rust/src/librustc/middle/region.rs
2014-01-29 22:39:33 +01:00

905 lines
30 KiB
Rust

// Copyright 2012 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
/*!
This file actually contains two passes related to regions. The first
pass builds up the `scope_map`, which describes the parent links in
the region hierarchy. The second pass infers which types must be
region parameterized.
Most of the documentation on regions can be found in
`middle/typeck/infer/region_inference.rs`
*/
use driver::session::Session;
use middle::ty::{FreeRegion};
use middle::ty;
use std::cell::RefCell;
use std::hashmap::{HashMap, HashSet};
use syntax::codemap::Span;
use syntax::{ast, visit};
use syntax::visit::{Visitor, FnKind};
use syntax::ast::{Block, Item, FnDecl, NodeId, Arm, Pat, Stmt, Expr, Local};
use syntax::ast_util::{stmt_id};
/**
The region maps encode information about region relationships.
- `scope_map` maps from:
- an expression to the expression or block encoding the maximum
(static) lifetime of a value produced by that expression. This is
generally the innermost call, statement, match, or block.
- a variable or binding id to the block in which that variable is declared.
- `free_region_map` maps from:
- a free region `a` to a list of free regions `bs` such that
`a <= b for all b in bs`
- the free region map is populated during type check as we check
each function. See the function `relate_free_regions` for
more information.
- `temporary_scopes` includes scopes where cleanups for temporaries occur.
These are statements and loop/fn bodies.
*/
pub struct RegionMaps {
priv scope_map: RefCell<HashMap<ast::NodeId, ast::NodeId>>,
priv var_map: RefCell<HashMap<ast::NodeId, ast::NodeId>>,
priv free_region_map: RefCell<HashMap<FreeRegion, ~[FreeRegion]>>,
priv rvalue_scopes: RefCell<HashMap<ast::NodeId, ast::NodeId>>,
priv terminating_scopes: RefCell<HashSet<ast::NodeId>>,
}
#[deriving(Clone)]
pub struct Context {
var_parent: Option<ast::NodeId>,
// Innermost enclosing expression
parent: Option<ast::NodeId>,
}
struct RegionResolutionVisitor<'a> {
sess: Session,
// Generated maps:
region_maps: &'a RegionMaps,
}
impl RegionMaps {
pub fn relate_free_regions(&self, sub: FreeRegion, sup: FreeRegion) {
let mut free_region_map = self.free_region_map.borrow_mut();
match free_region_map.get().find_mut(&sub) {
Some(sups) => {
if !sups.iter().any(|x| x == &sup) {
sups.push(sup);
}
return;
}
None => {}
}
debug!("relate_free_regions(sub={:?}, sup={:?})", sub, sup);
free_region_map.get().insert(sub, ~[sup]);
}
pub fn record_encl_scope(&self, sub: ast::NodeId, sup: ast::NodeId) {
debug!("record_encl_scope(sub={}, sup={})", sub, sup);
assert!(sub != sup);
let mut scope_map = self.scope_map.borrow_mut();
scope_map.get().insert(sub, sup);
}
pub fn record_var_scope(&self, var: ast::NodeId, lifetime: ast::NodeId) {
debug!("record_var_scope(sub={}, sup={})", var, lifetime);
assert!(var != lifetime);
let mut var_map = self.var_map.borrow_mut();
var_map.get().insert(var, lifetime);
}
pub fn record_rvalue_scope(&self, var: ast::NodeId, lifetime: ast::NodeId) {
debug!("record_rvalue_scope(sub={}, sup={})", var, lifetime);
assert!(var != lifetime);
let mut rvalue_scopes = self.rvalue_scopes.borrow_mut();
rvalue_scopes.get().insert(var, lifetime);
}
pub fn mark_as_terminating_scope(&self, scope_id: ast::NodeId) {
/*!
* Records that a scope is a TERMINATING SCOPE. Whenever we
* create automatic temporaries -- e.g. by an
* expression like `a().f` -- they will be freed within
* the innermost terminating scope.
*/
debug!("record_terminating_scope(scope_id={})", scope_id);
let mut terminating_scopes = self.terminating_scopes.borrow_mut();
terminating_scopes.get().insert(scope_id);
}
pub fn opt_encl_scope(&self, id: ast::NodeId) -> Option<ast::NodeId> {
//! Returns the narrowest scope that encloses `id`, if any.
let scope_map = self.scope_map.borrow();
scope_map.get().find(&id).map(|x| *x)
}
pub fn encl_scope(&self, id: ast::NodeId) -> ast::NodeId {
//! Returns the narrowest scope that encloses `id`, if any.
let scope_map = self.scope_map.borrow();
match scope_map.get().find(&id) {
Some(&r) => r,
None => { fail!("No enclosing scope for id {}", id); }
}
}
pub fn var_scope(&self, var_id: ast::NodeId) -> ast::NodeId {
/*!
* Returns the lifetime of the local variable `var_id`
*/
let var_map = self.var_map.borrow();
match var_map.get().find(&var_id) {
Some(&r) => r,
None => { fail!("No enclosing scope for id {}", var_id); }
}
}
pub fn temporary_scope(&self, expr_id: ast::NodeId) -> Option<ast::NodeId> {
//! Returns the scope when temp created by expr_id will be cleaned up
// check for a designated rvalue scope
let rvalue_scopes = self.rvalue_scopes.borrow();
match rvalue_scopes.get().find(&expr_id) {
Some(&s) => {
debug!("temporary_scope({}) = {} [custom]", expr_id, s);
return Some(s);
}
None => { }
}
// else, locate the innermost terminating scope
// if there's one. Static items, for instance, won't
// have an enclusing scope, hence no scope will be
// returned.
let mut id = match self.opt_encl_scope(expr_id) {
Some(i) => i,
None => { return None; }
};
let terminating_scopes = self.terminating_scopes.borrow();
while !terminating_scopes.get().contains(&id) {
match self.opt_encl_scope(id) {
Some(p) => {
id = p;
}
None => {
debug!("temporary_scope({}) = None", expr_id);
return None;
}
}
}
debug!("temporary_scope({}) = {} [enclosing]", expr_id, id);
return Some(id);
}
pub fn encl_region(&self, id: ast::NodeId) -> ty::Region {
//! Returns the narrowest scope region that encloses `id`, if any.
ty::ReScope(self.encl_scope(id))
}
pub fn var_region(&self, id: ast::NodeId) -> ty::Region {
//! Returns the lifetime of the variable `id`.
ty::ReScope(self.var_scope(id))
}
pub fn scopes_intersect(&self, scope1: ast::NodeId, scope2: ast::NodeId)
-> bool {
self.is_subscope_of(scope1, scope2) ||
self.is_subscope_of(scope2, scope1)
}
pub fn is_subscope_of(&self,
subscope: ast::NodeId,
superscope: ast::NodeId)
-> bool {
/*!
* Returns true if `subscope` is equal to or is lexically
* nested inside `superscope` and false otherwise.
*/
let mut s = subscope;
while superscope != s {
let scope_map = self.scope_map.borrow();
match scope_map.get().find(&s) {
None => {
debug!("is_subscope_of({}, {}, s={})=false",
subscope, superscope, s);
return false;
}
Some(&scope) => s = scope
}
}
debug!("is_subscope_of({}, {})=true",
subscope, superscope);
return true;
}
pub fn sub_free_region(&self, sub: FreeRegion, sup: FreeRegion) -> bool {
/*!
* Determines whether two free regions have a subregion relationship
* by walking the graph encoded in `free_region_map`. Note that
* it is possible that `sub != sup` and `sub <= sup` and `sup <= sub`
* (that is, the user can give two different names to the same lifetime).
*/
if sub == sup {
return true;
}
// Do a little breadth-first-search here. The `queue` list
// doubles as a way to detect if we've seen a particular FR
// before. Note that we expect this graph to be an *extremely
// shallow* tree.
let mut queue = ~[sub];
let mut i = 0;
while i < queue.len() {
let free_region_map = self.free_region_map.borrow();
match free_region_map.get().find(&queue[i]) {
Some(parents) => {
for parent in parents.iter() {
if *parent == sup {
return true;
}
if !queue.iter().any(|x| x == parent) {
queue.push(*parent);
}
}
}
None => {}
}
i += 1;
}
return false;
}
pub fn is_subregion_of(&self,
sub_region: ty::Region,
super_region: ty::Region)
-> bool {
/*!
* Determines whether one region is a subregion of another. This is
* intended to run *after inference* and sadly the logic is somewhat
* duplicated with the code in infer.rs.
*/
debug!("is_subregion_of(sub_region={:?}, super_region={:?})",
sub_region, super_region);
sub_region == super_region || {
match (sub_region, super_region) {
(_, ty::ReStatic) => {
true
}
(ty::ReScope(sub_scope), ty::ReScope(super_scope)) => {
self.is_subscope_of(sub_scope, super_scope)
}
(ty::ReScope(sub_scope), ty::ReFree(ref fr)) => {
self.is_subscope_of(sub_scope, fr.scope_id)
}
(ty::ReFree(sub_fr), ty::ReFree(super_fr)) => {
self.sub_free_region(sub_fr, super_fr)
}
_ => {
false
}
}
}
}
pub fn nearest_common_ancestor(&self,
scope_a: ast::NodeId,
scope_b: ast::NodeId)
-> Option<ast::NodeId> {
/*!
* Finds the nearest common ancestor (if any) of two scopes. That
* is, finds the smallest scope which is greater than or equal to
* both `scope_a` and `scope_b`.
*/
if scope_a == scope_b { return Some(scope_a); }
let a_ancestors = ancestors_of(self, scope_a);
let b_ancestors = ancestors_of(self, scope_b);
let mut a_index = a_ancestors.len() - 1u;
let mut b_index = b_ancestors.len() - 1u;
// Here, ~[ab]_ancestors is a vector going from narrow to broad.
// The end of each vector will be the item where the scope is
// defined; if there are any common ancestors, then the tails of
// the vector will be the same. So basically we want to walk
// backwards from the tail of each vector and find the first point
// where they diverge. If one vector is a suffix of the other,
// then the corresponding scope is a superscope of the other.
if a_ancestors[a_index] != b_ancestors[b_index] {
return None;
}
loop {
// Loop invariant: a_ancestors[a_index] == b_ancestors[b_index]
// for all indices between a_index and the end of the array
if a_index == 0u { return Some(scope_a); }
if b_index == 0u { return Some(scope_b); }
a_index -= 1u;
b_index -= 1u;
if a_ancestors[a_index] != b_ancestors[b_index] {
return Some(a_ancestors[a_index + 1u]);
}
}
fn ancestors_of(this: &RegionMaps, scope: ast::NodeId)
-> ~[ast::NodeId]
{
// debug!("ancestors_of(scope={})", scope);
let mut result = ~[scope];
let mut scope = scope;
loop {
let scope_map = this.scope_map.borrow();
match scope_map.get().find(&scope) {
None => return result,
Some(&superscope) => {
result.push(superscope);
scope = superscope;
}
}
// debug!("ancestors_of_loop(scope={})", scope);
}
}
}
}
/// Records the current parent (if any) as the parent of `child_id`.
fn record_superlifetime(visitor: &mut RegionResolutionVisitor,
cx: Context,
child_id: ast::NodeId,
_sp: Span) {
for &parent_id in cx.parent.iter() {
visitor.region_maps.record_encl_scope(child_id, parent_id);
}
}
/// Records the lifetime of a local variable as `cx.var_parent`
fn record_var_lifetime(visitor: &mut RegionResolutionVisitor,
cx: Context,
var_id: ast::NodeId,
_sp: Span) {
match cx.var_parent {
Some(parent_id) => {
visitor.region_maps.record_var_scope(var_id, parent_id);
}
None => {
// this can happen in extern fn declarations like
//
// extern fn isalnum(c: c_int) -> c_int
}
}
}
fn resolve_block(visitor: &mut RegionResolutionVisitor,
blk: &ast::Block,
cx: Context) {
debug!("resolve_block(blk.id={})", blk.id);
// Record the parent of this block.
record_superlifetime(visitor, cx, blk.id, blk.span);
// We treat the tail expression in the block (if any) somewhat
// differently from the statements. The issue has to do with
// temporary lifetimes. If the user writes:
//
// {
// ... (&foo()) ...
// }
//
let subcx = Context {var_parent: Some(blk.id), parent: Some(blk.id)};
visit::walk_block(visitor, blk, subcx);
}
fn resolve_arm(visitor: &mut RegionResolutionVisitor,
arm: &ast::Arm,
cx: Context) {
visitor.region_maps.mark_as_terminating_scope(arm.body.id);
match arm.guard {
Some(expr) => {
visitor.region_maps.mark_as_terminating_scope(expr.id);
}
None => { }
}
visit::walk_arm(visitor, arm, cx);
}
fn resolve_pat(visitor: &mut RegionResolutionVisitor,
pat: &ast::Pat,
cx: Context) {
record_superlifetime(visitor, cx, pat.id, pat.span);
// If this is a binding (or maybe a binding, I'm too lazy to check
// the def map) then record the lifetime of that binding.
match pat.node {
ast::PatIdent(..) => {
record_var_lifetime(visitor, cx, pat.id, pat.span);
}
_ => { }
}
visit::walk_pat(visitor, pat, cx);
}
fn resolve_stmt(visitor: &mut RegionResolutionVisitor,
stmt: &ast::Stmt,
cx: Context) {
let stmt_id = stmt_id(stmt);
debug!("resolve_stmt(stmt.id={})", stmt_id);
visitor.region_maps.mark_as_terminating_scope(stmt_id);
record_superlifetime(visitor, cx, stmt_id, stmt.span);
let subcx = Context {parent: Some(stmt_id), ..cx};
visit::walk_stmt(visitor, stmt, subcx);
}
fn resolve_expr(visitor: &mut RegionResolutionVisitor,
expr: &ast::Expr,
cx: Context) {
debug!("resolve_expr(expr.id={})", expr.id);
record_superlifetime(visitor, cx, expr.id, expr.span);
let mut new_cx = cx;
new_cx.parent = Some(expr.id);
match expr.node {
// Conditional or repeating scopes are always terminating
// scopes, meaning that temporaries cannot outlive them.
// This ensures fixed size stacks.
ast::ExprBinary(_, ast::BiAnd, _, r) |
ast::ExprBinary(_, ast::BiOr, _, r) => {
// For shortcircuiting operators, mark the RHS as a terminating
// scope since it only executes conditionally.
visitor.region_maps.mark_as_terminating_scope(r.id);
}
ast::ExprIf(_, then, Some(otherwise)) => {
visitor.region_maps.mark_as_terminating_scope(then.id);
visitor.region_maps.mark_as_terminating_scope(otherwise.id);
}
ast::ExprIf(_, then, None) => {
visitor.region_maps.mark_as_terminating_scope(then.id);
}
ast::ExprLoop(body, _) |
ast::ExprWhile(_, body) => {
visitor.region_maps.mark_as_terminating_scope(body.id);
}
ast::ExprMatch(..) => {
new_cx.var_parent = Some(expr.id);
}
ast::ExprAssignOp(..) | ast::ExprIndex(..) |
ast::ExprUnary(..) | ast::ExprCall(..) | ast::ExprMethodCall(..) => {
// FIXME(#6268) Nested method calls
//
// The lifetimes for a call or method call look as follows:
//
// call.id
// - arg0.id
// - ...
// - argN.id
// - call.callee_id
//
// The idea is that call.callee_id represents *the time when
// the invoked function is actually running* and call.id
// represents *the time to prepare the arguments and make the
// call*. See the section "Borrows in Calls" borrowck/doc.rs
// for an extended explanantion of why this distinction is
// important.
//
// record_superlifetime(new_cx, expr.callee_id);
}
_ => {}
};
visit::walk_expr(visitor, expr, new_cx);
}
fn resolve_local(visitor: &mut RegionResolutionVisitor,
local: &ast::Local,
cx: Context) {
debug!("resolve_local(local.id={},local.init={})",
local.id,local.init.is_some());
let blk_id = match cx.var_parent {
Some(id) => id,
None => {
visitor.sess.span_bug(
local.span,
"Local without enclosing block");
}
};
// For convenience in trans, associate with the local-id the var
// scope that will be used for any bindings declared in this
// pattern.
visitor.region_maps.record_var_scope(local.id, blk_id);
// As an exception to the normal rules governing temporary
// lifetimes, initializers in a let have a temporary lifetime
// of the enclosing block. This means that e.g. a program
// like the following is legal:
//
// let ref x = HashMap::new();
//
// Because the hash map will be freed in the enclosing block.
//
// We express the rules more formally based on 3 grammars (defined
// fully in the helpers below that implement them):
//
// 1. `E&`, which matches expressions like `&<rvalue>` that
// own a pointer into the stack.
//
// 2. `P&`, which matches patterns like `ref x` or `(ref x, ref
// y)` that produce ref bindings into the value they are
// matched against or something (at least partially) owned by
// the value they are matched against. (By partially owned,
// I mean that creating a binding into a ref-counted or managed value
// would still count.)
//
// 3. `ET`, which matches both rvalues like `foo()` as well as lvalues
// based on rvalues like `foo().x[2].y`.
//
// A subexpression `<rvalue>` that appears in a let initializer
// `let pat [: ty] = expr` has an extended temporary lifetime if
// any of the following conditions are met:
//
// A. `pat` matches `P&` and `expr` matches `ET`
// (covers cases where `pat` creates ref bindings into an rvalue
// produced by `expr`)
// B. `ty` is a borrowed pointer and `expr` matches `ET`
// (covers cases where coercion creates a borrow)
// C. `expr` matches `E&`
// (covers cases `expr` borrows an rvalue that is then assigned
// to memory (at least partially) owned by the binding)
//
// Here are some examples hopefully giving an intution where each
// rule comes into play and why:
//
// Rule A. `let (ref x, ref y) = (foo().x, 44)`. The rvalue `(22, 44)`
// would have an extended lifetime, but not `foo()`.
//
// Rule B. `let x: &[...] = [foo().x]`. The rvalue `[foo().x]`
// would have an extended lifetime, but not `foo()`.
//
// Rule C. `let x = &foo().x`. The rvalue ``foo()` would have extended
// lifetime.
//
// In some cases, multiple rules may apply (though not to the same
// rvalue). For example:
//
// let ref x = [&a(), &b()];
//
// Here, the expression `[...]` has an extended lifetime due to rule
// A, but the inner rvalues `a()` and `b()` have an extended lifetime
// due to rule C.
//
// FIXME(#6308) -- Note that `[]` patterns work more smoothly post-DST.
match local.init {
Some(expr) => {
record_rvalue_scope_if_borrow_expr(visitor, expr, blk_id);
if is_binding_pat(local.pat) || is_borrowed_ty(local.ty) {
record_rvalue_scope(visitor, expr, blk_id);
}
}
None => { }
}
visit::walk_local(visitor, local, cx);
fn is_binding_pat(pat: &ast::Pat) -> bool {
/*!
* True if `pat` match the `P&` nonterminal:
*
* P& = ref X
* | StructName { ..., P&, ... }
* | VariantName(..., P&, ...)
* | [ ..., P&, ... ]
* | ( ..., P&, ... )
* | ~P&
* | box P&
*/
match pat.node {
ast::PatIdent(ast::BindByRef(_), _, _) => true,
ast::PatStruct(_, ref field_pats, _) => {
field_pats.iter().any(|fp| is_binding_pat(fp.pat))
}
ast::PatVec(ref pats1, ref pats2, ref pats3) => {
pats1.iter().any(|&p| is_binding_pat(p)) ||
pats2.iter().any(|&p| is_binding_pat(p)) ||
pats3.iter().any(|&p| is_binding_pat(p))
}
ast::PatEnum(_, Some(ref subpats)) |
ast::PatTup(ref subpats) => {
subpats.iter().any(|&p| is_binding_pat(p))
}
ast::PatUniq(subpat) => {
is_binding_pat(subpat)
}
_ => false,
}
}
fn is_borrowed_ty(ty: &ast::Ty) -> bool {
/*!
* True if `ty` is a borrowed pointer type
* like `&int` or `&[...]`.
*/
match ty.node {
ast::TyRptr(..) => true,
_ => false
}
}
fn record_rvalue_scope_if_borrow_expr(visitor: &mut RegionResolutionVisitor,
expr: &ast::Expr,
blk_id: ast::NodeId) {
/*!
* If `expr` matches the `E&` grammar, then records an extended
* rvalue scope as appropriate:
*
* E& = & ET
* | StructName { ..., f: E&, ... }
* | [ ..., E&, ... ]
* | ( ..., E&, ... )
* | {...; E&}
* | ~E&
* | E& as ...
* | ( E& )
*/
match expr.node {
ast::ExprAddrOf(_, subexpr) => {
record_rvalue_scope_if_borrow_expr(visitor, subexpr, blk_id);
record_rvalue_scope(visitor, subexpr, blk_id);
}
ast::ExprStruct(_, ref fields, _) => {
for field in fields.iter() {
record_rvalue_scope_if_borrow_expr(
visitor, field.expr, blk_id);
}
}
ast::ExprVstore(subexpr, _) => {
visitor.region_maps.record_rvalue_scope(subexpr.id, blk_id);
record_rvalue_scope_if_borrow_expr(visitor, subexpr, blk_id);
}
ast::ExprVec(ref subexprs, _) |
ast::ExprTup(ref subexprs) => {
for &subexpr in subexprs.iter() {
record_rvalue_scope_if_borrow_expr(
visitor, subexpr, blk_id);
}
}
ast::ExprUnary(_, ast::UnUniq, subexpr) => {
record_rvalue_scope_if_borrow_expr(visitor, subexpr, blk_id);
}
ast::ExprCast(subexpr, _) |
ast::ExprParen(subexpr) => {
record_rvalue_scope_if_borrow_expr(visitor, subexpr, blk_id)
}
ast::ExprBlock(ref block) => {
match block.expr {
Some(subexpr) => {
record_rvalue_scope_if_borrow_expr(
visitor, subexpr, blk_id);
}
None => { }
}
}
_ => {
}
}
}
fn record_rvalue_scope<'a>(visitor: &mut RegionResolutionVisitor,
expr: &'a ast::Expr,
blk_id: ast::NodeId) {
/*!
* Applied to an expression `expr` if `expr` -- or something
* owned or partially owned by `expr` -- is going to be
* indirectly referenced by a variable in a let statement. In
* that case, the "temporary lifetime" or `expr` is extended
* to be the block enclosing the `let` statement.
*
* More formally, if `expr` matches the grammar `ET`, record
* the rvalue scope of the matching `<rvalue>` as `blk_id`:
*
* ET = *ET
* | ET[...]
* | ET.f
* | (ET)
* | <rvalue>
*
* Note: ET is intended to match "rvalues or
* lvalues based on rvalues".
*/
let mut expr = expr;
loop {
// Note: give all the expressions matching `ET` with the
// extended temporary lifetime, not just the innermost rvalue,
// because in trans if we must compile e.g. `*rvalue()`
// into a temporary, we request the temporary scope of the
// outer expression.
visitor.region_maps.record_rvalue_scope(expr.id, blk_id);
match expr.node {
ast::ExprAddrOf(_, ref subexpr) |
ast::ExprUnary(_, ast::UnDeref, ref subexpr) |
ast::ExprField(ref subexpr, _, _) |
ast::ExprIndex(_, ref subexpr, _) |
ast::ExprParen(ref subexpr) => {
let subexpr: &'a @Expr = subexpr; // FIXME(#11586)
expr = &**subexpr;
}
_ => {
return;
}
}
}
}
}
fn resolve_item(visitor: &mut RegionResolutionVisitor,
item: &ast::Item,
cx: Context) {
// Items create a new outer block scope as far as we're concerned.
let new_cx = Context {var_parent: None, parent: None, ..cx};
visit::walk_item(visitor, item, new_cx);
}
fn resolve_fn(visitor: &mut RegionResolutionVisitor,
fk: &FnKind,
decl: &ast::FnDecl,
body: &ast::Block,
sp: Span,
id: ast::NodeId,
cx: Context) {
debug!("region::resolve_fn(id={}, \
span={:?}, \
body.id={}, \
cx.parent={})",
id,
visitor.sess.codemap.span_to_str(sp),
body.id,
cx.parent);
visitor.region_maps.mark_as_terminating_scope(body.id);
// The arguments and `self` are parented to the body of the fn.
let decl_cx = Context {parent: Some(body.id),
var_parent: Some(body.id)};
visit::walk_fn_decl(visitor, decl, decl_cx);
// The body of the fn itself is either a root scope (top-level fn)
// or it continues with the inherited scope (closures).
let body_cx = match *fk {
visit::FkItemFn(..) | visit::FkMethod(..) => {
Context {parent: None, var_parent: None, ..cx}
}
visit::FkFnBlock(..) => cx
};
visitor.visit_block(body, body_cx);
}
impl<'a> Visitor<Context> for RegionResolutionVisitor<'a> {
fn visit_block(&mut self, b: &Block, cx: Context) {
resolve_block(self, b, cx);
}
fn visit_item(&mut self, i: &Item, cx: Context) {
resolve_item(self, i, cx);
}
fn visit_fn(&mut self, fk: &FnKind, fd: &FnDecl,
b: &Block, s: Span, n: NodeId, cx: Context) {
resolve_fn(self, fk, fd, b, s, n, cx);
}
fn visit_arm(&mut self, a: &Arm, cx: Context) {
resolve_arm(self, a, cx);
}
fn visit_pat(&mut self, p: &Pat, cx: Context) {
resolve_pat(self, p, cx);
}
fn visit_stmt(&mut self, s: &Stmt, cx: Context) {
resolve_stmt(self, s, cx);
}
fn visit_expr(&mut self, ex: &Expr, cx: Context) {
resolve_expr(self, ex, cx);
}
fn visit_local(&mut self, l: &Local, cx: Context) {
resolve_local(self, l, cx);
}
}
pub fn resolve_crate(sess: Session, crate: &ast::Crate) -> RegionMaps {
let maps = RegionMaps {
scope_map: RefCell::new(HashMap::new()),
var_map: RefCell::new(HashMap::new()),
free_region_map: RefCell::new(HashMap::new()),
rvalue_scopes: RefCell::new(HashMap::new()),
terminating_scopes: RefCell::new(HashSet::new()),
};
{
let mut visitor = RegionResolutionVisitor {
sess: sess,
region_maps: &maps
};
let cx = Context { parent: None, var_parent: None };
visit::walk_crate(&mut visitor, crate, cx);
}
return maps;
}
pub fn resolve_inlined_item(sess: Session,
region_maps: &RegionMaps,
item: &ast::InlinedItem) {
let cx = Context {parent: None,
var_parent: None};
let mut visitor = RegionResolutionVisitor {
sess: sess,
region_maps: region_maps,
};
visit::walk_inlined_item(&mut visitor, item, cx);
}