remove the standalone `remove` function in favour of an entry-based approach (to cut down on complexity). I've added some more comments to the general part of the code-base, which will hopefully help the next person looking over this. I moved the three key structures to the top of the file so that the nesting structure is clearly visible, and renamed `Child<T>` to `TrieNode<T>` and `TrieNode<T>` to `InternalNode<T>` to improve clarity. If these changes are creeping, I'm happy to revert them. Let me know if my use of `fail!` is ok, I was a little unsure of how specific to be. Some of the data-structures have various invariants that shouldn't be broken, so using `fail!` seemed appropriate. ## Still to do * Modernise iterators (make them double-ended). * Make the keys generic, or rename this data-structure (see: https://github.com/rust-lang/rust/issues/14902). * Possibly move this code out of libcollections. [Searching Github for TrieMap turns up very few real results.][triemap-search] Related issues: https://github.com/rust-lang/rust/issues/18009 and https://github.com/rust-lang/rust/issues/17320 [triemap-search]: https://github.com/search?utf8=%E2%9C%93&q=TrieMap+language%3ARust&type=Code&ref=searchresults
The Rust Programming Language
This is a compiler for Rust, including standard libraries, tools and documentation.
Quick Start
- Download a binary installer for your platform.
- Read the guide.
- Enjoy!
Note: Windows users can read the detailed using Rust on Windows notes on the wiki.
Building from Source
-
Make sure you have installed the dependencies:
g++
4.7 orclang++
3.xpython
2.6 or later (but not 3.x)perl
5.0 or later- GNU
make
3.81 or later curl
git
-
Download and build Rust:
You can either download a tarball or build directly from the repo.
To build from the tarball do:
$ curl -O https://static.rust-lang.org/dist/rust-nightly.tar.gz $ tar -xzf rust-nightly.tar.gz $ cd rust-nightly
Or to build from the repo do:
$ git clone https://github.com/rust-lang/rust.git $ cd rust
Now that you have Rust's source code, you can configure and build it:
$ ./configure $ make && make install
Note: You may need to use
sudo make install
if you do not normally have permission to modify the destination directory. The install locations can be adjusted by passing a--prefix
argument toconfigure
. Various other options are also supported, pass--help
for more information on them.When complete,
make install
will place several programs into/usr/local/bin
:rustc
, the Rust compiler, andrustdoc
, the API-documentation tool. -
Read the guide.
-
Enjoy!
Building on Windows
To easily build on windows we can use MSYS2:
-
Grab the latest MSYS2 installer and go through the installer.
-
Now from the MSYS2 terminal we want to install the mingw64 toolchain and the other tools we need.
$ pacman -S mingw-w64-i686-toolchain $ pacman -S base-devel
-
With that now start
mingw32_shell.bat
from where you installed MSYS2 (i.e.C:\msys
). -
From there just navigate to where you have Rust's source code, configure and build it:
$ ./configure $ make && make install
Notes
Since the Rust compiler is written in Rust, it must be built by a precompiled "snapshot" version of itself (made in an earlier state of development). As such, source builds require a connection to the Internet, to fetch snapshots, and an OS that can execute the available snapshot binaries.
Snapshot binaries are currently built and tested on several platforms:
- Windows (7, 8, Server 2008 R2), x86 and x86-64 (64-bit support added in Rust 0.12.0)
- Linux (2.6.18 or later, various distributions), x86 and x86-64
- OSX 10.7 (Lion) or greater, x86 and x86-64
You may find that other platforms work, but these are our officially supported build environments that are most likely to work.
Rust currently needs about 1.5 GiB of RAM to build without swapping; if it hits swap, it will take a very long time to build.
There is a lot more documentation in the wiki.
Getting help and getting involved
The Rust community congregates in a few places:
- StackOverflow - Get help here.
- /r/rust - General discussion.
- discuss.rust-lang.org - For development of the Rust language itself.
License
Rust is primarily distributed under the terms of both the MIT license and the Apache License (Version 2.0), with portions covered by various BSD-like licenses.
See LICENSE-APACHE, LICENSE-MIT, and COPYRIGHT for details.