746 lines
24 KiB
Rust
746 lines
24 KiB
Rust
// Copyright 2012 The Rust Project Developers. See the COPYRIGHT
|
|
// file at the top-level directory of this distribution and at
|
|
// http://rust-lang.org/COPYRIGHT.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
|
|
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
|
|
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
|
|
// option. This file may not be copied, modified, or distributed
|
|
// except according to those terms.
|
|
|
|
// Type substitutions.
|
|
|
|
pub use self::ParamSpace::*;
|
|
pub use self::RegionSubsts::*;
|
|
|
|
use middle::ty::{self, Ty};
|
|
use middle::ty_fold::{self, TypeFoldable, TypeFolder};
|
|
use util::ppaux::Repr;
|
|
|
|
use std::fmt;
|
|
use std::slice::Iter;
|
|
use std::vec::{Vec, IntoIter};
|
|
use syntax::codemap::{Span, DUMMY_SP};
|
|
|
|
///////////////////////////////////////////////////////////////////////////
|
|
|
|
/// A substitution mapping type/region parameters to new values. We
|
|
/// identify each in-scope parameter by an *index* and a *parameter
|
|
/// space* (which indices where the parameter is defined; see
|
|
/// `ParamSpace`).
|
|
#[derive(Clone, PartialEq, Eq, Hash, Debug)]
|
|
pub struct Substs<'tcx> {
|
|
pub types: VecPerParamSpace<Ty<'tcx>>,
|
|
pub regions: RegionSubsts,
|
|
}
|
|
|
|
/// Represents the values to use when substituting lifetime parameters.
|
|
/// If the value is `ErasedRegions`, then this subst is occurring during
|
|
/// trans, and all region parameters will be replaced with `ty::ReStatic`.
|
|
#[derive(Clone, PartialEq, Eq, Hash, Debug)]
|
|
pub enum RegionSubsts {
|
|
ErasedRegions,
|
|
NonerasedRegions(VecPerParamSpace<ty::Region>)
|
|
}
|
|
|
|
impl<'tcx> Substs<'tcx> {
|
|
pub fn new(t: VecPerParamSpace<Ty<'tcx>>,
|
|
r: VecPerParamSpace<ty::Region>)
|
|
-> Substs<'tcx>
|
|
{
|
|
Substs { types: t, regions: NonerasedRegions(r) }
|
|
}
|
|
|
|
pub fn new_type(t: Vec<Ty<'tcx>>,
|
|
r: Vec<ty::Region>)
|
|
-> Substs<'tcx>
|
|
{
|
|
Substs::new(VecPerParamSpace::new(t, Vec::new(), Vec::new()),
|
|
VecPerParamSpace::new(r, Vec::new(), Vec::new()))
|
|
}
|
|
|
|
pub fn new_trait(t: Vec<Ty<'tcx>>,
|
|
r: Vec<ty::Region>,
|
|
s: Ty<'tcx>)
|
|
-> Substs<'tcx>
|
|
{
|
|
Substs::new(VecPerParamSpace::new(t, vec!(s), Vec::new()),
|
|
VecPerParamSpace::new(r, Vec::new(), Vec::new()))
|
|
}
|
|
|
|
pub fn erased(t: VecPerParamSpace<Ty<'tcx>>) -> Substs<'tcx>
|
|
{
|
|
Substs { types: t, regions: ErasedRegions }
|
|
}
|
|
|
|
pub fn empty() -> Substs<'tcx> {
|
|
Substs {
|
|
types: VecPerParamSpace::empty(),
|
|
regions: NonerasedRegions(VecPerParamSpace::empty()),
|
|
}
|
|
}
|
|
|
|
pub fn trans_empty() -> Substs<'tcx> {
|
|
Substs {
|
|
types: VecPerParamSpace::empty(),
|
|
regions: ErasedRegions
|
|
}
|
|
}
|
|
|
|
pub fn is_noop(&self) -> bool {
|
|
let regions_is_noop = match self.regions {
|
|
ErasedRegions => false, // may be used to canonicalize
|
|
NonerasedRegions(ref regions) => regions.is_empty(),
|
|
};
|
|
|
|
regions_is_noop && self.types.is_empty()
|
|
}
|
|
|
|
pub fn type_for_def(&self, ty_param_def: &ty::TypeParameterDef) -> Ty<'tcx> {
|
|
*self.types.get(ty_param_def.space, ty_param_def.index as uint)
|
|
}
|
|
|
|
pub fn has_regions_escaping_depth(&self, depth: u32) -> bool {
|
|
self.types.iter().any(|&t| ty::type_escapes_depth(t, depth)) || {
|
|
match self.regions {
|
|
ErasedRegions =>
|
|
false,
|
|
NonerasedRegions(ref regions) =>
|
|
regions.iter().any(|r| r.escapes_depth(depth)),
|
|
}
|
|
}
|
|
}
|
|
|
|
pub fn self_ty(&self) -> Option<Ty<'tcx>> {
|
|
self.types.get_self().map(|&t| t)
|
|
}
|
|
|
|
pub fn with_self_ty(&self, self_ty: Ty<'tcx>) -> Substs<'tcx> {
|
|
assert!(self.self_ty().is_none());
|
|
let mut s = (*self).clone();
|
|
s.types.push(SelfSpace, self_ty);
|
|
s
|
|
}
|
|
|
|
pub fn erase_regions(self) -> Substs<'tcx> {
|
|
let Substs { types, regions: _ } = self;
|
|
Substs { types: types, regions: ErasedRegions }
|
|
}
|
|
|
|
/// Since ErasedRegions are only to be used in trans, most of the compiler can use this method
|
|
/// to easily access the set of region substitutions.
|
|
pub fn regions<'a>(&'a self) -> &'a VecPerParamSpace<ty::Region> {
|
|
match self.regions {
|
|
ErasedRegions => panic!("Erased regions only expected in trans"),
|
|
NonerasedRegions(ref r) => r
|
|
}
|
|
}
|
|
|
|
/// Since ErasedRegions are only to be used in trans, most of the compiler can use this method
|
|
/// to easily access the set of region substitutions.
|
|
pub fn mut_regions<'a>(&'a mut self) -> &'a mut VecPerParamSpace<ty::Region> {
|
|
match self.regions {
|
|
ErasedRegions => panic!("Erased regions only expected in trans"),
|
|
NonerasedRegions(ref mut r) => r
|
|
}
|
|
}
|
|
|
|
pub fn with_method(self,
|
|
m_types: Vec<Ty<'tcx>>,
|
|
m_regions: Vec<ty::Region>)
|
|
-> Substs<'tcx>
|
|
{
|
|
let Substs { types, regions } = self;
|
|
let types = types.with_vec(FnSpace, m_types);
|
|
let regions = regions.map(m_regions,
|
|
|r, m_regions| r.with_vec(FnSpace, m_regions));
|
|
Substs { types: types, regions: regions }
|
|
}
|
|
}
|
|
|
|
impl RegionSubsts {
|
|
fn map<A, F>(self, a: A, op: F) -> RegionSubsts where
|
|
F: FnOnce(VecPerParamSpace<ty::Region>, A) -> VecPerParamSpace<ty::Region>,
|
|
{
|
|
match self {
|
|
ErasedRegions => ErasedRegions,
|
|
NonerasedRegions(r) => NonerasedRegions(op(r, a))
|
|
}
|
|
}
|
|
|
|
pub fn is_erased(&self) -> bool {
|
|
match *self {
|
|
ErasedRegions => true,
|
|
NonerasedRegions(_) => false,
|
|
}
|
|
}
|
|
}
|
|
|
|
///////////////////////////////////////////////////////////////////////////
|
|
// ParamSpace
|
|
|
|
#[derive(PartialOrd, Ord, PartialEq, Eq, Copy,
|
|
Clone, Hash, RustcEncodable, RustcDecodable, Debug)]
|
|
pub enum ParamSpace {
|
|
TypeSpace, // Type parameters attached to a type definition, trait, or impl
|
|
SelfSpace, // Self parameter on a trait
|
|
FnSpace, // Type parameters attached to a method or fn
|
|
}
|
|
|
|
impl ParamSpace {
|
|
pub fn all() -> [ParamSpace; 3] {
|
|
[TypeSpace, SelfSpace, FnSpace]
|
|
}
|
|
|
|
pub fn to_uint(self) -> uint {
|
|
match self {
|
|
TypeSpace => 0,
|
|
SelfSpace => 1,
|
|
FnSpace => 2,
|
|
}
|
|
}
|
|
|
|
pub fn from_uint(u: uint) -> ParamSpace {
|
|
match u {
|
|
0 => TypeSpace,
|
|
1 => SelfSpace,
|
|
2 => FnSpace,
|
|
_ => panic!("Invalid ParamSpace: {}", u)
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Vector of things sorted by param space. Used to keep
|
|
/// the set of things declared on the type, self, or method
|
|
/// distinct.
|
|
#[derive(PartialEq, Eq, Clone, Hash, RustcEncodable, RustcDecodable)]
|
|
pub struct VecPerParamSpace<T> {
|
|
// This was originally represented as a tuple with one Vec<T> for
|
|
// each variant of ParamSpace, and that remains the abstraction
|
|
// that it provides to its clients.
|
|
//
|
|
// Here is how the representation corresponds to the abstraction
|
|
// i.e. the "abstraction function" AF:
|
|
//
|
|
// AF(self) = (self.content[..self.type_limit],
|
|
// self.content[self.type_limit..self.self_limit],
|
|
// self.content[self.self_limit..])
|
|
type_limit: uint,
|
|
self_limit: uint,
|
|
content: Vec<T>,
|
|
}
|
|
|
|
/// The `split` function converts one `VecPerParamSpace` into this
|
|
/// `SeparateVecsPerParamSpace` structure.
|
|
pub struct SeparateVecsPerParamSpace<T> {
|
|
pub types: Vec<T>,
|
|
pub selfs: Vec<T>,
|
|
pub fns: Vec<T>,
|
|
}
|
|
|
|
impl<T: fmt::Debug> fmt::Debug for VecPerParamSpace<T> {
|
|
fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
|
|
try!(write!(fmt, "VecPerParamSpace {{"));
|
|
for space in ParamSpace::all().iter() {
|
|
try!(write!(fmt, "{:?}: {:?}, ", *space, self.get_slice(*space)));
|
|
}
|
|
try!(write!(fmt, "}}"));
|
|
Ok(())
|
|
}
|
|
}
|
|
|
|
impl<T> VecPerParamSpace<T> {
|
|
fn limits(&self, space: ParamSpace) -> (uint, uint) {
|
|
match space {
|
|
TypeSpace => (0, self.type_limit),
|
|
SelfSpace => (self.type_limit, self.self_limit),
|
|
FnSpace => (self.self_limit, self.content.len()),
|
|
}
|
|
}
|
|
|
|
pub fn empty() -> VecPerParamSpace<T> {
|
|
VecPerParamSpace {
|
|
type_limit: 0,
|
|
self_limit: 0,
|
|
content: Vec::new()
|
|
}
|
|
}
|
|
|
|
pub fn params_from_type(types: Vec<T>) -> VecPerParamSpace<T> {
|
|
VecPerParamSpace::empty().with_vec(TypeSpace, types)
|
|
}
|
|
|
|
/// `t` is the type space.
|
|
/// `s` is the self space.
|
|
/// `a` is the assoc space.
|
|
/// `f` is the fn space.
|
|
pub fn new(t: Vec<T>, s: Vec<T>, f: Vec<T>) -> VecPerParamSpace<T> {
|
|
let type_limit = t.len();
|
|
let self_limit = type_limit + s.len();
|
|
|
|
let mut content = t;
|
|
content.extend(s.into_iter());
|
|
content.extend(f.into_iter());
|
|
|
|
VecPerParamSpace {
|
|
type_limit: type_limit,
|
|
self_limit: self_limit,
|
|
content: content,
|
|
}
|
|
}
|
|
|
|
fn new_internal(content: Vec<T>, type_limit: uint, self_limit: uint)
|
|
-> VecPerParamSpace<T>
|
|
{
|
|
VecPerParamSpace {
|
|
type_limit: type_limit,
|
|
self_limit: self_limit,
|
|
content: content,
|
|
}
|
|
}
|
|
|
|
/// Appends `value` to the vector associated with `space`.
|
|
///
|
|
/// Unlike the `push` method in `Vec`, this should not be assumed
|
|
/// to be a cheap operation (even when amortized over many calls).
|
|
pub fn push(&mut self, space: ParamSpace, value: T) {
|
|
let (_, limit) = self.limits(space);
|
|
match space {
|
|
TypeSpace => { self.type_limit += 1; self.self_limit += 1; }
|
|
SelfSpace => { self.self_limit += 1; }
|
|
FnSpace => { }
|
|
}
|
|
self.content.insert(limit, value);
|
|
}
|
|
|
|
/// Appends `values` to the vector associated with `space`.
|
|
///
|
|
/// Unlike the `extend` method in `Vec`, this should not be assumed
|
|
/// to be a cheap operation (even when amortized over many calls).
|
|
pub fn extend<I:Iterator<Item=T>>(&mut self, space: ParamSpace, mut values: I) {
|
|
// This could be made more efficient, obviously.
|
|
for item in values {
|
|
self.push(space, item);
|
|
}
|
|
}
|
|
|
|
pub fn pop(&mut self, space: ParamSpace) -> Option<T> {
|
|
let (start, limit) = self.limits(space);
|
|
if start == limit {
|
|
None
|
|
} else {
|
|
match space {
|
|
TypeSpace => { self.type_limit -= 1; self.self_limit -= 1; }
|
|
SelfSpace => { self.self_limit -= 1; }
|
|
FnSpace => {}
|
|
}
|
|
if self.content.is_empty() {
|
|
None
|
|
} else {
|
|
Some(self.content.remove(limit - 1))
|
|
}
|
|
}
|
|
}
|
|
|
|
pub fn truncate(&mut self, space: ParamSpace, len: uint) {
|
|
// FIXME (#15435): slow; O(n^2); could enhance vec to make it O(n).
|
|
while self.len(space) > len {
|
|
self.pop(space);
|
|
}
|
|
}
|
|
|
|
pub fn replace(&mut self, space: ParamSpace, elems: Vec<T>) {
|
|
// FIXME (#15435): slow; O(n^2); could enhance vec to make it O(n).
|
|
self.truncate(space, 0);
|
|
for t in elems.into_iter() {
|
|
self.push(space, t);
|
|
}
|
|
}
|
|
|
|
pub fn get_self<'a>(&'a self) -> Option<&'a T> {
|
|
let v = self.get_slice(SelfSpace);
|
|
assert!(v.len() <= 1);
|
|
if v.len() == 0 { None } else { Some(&v[0]) }
|
|
}
|
|
|
|
pub fn len(&self, space: ParamSpace) -> uint {
|
|
self.get_slice(space).len()
|
|
}
|
|
|
|
pub fn is_empty_in(&self, space: ParamSpace) -> bool {
|
|
self.len(space) == 0
|
|
}
|
|
|
|
pub fn get_slice<'a>(&'a self, space: ParamSpace) -> &'a [T] {
|
|
let (start, limit) = self.limits(space);
|
|
&self.content[start.. limit]
|
|
}
|
|
|
|
pub fn get_mut_slice<'a>(&'a mut self, space: ParamSpace) -> &'a mut [T] {
|
|
let (start, limit) = self.limits(space);
|
|
&mut self.content[start.. limit]
|
|
}
|
|
|
|
pub fn opt_get<'a>(&'a self,
|
|
space: ParamSpace,
|
|
index: uint)
|
|
-> Option<&'a T> {
|
|
let v = self.get_slice(space);
|
|
if index < v.len() { Some(&v[index]) } else { None }
|
|
}
|
|
|
|
pub fn get<'a>(&'a self, space: ParamSpace, index: uint) -> &'a T {
|
|
&self.get_slice(space)[index]
|
|
}
|
|
|
|
pub fn iter<'a>(&'a self) -> Iter<'a,T> {
|
|
self.content.iter()
|
|
}
|
|
|
|
pub fn into_iter(self) -> IntoIter<T> {
|
|
self.content.into_iter()
|
|
}
|
|
|
|
pub fn iter_enumerated<'a>(&'a self) -> EnumeratedItems<'a,T> {
|
|
EnumeratedItems::new(self)
|
|
}
|
|
|
|
pub fn as_slice(&self) -> &[T] {
|
|
self.content.as_slice()
|
|
}
|
|
|
|
pub fn into_vec(self) -> Vec<T> {
|
|
self.content
|
|
}
|
|
|
|
pub fn all_vecs<P>(&self, mut pred: P) -> bool where
|
|
P: FnMut(&[T]) -> bool,
|
|
{
|
|
let spaces = [TypeSpace, SelfSpace, FnSpace];
|
|
spaces.iter().all(|&space| { pred(self.get_slice(space)) })
|
|
}
|
|
|
|
pub fn all<P>(&self, pred: P) -> bool where P: FnMut(&T) -> bool {
|
|
self.iter().all(pred)
|
|
}
|
|
|
|
pub fn any<P>(&self, pred: P) -> bool where P: FnMut(&T) -> bool {
|
|
self.iter().any(pred)
|
|
}
|
|
|
|
pub fn is_empty(&self) -> bool {
|
|
self.all_vecs(|v| v.is_empty())
|
|
}
|
|
|
|
pub fn map<U, P>(&self, pred: P) -> VecPerParamSpace<U> where P: FnMut(&T) -> U {
|
|
let result = self.iter().map(pred).collect();
|
|
VecPerParamSpace::new_internal(result,
|
|
self.type_limit,
|
|
self.self_limit)
|
|
}
|
|
|
|
pub fn map_enumerated<U, P>(&self, pred: P) -> VecPerParamSpace<U> where
|
|
P: FnMut((ParamSpace, uint, &T)) -> U,
|
|
{
|
|
let result = self.iter_enumerated().map(pred).collect();
|
|
VecPerParamSpace::new_internal(result,
|
|
self.type_limit,
|
|
self.self_limit)
|
|
}
|
|
|
|
pub fn map_move<U, F>(self, mut pred: F) -> VecPerParamSpace<U> where
|
|
F: FnMut(T) -> U,
|
|
{
|
|
let SeparateVecsPerParamSpace {
|
|
types: t,
|
|
selfs: s,
|
|
fns: f
|
|
} = self.split();
|
|
|
|
VecPerParamSpace::new(t.into_iter().map(|p| pred(p)).collect(),
|
|
s.into_iter().map(|p| pred(p)).collect(),
|
|
f.into_iter().map(|p| pred(p)).collect())
|
|
}
|
|
|
|
pub fn split(self) -> SeparateVecsPerParamSpace<T> {
|
|
let VecPerParamSpace { type_limit, self_limit, content } = self;
|
|
|
|
let mut content_iter = content.into_iter();
|
|
|
|
SeparateVecsPerParamSpace {
|
|
types: content_iter.by_ref().take(type_limit).collect(),
|
|
selfs: content_iter.by_ref().take(self_limit - type_limit).collect(),
|
|
fns: content_iter.collect()
|
|
}
|
|
}
|
|
|
|
pub fn with_vec(mut self, space: ParamSpace, vec: Vec<T>)
|
|
-> VecPerParamSpace<T>
|
|
{
|
|
assert!(self.is_empty_in(space));
|
|
self.replace(space, vec);
|
|
self
|
|
}
|
|
}
|
|
|
|
#[derive(Clone)]
|
|
pub struct EnumeratedItems<'a,T:'a> {
|
|
vec: &'a VecPerParamSpace<T>,
|
|
space_index: uint,
|
|
elem_index: uint
|
|
}
|
|
|
|
impl<'a,T> EnumeratedItems<'a,T> {
|
|
fn new(v: &'a VecPerParamSpace<T>) -> EnumeratedItems<'a,T> {
|
|
let mut result = EnumeratedItems { vec: v, space_index: 0, elem_index: 0 };
|
|
result.adjust_space();
|
|
result
|
|
}
|
|
|
|
fn adjust_space(&mut self) {
|
|
let spaces = ParamSpace::all();
|
|
while
|
|
self.space_index < spaces.len() &&
|
|
self.elem_index >= self.vec.len(spaces[self.space_index])
|
|
{
|
|
self.space_index += 1;
|
|
self.elem_index = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<'a,T> Iterator for EnumeratedItems<'a,T> {
|
|
type Item = (ParamSpace, uint, &'a T);
|
|
|
|
fn next(&mut self) -> Option<(ParamSpace, uint, &'a T)> {
|
|
let spaces = ParamSpace::all();
|
|
if self.space_index < spaces.len() {
|
|
let space = spaces[self.space_index];
|
|
let index = self.elem_index;
|
|
let item = self.vec.get(space, index);
|
|
|
|
self.elem_index += 1;
|
|
self.adjust_space();
|
|
|
|
Some((space, index, item))
|
|
} else {
|
|
None
|
|
}
|
|
}
|
|
}
|
|
|
|
///////////////////////////////////////////////////////////////////////////
|
|
// Public trait `Subst`
|
|
//
|
|
// Just call `foo.subst(tcx, substs)` to perform a substitution across
|
|
// `foo`. Or use `foo.subst_spanned(tcx, substs, Some(span))` when
|
|
// there is more information available (for better errors).
|
|
|
|
pub trait Subst<'tcx> : Sized {
|
|
fn subst(&self, tcx: &ty::ctxt<'tcx>, substs: &Substs<'tcx>) -> Self {
|
|
self.subst_spanned(tcx, substs, None)
|
|
}
|
|
|
|
fn subst_spanned(&self, tcx: &ty::ctxt<'tcx>,
|
|
substs: &Substs<'tcx>,
|
|
span: Option<Span>)
|
|
-> Self;
|
|
}
|
|
|
|
impl<'tcx, T:TypeFoldable<'tcx>> Subst<'tcx> for T {
|
|
fn subst_spanned(&self,
|
|
tcx: &ty::ctxt<'tcx>,
|
|
substs: &Substs<'tcx>,
|
|
span: Option<Span>)
|
|
-> T
|
|
{
|
|
let mut folder = SubstFolder { tcx: tcx,
|
|
substs: substs,
|
|
span: span,
|
|
root_ty: None,
|
|
ty_stack_depth: 0,
|
|
region_binders_passed: 0 };
|
|
(*self).fold_with(&mut folder)
|
|
}
|
|
}
|
|
|
|
///////////////////////////////////////////////////////////////////////////
|
|
// The actual substitution engine itself is a type folder.
|
|
|
|
struct SubstFolder<'a, 'tcx: 'a> {
|
|
tcx: &'a ty::ctxt<'tcx>,
|
|
substs: &'a Substs<'tcx>,
|
|
|
|
// The location for which the substitution is performed, if available.
|
|
span: Option<Span>,
|
|
|
|
// The root type that is being substituted, if available.
|
|
root_ty: Option<Ty<'tcx>>,
|
|
|
|
// Depth of type stack
|
|
ty_stack_depth: uint,
|
|
|
|
// Number of region binders we have passed through while doing the substitution
|
|
region_binders_passed: u32,
|
|
}
|
|
|
|
impl<'a, 'tcx> TypeFolder<'tcx> for SubstFolder<'a, 'tcx> {
|
|
fn tcx(&self) -> &ty::ctxt<'tcx> { self.tcx }
|
|
|
|
fn enter_region_binder(&mut self) {
|
|
self.region_binders_passed += 1;
|
|
}
|
|
|
|
fn exit_region_binder(&mut self) {
|
|
self.region_binders_passed -= 1;
|
|
}
|
|
|
|
fn fold_region(&mut self, r: ty::Region) -> ty::Region {
|
|
// Note: This routine only handles regions that are bound on
|
|
// type declarations and other outer declarations, not those
|
|
// bound in *fn types*. Region substitution of the bound
|
|
// regions that appear in a function signature is done using
|
|
// the specialized routine `ty::replace_late_regions()`.
|
|
match r {
|
|
ty::ReEarlyBound(_, space, i, region_name) => {
|
|
match self.substs.regions {
|
|
ErasedRegions => ty::ReStatic,
|
|
NonerasedRegions(ref regions) =>
|
|
match regions.opt_get(space, i as uint) {
|
|
Some(&r) => {
|
|
self.shift_region_through_binders(r)
|
|
}
|
|
None => {
|
|
let span = self.span.unwrap_or(DUMMY_SP);
|
|
self.tcx().sess.span_bug(
|
|
span,
|
|
&format!("Type parameter out of range \
|
|
when substituting in region {} (root type={}) \
|
|
(space={:?}, index={})",
|
|
region_name.as_str(),
|
|
self.root_ty.repr(self.tcx()),
|
|
space, i)[]);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
_ => r
|
|
}
|
|
}
|
|
|
|
fn fold_ty(&mut self, t: Ty<'tcx>) -> Ty<'tcx> {
|
|
if !ty::type_needs_subst(t) {
|
|
return t;
|
|
}
|
|
|
|
// track the root type we were asked to substitute
|
|
let depth = self.ty_stack_depth;
|
|
if depth == 0 {
|
|
self.root_ty = Some(t);
|
|
}
|
|
self.ty_stack_depth += 1;
|
|
|
|
let t1 = match t.sty {
|
|
ty::ty_param(p) => {
|
|
self.ty_for_param(p, t)
|
|
}
|
|
_ => {
|
|
ty_fold::super_fold_ty(self, t)
|
|
}
|
|
};
|
|
|
|
assert_eq!(depth + 1, self.ty_stack_depth);
|
|
self.ty_stack_depth -= 1;
|
|
if depth == 0 {
|
|
self.root_ty = None;
|
|
}
|
|
|
|
return t1;
|
|
}
|
|
}
|
|
|
|
impl<'a,'tcx> SubstFolder<'a,'tcx> {
|
|
fn ty_for_param(&self, p: ty::ParamTy, source_ty: Ty<'tcx>) -> Ty<'tcx> {
|
|
// Look up the type in the substitutions. It really should be in there.
|
|
let opt_ty = self.substs.types.opt_get(p.space, p.idx as uint);
|
|
let ty = match opt_ty {
|
|
Some(t) => *t,
|
|
None => {
|
|
let span = self.span.unwrap_or(DUMMY_SP);
|
|
self.tcx().sess.span_bug(
|
|
span,
|
|
&format!("Type parameter `{}` ({}/{:?}/{}) out of range \
|
|
when substituting (root type={}) substs={}",
|
|
p.repr(self.tcx()),
|
|
source_ty.repr(self.tcx()),
|
|
p.space,
|
|
p.idx,
|
|
self.root_ty.repr(self.tcx()),
|
|
self.substs.repr(self.tcx()))[]);
|
|
}
|
|
};
|
|
|
|
self.shift_regions_through_binders(ty)
|
|
}
|
|
|
|
/// It is sometimes necessary to adjust the debruijn indices during substitution. This occurs
|
|
/// when we are substituting a type with escaping regions into a context where we have passed
|
|
/// through region binders. That's quite a mouthful. Let's see an example:
|
|
///
|
|
/// ```
|
|
/// type Func<A> = fn(A);
|
|
/// type MetaFunc = for<'a> fn(Func<&'a int>)
|
|
/// ```
|
|
///
|
|
/// The type `MetaFunc`, when fully expanded, will be
|
|
///
|
|
/// for<'a> fn(fn(&'a int))
|
|
/// ^~ ^~ ^~~
|
|
/// | | |
|
|
/// | | DebruijnIndex of 2
|
|
/// Binders
|
|
///
|
|
/// Here the `'a` lifetime is bound in the outer function, but appears as an argument of the
|
|
/// inner one. Therefore, that appearance will have a DebruijnIndex of 2, because we must skip
|
|
/// over the inner binder (remember that we count Debruijn indices from 1). However, in the
|
|
/// definition of `MetaFunc`, the binder is not visible, so the type `&'a int` will have a
|
|
/// debruijn index of 1. It's only during the substitution that we can see we must increase the
|
|
/// depth by 1 to account for the binder that we passed through.
|
|
///
|
|
/// As a second example, consider this twist:
|
|
///
|
|
/// ```
|
|
/// type FuncTuple<A> = (A,fn(A));
|
|
/// type MetaFuncTuple = for<'a> fn(FuncTuple<&'a int>)
|
|
/// ```
|
|
///
|
|
/// Here the final type will be:
|
|
///
|
|
/// for<'a> fn((&'a int, fn(&'a int)))
|
|
/// ^~~ ^~~
|
|
/// | |
|
|
/// DebruijnIndex of 1 |
|
|
/// DebruijnIndex of 2
|
|
///
|
|
/// As indicated in the diagram, here the same type `&'a int` is substituted once, but in the
|
|
/// first case we do not increase the Debruijn index and in the second case we do. The reason
|
|
/// is that only in the second case have we passed through a fn binder.
|
|
fn shift_regions_through_binders(&self, ty: Ty<'tcx>) -> Ty<'tcx> {
|
|
debug!("shift_regions(ty={:?}, region_binders_passed={:?}, type_has_escaping_regions={:?})",
|
|
ty.repr(self.tcx()), self.region_binders_passed, ty::type_has_escaping_regions(ty));
|
|
|
|
if self.region_binders_passed == 0 || !ty::type_has_escaping_regions(ty) {
|
|
return ty;
|
|
}
|
|
|
|
let result = ty_fold::shift_regions(self.tcx(), self.region_binders_passed, &ty);
|
|
debug!("shift_regions: shifted result = {:?}", result.repr(self.tcx()));
|
|
|
|
result
|
|
}
|
|
|
|
fn shift_region_through_binders(&self, region: ty::Region) -> ty::Region {
|
|
ty_fold::shift_region(region, self.region_binders_passed)
|
|
}
|
|
}
|