f6bfd2c65b
This will break code like: fn f(x: &mut int) {} let mut a = box 1i; f(a); Change it to: fn f(x: &mut int) {} let mut a = box 1i; f(&mut *a); RFC 33; issue #10504. [breaking-change]
1803 lines
52 KiB
Rust
1803 lines
52 KiB
Rust
// Copyright 2013 The Rust Project Developers. See the COPYRIGHT
|
|
// file at the top-level directory of this distribution and at
|
|
// http://rust-lang.org/COPYRIGHT.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
|
|
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
|
|
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
|
|
// option. This file may not be copied, modified, or distributed
|
|
// except according to those terms.
|
|
|
|
//! An ordered map and set implemented as self-balancing binary search
|
|
//! trees. The only requirement for the types is that the key implements
|
|
//! `Ord`.
|
|
|
|
use core::prelude::*;
|
|
|
|
use alloc::owned::Box;
|
|
use core::default::Default;
|
|
use core::fmt;
|
|
use core::fmt::Show;
|
|
use core::iter::Peekable;
|
|
use core::iter;
|
|
use core::mem::{replace, swap};
|
|
use core::ptr;
|
|
|
|
use {Collection, Mutable, Set, MutableSet, MutableMap, Map};
|
|
use vec::Vec;
|
|
|
|
// This is implemented as an AA tree, which is a simplified variation of
|
|
// a red-black tree where red (horizontal) nodes can only be added
|
|
// as a right child. The time complexity is the same, and re-balancing
|
|
// operations are more frequent but also cheaper.
|
|
|
|
// Future improvements:
|
|
|
|
// range search - O(log n) retrieval of an iterator from some key
|
|
|
|
// (possibly) implement the overloads Python does for sets:
|
|
// * intersection: &
|
|
// * difference: -
|
|
// * symmetric difference: ^
|
|
// * union: |
|
|
// These would be convenient since the methods work like `each`
|
|
|
|
#[allow(missing_doc)]
|
|
#[deriving(Clone)]
|
|
pub struct TreeMap<K, V> {
|
|
root: Option<Box<TreeNode<K, V>>>,
|
|
length: uint
|
|
}
|
|
|
|
impl<K: PartialEq + Ord, V: PartialEq> PartialEq for TreeMap<K, V> {
|
|
fn eq(&self, other: &TreeMap<K, V>) -> bool {
|
|
self.len() == other.len() &&
|
|
self.iter().zip(other.iter()).all(|(a, b)| a == b)
|
|
}
|
|
}
|
|
|
|
// Lexicographical comparison
|
|
fn lt<K: PartialOrd + Ord, V: PartialOrd>(a: &TreeMap<K, V>,
|
|
b: &TreeMap<K, V>) -> bool {
|
|
// the Zip iterator is as long as the shortest of a and b.
|
|
for ((key_a, value_a), (key_b, value_b)) in a.iter().zip(b.iter()) {
|
|
if *key_a < *key_b { return true; }
|
|
if *key_a > *key_b { return false; }
|
|
if *value_a < *value_b { return true; }
|
|
if *value_a > *value_b { return false; }
|
|
}
|
|
|
|
a.len() < b.len()
|
|
}
|
|
|
|
impl<K: PartialOrd + Ord, V: PartialOrd> PartialOrd for TreeMap<K, V> {
|
|
#[inline]
|
|
fn lt(&self, other: &TreeMap<K, V>) -> bool { lt(self, other) }
|
|
}
|
|
|
|
impl<K: Ord + Show, V: Show> Show for TreeMap<K, V> {
|
|
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
|
|
try!(write!(f, "{{"));
|
|
|
|
for (i, (k, v)) in self.iter().enumerate() {
|
|
if i != 0 { try!(write!(f, ", ")); }
|
|
try!(write!(f, "{}: {}", *k, *v));
|
|
}
|
|
|
|
write!(f, "}}")
|
|
}
|
|
}
|
|
|
|
impl<K: Ord, V> Collection for TreeMap<K, V> {
|
|
fn len(&self) -> uint { self.length }
|
|
}
|
|
|
|
impl<K: Ord, V> Mutable for TreeMap<K, V> {
|
|
fn clear(&mut self) {
|
|
self.root = None;
|
|
self.length = 0
|
|
}
|
|
}
|
|
|
|
impl<K: Ord, V> Map<K, V> for TreeMap<K, V> {
|
|
fn find<'a>(&'a self, key: &K) -> Option<&'a V> {
|
|
let mut current: &'a Option<Box<TreeNode<K, V>>> = &self.root;
|
|
loop {
|
|
match *current {
|
|
Some(ref r) => {
|
|
match key.cmp(&r.key) {
|
|
Less => current = &r.left,
|
|
Greater => current = &r.right,
|
|
Equal => return Some(&r.value)
|
|
}
|
|
}
|
|
None => return None
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<K: Ord, V> MutableMap<K, V> for TreeMap<K, V> {
|
|
#[inline]
|
|
fn find_mut<'a>(&'a mut self, key: &K) -> Option<&'a mut V> {
|
|
find_mut(&mut self.root, key)
|
|
}
|
|
|
|
fn swap(&mut self, key: K, value: V) -> Option<V> {
|
|
let ret = insert(&mut self.root, key, value);
|
|
if ret.is_none() { self.length += 1 }
|
|
ret
|
|
}
|
|
|
|
fn pop(&mut self, key: &K) -> Option<V> {
|
|
let ret = remove(&mut self.root, key);
|
|
if ret.is_some() { self.length -= 1 }
|
|
ret
|
|
}
|
|
}
|
|
|
|
impl<K: Ord, V> Default for TreeMap<K,V> {
|
|
#[inline]
|
|
fn default() -> TreeMap<K, V> { TreeMap::new() }
|
|
}
|
|
|
|
impl<K: Ord, V> TreeMap<K, V> {
|
|
/// Create an empty TreeMap
|
|
pub fn new() -> TreeMap<K, V> { TreeMap{root: None, length: 0} }
|
|
|
|
/// Get a lazy iterator over the key-value pairs in the map.
|
|
/// Requires that it be frozen (immutable).
|
|
pub fn iter<'a>(&'a self) -> Entries<'a, K, V> {
|
|
Entries {
|
|
stack: vec!(),
|
|
node: deref(&self.root),
|
|
remaining_min: self.length,
|
|
remaining_max: self.length
|
|
}
|
|
}
|
|
|
|
/// Get a lazy reverse iterator over the key-value pairs in the map.
|
|
/// Requires that it be frozen (immutable).
|
|
pub fn rev_iter<'a>(&'a self) -> RevEntries<'a, K, V> {
|
|
RevEntries{iter: self.iter()}
|
|
}
|
|
|
|
/// Get a lazy forward iterator over the key-value pairs in the
|
|
/// map, with the values being mutable.
|
|
pub fn mut_iter<'a>(&'a mut self) -> MutEntries<'a, K, V> {
|
|
MutEntries {
|
|
stack: vec!(),
|
|
node: mut_deref(&mut self.root),
|
|
remaining_min: self.length,
|
|
remaining_max: self.length
|
|
}
|
|
}
|
|
/// Get a lazy reverse iterator over the key-value pairs in the
|
|
/// map, with the values being mutable.
|
|
pub fn mut_rev_iter<'a>(&'a mut self) -> RevMutEntries<'a, K, V> {
|
|
RevMutEntries{iter: self.mut_iter()}
|
|
}
|
|
|
|
|
|
/// Get a lazy iterator that consumes the treemap.
|
|
pub fn move_iter(self) -> MoveEntries<K, V> {
|
|
let TreeMap { root: root, length: length } = self;
|
|
let stk = match root {
|
|
None => vec!(),
|
|
Some(box tn) => vec!(tn)
|
|
};
|
|
MoveEntries {
|
|
stack: stk,
|
|
remaining: length
|
|
}
|
|
}
|
|
}
|
|
|
|
// range iterators.
|
|
|
|
macro_rules! bound_setup {
|
|
// initialiser of the iterator to manipulate
|
|
($iter:expr,
|
|
// whether we are looking for the lower or upper bound.
|
|
$is_lower_bound:expr) => {
|
|
{
|
|
let mut iter = $iter;
|
|
loop {
|
|
if !iter.node.is_null() {
|
|
let node_k = unsafe {&(*iter.node).key};
|
|
match k.cmp(node_k) {
|
|
Less => iter.traverse_left(),
|
|
Greater => iter.traverse_right(),
|
|
Equal => {
|
|
if $is_lower_bound {
|
|
iter.traverse_complete();
|
|
return iter;
|
|
} else {
|
|
iter.traverse_right()
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
iter.traverse_complete();
|
|
return iter;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
impl<K: Ord, V> TreeMap<K, V> {
|
|
/// Get a lazy iterator that should be initialized using
|
|
/// `traverse_left`/`traverse_right`/`traverse_complete`.
|
|
fn iter_for_traversal<'a>(&'a self) -> Entries<'a, K, V> {
|
|
Entries {
|
|
stack: vec!(),
|
|
node: deref(&self.root),
|
|
remaining_min: 0,
|
|
remaining_max: self.length
|
|
}
|
|
}
|
|
|
|
/// Return a lazy iterator to the first key-value pair whose key is not less than `k`
|
|
/// If all keys in map are less than `k` an empty iterator is returned.
|
|
pub fn lower_bound<'a>(&'a self, k: &K) -> Entries<'a, K, V> {
|
|
bound_setup!(self.iter_for_traversal(), true)
|
|
}
|
|
|
|
/// Return a lazy iterator to the first key-value pair whose key is greater than `k`
|
|
/// If all keys in map are not greater than `k` an empty iterator is returned.
|
|
pub fn upper_bound<'a>(&'a self, k: &K) -> Entries<'a, K, V> {
|
|
bound_setup!(self.iter_for_traversal(), false)
|
|
}
|
|
|
|
/// Get a lazy iterator that should be initialized using
|
|
/// `traverse_left`/`traverse_right`/`traverse_complete`.
|
|
fn mut_iter_for_traversal<'a>(&'a mut self) -> MutEntries<'a, K, V> {
|
|
MutEntries {
|
|
stack: vec!(),
|
|
node: mut_deref(&mut self.root),
|
|
remaining_min: 0,
|
|
remaining_max: self.length
|
|
}
|
|
}
|
|
|
|
/// Return a lazy value iterator to the first key-value pair (with
|
|
/// the value being mutable) whose key is not less than `k`.
|
|
///
|
|
/// If all keys in map are less than `k` an empty iterator is
|
|
/// returned.
|
|
pub fn mut_lower_bound<'a>(&'a mut self, k: &K) -> MutEntries<'a, K, V> {
|
|
bound_setup!(self.mut_iter_for_traversal(), true)
|
|
}
|
|
|
|
/// Return a lazy iterator to the first key-value pair (with the
|
|
/// value being mutable) whose key is greater than `k`.
|
|
///
|
|
/// If all keys in map are not greater than `k` an empty iterator
|
|
/// is returned.
|
|
pub fn mut_upper_bound<'a>(&'a mut self, k: &K) -> MutEntries<'a, K, V> {
|
|
bound_setup!(self.mut_iter_for_traversal(), false)
|
|
}
|
|
}
|
|
|
|
/// Lazy forward iterator over a map
|
|
pub struct Entries<'a, K, V> {
|
|
stack: Vec<&'a TreeNode<K, V>>,
|
|
// See the comment on MutEntries; this is just to allow
|
|
// code-sharing (for this immutable-values iterator it *could* very
|
|
// well be Option<&'a TreeNode<K,V>>).
|
|
node: *TreeNode<K, V>,
|
|
remaining_min: uint,
|
|
remaining_max: uint
|
|
}
|
|
|
|
/// Lazy backward iterator over a map
|
|
pub struct RevEntries<'a, K, V> {
|
|
iter: Entries<'a, K, V>,
|
|
}
|
|
|
|
/// Lazy forward iterator over a map that allows for the mutation of
|
|
/// the values.
|
|
pub struct MutEntries<'a, K, V> {
|
|
stack: Vec<&'a mut TreeNode<K, V>>,
|
|
// Unfortunately, we require some unsafe-ness to get around the
|
|
// fact that we would be storing a reference *into* one of the
|
|
// nodes in the stack.
|
|
//
|
|
// As far as the compiler knows, this would let us invalidate the
|
|
// reference by assigning a new value to this node's position in
|
|
// its parent, which would cause this current one to be
|
|
// deallocated so this reference would be invalid. (i.e. the
|
|
// compilers complaints are 100% correct.)
|
|
//
|
|
// However, as far as you humans reading this code know (or are
|
|
// about to know, if you haven't read far enough down yet), we are
|
|
// only reading from the TreeNode.{left,right} fields. the only
|
|
// thing that is ever mutated is the .value field (although any
|
|
// actual mutation that happens is done externally, by the
|
|
// iterator consumer). So, don't be so concerned, rustc, we've got
|
|
// it under control.
|
|
//
|
|
// (This field can legitimately be null.)
|
|
node: *mut TreeNode<K, V>,
|
|
remaining_min: uint,
|
|
remaining_max: uint
|
|
}
|
|
|
|
/// Lazy backward iterator over a map
|
|
pub struct RevMutEntries<'a, K, V> {
|
|
iter: MutEntries<'a, K, V>,
|
|
}
|
|
|
|
|
|
// FIXME #5846 we want to be able to choose between &x and &mut x
|
|
// (with many different `x`) below, so we need to optionally pass mut
|
|
// as a tt, but the only thing we can do with a `tt` is pass them to
|
|
// other macros, so this takes the `& <mutability> <operand>` token
|
|
// sequence and forces their evaluation as an expression.
|
|
macro_rules! addr { ($e:expr) => { $e }}
|
|
// putting an optional mut into type signatures
|
|
macro_rules! item { ($i:item) => { $i }}
|
|
|
|
macro_rules! define_iterator {
|
|
($name:ident,
|
|
$rev_name:ident,
|
|
|
|
// the function to go from &m Option<Box<TreeNode>> to *m TreeNode
|
|
deref = $deref:ident,
|
|
|
|
// see comment on `addr!`, this is just an optional `mut`, but
|
|
// there's no support for 0-or-1 repeats.
|
|
addr_mut = $($addr_mut:tt)*
|
|
) => {
|
|
// private methods on the forward iterator (item!() for the
|
|
// addr_mut in the next_ return value)
|
|
item!(impl<'a, K, V> $name<'a, K, V> {
|
|
#[inline(always)]
|
|
fn next_(&mut self, forward: bool) -> Option<(&'a K, &'a $($addr_mut)* V)> {
|
|
while !self.stack.is_empty() || !self.node.is_null() {
|
|
if !self.node.is_null() {
|
|
let node = unsafe {addr!(& $($addr_mut)* *self.node)};
|
|
{
|
|
let next_node = if forward {
|
|
addr!(& $($addr_mut)* node.left)
|
|
} else {
|
|
addr!(& $($addr_mut)* node.right)
|
|
};
|
|
self.node = $deref(next_node);
|
|
}
|
|
self.stack.push(node);
|
|
} else {
|
|
let node = self.stack.pop().unwrap();
|
|
let next_node = if forward {
|
|
addr!(& $($addr_mut)* node.right)
|
|
} else {
|
|
addr!(& $($addr_mut)* node.left)
|
|
};
|
|
self.node = $deref(next_node);
|
|
self.remaining_max -= 1;
|
|
if self.remaining_min > 0 {
|
|
self.remaining_min -= 1;
|
|
}
|
|
return Some((&node.key, addr!(& $($addr_mut)* node.value)));
|
|
}
|
|
}
|
|
None
|
|
}
|
|
|
|
/// traverse_left, traverse_right and traverse_complete are
|
|
/// used to initialize Entries/MutEntries
|
|
/// pointing to element inside tree structure.
|
|
///
|
|
/// They should be used in following manner:
|
|
/// - create iterator using TreeMap::[mut_]iter_for_traversal
|
|
/// - find required node using `traverse_left`/`traverse_right`
|
|
/// (current node is `Entries::node` field)
|
|
/// - complete initialization with `traverse_complete`
|
|
///
|
|
/// After this, iteration will start from `self.node`. If
|
|
/// `self.node` is None iteration will start from last
|
|
/// node from which we traversed left.
|
|
#[inline]
|
|
fn traverse_left(&mut self) {
|
|
let node = unsafe {addr!(& $($addr_mut)* *self.node)};
|
|
self.node = $deref(addr!(& $($addr_mut)* node.left));
|
|
self.stack.push(node);
|
|
}
|
|
|
|
#[inline]
|
|
fn traverse_right(&mut self) {
|
|
let node = unsafe {addr!(& $($addr_mut)* *self.node)};
|
|
self.node = $deref(addr!(& $($addr_mut)* node.right));
|
|
}
|
|
|
|
#[inline]
|
|
fn traverse_complete(&mut self) {
|
|
if !self.node.is_null() {
|
|
unsafe {
|
|
self.stack.push(addr!(& $($addr_mut)* *self.node));
|
|
}
|
|
self.node = ptr::RawPtr::null();
|
|
}
|
|
}
|
|
})
|
|
|
|
// the forward Iterator impl.
|
|
item!(impl<'a, K, V> Iterator<(&'a K, &'a $($addr_mut)* V)> for $name<'a, K, V> {
|
|
/// Advance the iterator to the next node (in order) and return a
|
|
/// tuple with a reference to the key and value. If there are no
|
|
/// more nodes, return `None`.
|
|
fn next(&mut self) -> Option<(&'a K, &'a $($addr_mut)* V)> {
|
|
self.next_(true)
|
|
}
|
|
|
|
#[inline]
|
|
fn size_hint(&self) -> (uint, Option<uint>) {
|
|
(self.remaining_min, Some(self.remaining_max))
|
|
}
|
|
})
|
|
|
|
// the reverse Iterator impl.
|
|
item!(impl<'a, K, V> Iterator<(&'a K, &'a $($addr_mut)* V)> for $rev_name<'a, K, V> {
|
|
fn next(&mut self) -> Option<(&'a K, &'a $($addr_mut)* V)> {
|
|
self.iter.next_(false)
|
|
}
|
|
|
|
#[inline]
|
|
fn size_hint(&self) -> (uint, Option<uint>) {
|
|
self.iter.size_hint()
|
|
}
|
|
})
|
|
}
|
|
} // end of define_iterator
|
|
|
|
define_iterator! {
|
|
Entries,
|
|
RevEntries,
|
|
deref = deref,
|
|
|
|
// immutable, so no mut
|
|
addr_mut =
|
|
}
|
|
define_iterator! {
|
|
MutEntries,
|
|
RevMutEntries,
|
|
deref = mut_deref,
|
|
|
|
addr_mut = mut
|
|
}
|
|
|
|
fn deref<'a, K, V>(node: &'a Option<Box<TreeNode<K, V>>>) -> *TreeNode<K, V> {
|
|
match *node {
|
|
Some(ref n) => {
|
|
let n: &TreeNode<K, V> = *n;
|
|
n as *TreeNode<K, V>
|
|
}
|
|
None => ptr::null()
|
|
}
|
|
}
|
|
|
|
fn mut_deref<K, V>(x: &mut Option<Box<TreeNode<K, V>>>)
|
|
-> *mut TreeNode<K, V> {
|
|
match *x {
|
|
Some(ref mut n) => {
|
|
let n: &mut TreeNode<K, V> = &mut **n;
|
|
n as *mut TreeNode<K, V>
|
|
}
|
|
None => ptr::mut_null()
|
|
}
|
|
}
|
|
|
|
|
|
|
|
/// Lazy forward iterator over a map that consumes the map while iterating
|
|
pub struct MoveEntries<K, V> {
|
|
stack: Vec<TreeNode<K, V>>,
|
|
remaining: uint
|
|
}
|
|
|
|
impl<K, V> Iterator<(K, V)> for MoveEntries<K,V> {
|
|
#[inline]
|
|
fn next(&mut self) -> Option<(K, V)> {
|
|
while !self.stack.is_empty() {
|
|
let TreeNode {
|
|
key: key,
|
|
value: value,
|
|
left: left,
|
|
right: right,
|
|
level: level
|
|
} = self.stack.pop().unwrap();
|
|
|
|
match left {
|
|
Some(box left) => {
|
|
let n = TreeNode {
|
|
key: key,
|
|
value: value,
|
|
left: None,
|
|
right: right,
|
|
level: level
|
|
};
|
|
self.stack.push(n);
|
|
self.stack.push(left);
|
|
}
|
|
None => {
|
|
match right {
|
|
Some(box right) => self.stack.push(right),
|
|
None => ()
|
|
}
|
|
self.remaining -= 1;
|
|
return Some((key, value))
|
|
}
|
|
}
|
|
}
|
|
None
|
|
}
|
|
|
|
#[inline]
|
|
fn size_hint(&self) -> (uint, Option<uint>) {
|
|
(self.remaining, Some(self.remaining))
|
|
}
|
|
|
|
}
|
|
|
|
impl<'a, T> Iterator<&'a T> for SetItems<'a, T> {
|
|
#[inline]
|
|
fn next(&mut self) -> Option<&'a T> {
|
|
self.iter.next().map(|(value, _)| value)
|
|
}
|
|
}
|
|
|
|
impl<'a, T> Iterator<&'a T> for RevSetItems<'a, T> {
|
|
#[inline]
|
|
fn next(&mut self) -> Option<&'a T> {
|
|
self.iter.next().map(|(value, _)| value)
|
|
}
|
|
}
|
|
|
|
/// A implementation of the `Set` trait on top of the `TreeMap` container. The
|
|
/// only requirement is that the type of the elements contained ascribes to the
|
|
/// `Ord` trait.
|
|
#[deriving(Clone)]
|
|
pub struct TreeSet<T> {
|
|
map: TreeMap<T, ()>
|
|
}
|
|
|
|
impl<T: PartialEq + Ord> PartialEq for TreeSet<T> {
|
|
#[inline]
|
|
fn eq(&self, other: &TreeSet<T>) -> bool { self.map == other.map }
|
|
}
|
|
|
|
impl<T: PartialOrd + Ord> PartialOrd for TreeSet<T> {
|
|
#[inline]
|
|
fn lt(&self, other: &TreeSet<T>) -> bool { self.map < other.map }
|
|
}
|
|
|
|
impl<T: Ord + Show> Show for TreeSet<T> {
|
|
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
|
|
try!(write!(f, "{{"));
|
|
|
|
for (i, x) in self.iter().enumerate() {
|
|
if i != 0 { try!(write!(f, ", ")); }
|
|
try!(write!(f, "{}", *x));
|
|
}
|
|
|
|
write!(f, "}}")
|
|
}
|
|
}
|
|
|
|
impl<T: Ord> Collection for TreeSet<T> {
|
|
#[inline]
|
|
fn len(&self) -> uint { self.map.len() }
|
|
}
|
|
|
|
impl<T: Ord> Mutable for TreeSet<T> {
|
|
#[inline]
|
|
fn clear(&mut self) { self.map.clear() }
|
|
}
|
|
|
|
impl<T: Ord> Set<T> for TreeSet<T> {
|
|
#[inline]
|
|
fn contains(&self, value: &T) -> bool {
|
|
self.map.contains_key(value)
|
|
}
|
|
|
|
fn is_disjoint(&self, other: &TreeSet<T>) -> bool {
|
|
self.intersection(other).next().is_none()
|
|
}
|
|
|
|
fn is_subset(&self, other: &TreeSet<T>) -> bool {
|
|
let mut x = self.iter();
|
|
let mut y = other.iter();
|
|
let mut a = x.next();
|
|
let mut b = y.next();
|
|
while a.is_some() {
|
|
if b.is_none() {
|
|
return false;
|
|
}
|
|
|
|
let a1 = a.unwrap();
|
|
let b1 = b.unwrap();
|
|
|
|
match b1.cmp(a1) {
|
|
Less => (),
|
|
Greater => return false,
|
|
Equal => a = x.next(),
|
|
}
|
|
|
|
b = y.next();
|
|
}
|
|
true
|
|
}
|
|
}
|
|
|
|
impl<T: Ord> MutableSet<T> for TreeSet<T> {
|
|
#[inline]
|
|
fn insert(&mut self, value: T) -> bool { self.map.insert(value, ()) }
|
|
|
|
#[inline]
|
|
fn remove(&mut self, value: &T) -> bool { self.map.remove(value) }
|
|
}
|
|
|
|
impl<T: Ord> Default for TreeSet<T> {
|
|
#[inline]
|
|
fn default() -> TreeSet<T> { TreeSet::new() }
|
|
}
|
|
|
|
impl<T: Ord> TreeSet<T> {
|
|
/// Create an empty TreeSet
|
|
#[inline]
|
|
pub fn new() -> TreeSet<T> { TreeSet{map: TreeMap::new()} }
|
|
|
|
/// Get a lazy iterator over the values in the set.
|
|
/// Requires that it be frozen (immutable).
|
|
#[inline]
|
|
pub fn iter<'a>(&'a self) -> SetItems<'a, T> {
|
|
SetItems{iter: self.map.iter()}
|
|
}
|
|
|
|
/// Get a lazy iterator over the values in the set.
|
|
/// Requires that it be frozen (immutable).
|
|
#[inline]
|
|
pub fn rev_iter<'a>(&'a self) -> RevSetItems<'a, T> {
|
|
RevSetItems{iter: self.map.rev_iter()}
|
|
}
|
|
|
|
/// Get a lazy iterator that consumes the set.
|
|
#[inline]
|
|
pub fn move_iter(self) -> MoveSetItems<T> {
|
|
self.map.move_iter().map(|(value, _)| value)
|
|
}
|
|
|
|
/// Get a lazy iterator pointing to the first value not less than `v` (greater or equal).
|
|
/// If all elements in the set are less than `v` empty iterator is returned.
|
|
#[inline]
|
|
pub fn lower_bound<'a>(&'a self, v: &T) -> SetItems<'a, T> {
|
|
SetItems{iter: self.map.lower_bound(v)}
|
|
}
|
|
|
|
/// Get a lazy iterator pointing to the first value greater than `v`.
|
|
/// If all elements in the set are not greater than `v` empty iterator is returned.
|
|
#[inline]
|
|
pub fn upper_bound<'a>(&'a self, v: &T) -> SetItems<'a, T> {
|
|
SetItems{iter: self.map.upper_bound(v)}
|
|
}
|
|
|
|
/// Visit the values (in-order) representing the difference
|
|
pub fn difference<'a>(&'a self, other: &'a TreeSet<T>) -> DifferenceItems<'a, T> {
|
|
DifferenceItems{a: self.iter().peekable(), b: other.iter().peekable()}
|
|
}
|
|
|
|
/// Visit the values (in-order) representing the symmetric difference
|
|
pub fn symmetric_difference<'a>(&'a self, other: &'a TreeSet<T>)
|
|
-> SymDifferenceItems<'a, T> {
|
|
SymDifferenceItems{a: self.iter().peekable(), b: other.iter().peekable()}
|
|
}
|
|
|
|
/// Visit the values (in-order) representing the intersection
|
|
pub fn intersection<'a>(&'a self, other: &'a TreeSet<T>)
|
|
-> IntersectionItems<'a, T> {
|
|
IntersectionItems{a: self.iter().peekable(), b: other.iter().peekable()}
|
|
}
|
|
|
|
/// Visit the values (in-order) representing the union
|
|
pub fn union<'a>(&'a self, other: &'a TreeSet<T>) -> UnionItems<'a, T> {
|
|
UnionItems{a: self.iter().peekable(), b: other.iter().peekable()}
|
|
}
|
|
}
|
|
|
|
/// Lazy forward iterator over a set
|
|
pub struct SetItems<'a, T> {
|
|
iter: Entries<'a, T, ()>
|
|
}
|
|
|
|
/// Lazy backward iterator over a set
|
|
pub struct RevSetItems<'a, T> {
|
|
iter: RevEntries<'a, T, ()>
|
|
}
|
|
|
|
/// Lazy forward iterator over a set that consumes the set while iterating
|
|
pub type MoveSetItems<T> = iter::Map<'static, (T, ()), T, MoveEntries<T, ()>>;
|
|
|
|
/// Lazy iterator producing elements in the set difference (in-order)
|
|
pub struct DifferenceItems<'a, T> {
|
|
a: Peekable<&'a T, SetItems<'a, T>>,
|
|
b: Peekable<&'a T, SetItems<'a, T>>,
|
|
}
|
|
|
|
/// Lazy iterator producing elements in the set symmetric difference (in-order)
|
|
pub struct SymDifferenceItems<'a, T> {
|
|
a: Peekable<&'a T, SetItems<'a, T>>,
|
|
b: Peekable<&'a T, SetItems<'a, T>>,
|
|
}
|
|
|
|
/// Lazy iterator producing elements in the set intersection (in-order)
|
|
pub struct IntersectionItems<'a, T> {
|
|
a: Peekable<&'a T, SetItems<'a, T>>,
|
|
b: Peekable<&'a T, SetItems<'a, T>>,
|
|
}
|
|
|
|
/// Lazy iterator producing elements in the set union (in-order)
|
|
pub struct UnionItems<'a, T> {
|
|
a: Peekable<&'a T, SetItems<'a, T>>,
|
|
b: Peekable<&'a T, SetItems<'a, T>>,
|
|
}
|
|
|
|
/// Compare `x` and `y`, but return `short` if x is None and `long` if y is None
|
|
fn cmp_opt<T: Ord>(x: Option<&T>, y: Option<&T>,
|
|
short: Ordering, long: Ordering) -> Ordering {
|
|
match (x, y) {
|
|
(None , _ ) => short,
|
|
(_ , None ) => long,
|
|
(Some(x1), Some(y1)) => x1.cmp(y1),
|
|
}
|
|
}
|
|
|
|
impl<'a, T: Ord> Iterator<&'a T> for DifferenceItems<'a, T> {
|
|
fn next(&mut self) -> Option<&'a T> {
|
|
loop {
|
|
match cmp_opt(self.a.peek(), self.b.peek(), Less, Less) {
|
|
Less => return self.a.next(),
|
|
Equal => { self.a.next(); self.b.next(); }
|
|
Greater => { self.b.next(); }
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<'a, T: Ord> Iterator<&'a T> for SymDifferenceItems<'a, T> {
|
|
fn next(&mut self) -> Option<&'a T> {
|
|
loop {
|
|
match cmp_opt(self.a.peek(), self.b.peek(), Greater, Less) {
|
|
Less => return self.a.next(),
|
|
Equal => { self.a.next(); self.b.next(); }
|
|
Greater => return self.b.next(),
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<'a, T: Ord> Iterator<&'a T> for IntersectionItems<'a, T> {
|
|
fn next(&mut self) -> Option<&'a T> {
|
|
loop {
|
|
let o_cmp = match (self.a.peek(), self.b.peek()) {
|
|
(None , _ ) => None,
|
|
(_ , None ) => None,
|
|
(Some(a1), Some(b1)) => Some(a1.cmp(b1)),
|
|
};
|
|
match o_cmp {
|
|
None => return None,
|
|
Some(Less) => { self.a.next(); }
|
|
Some(Equal) => { self.b.next(); return self.a.next() }
|
|
Some(Greater) => { self.b.next(); }
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<'a, T: Ord> Iterator<&'a T> for UnionItems<'a, T> {
|
|
fn next(&mut self) -> Option<&'a T> {
|
|
loop {
|
|
match cmp_opt(self.a.peek(), self.b.peek(), Greater, Less) {
|
|
Less => return self.a.next(),
|
|
Equal => { self.b.next(); return self.a.next() }
|
|
Greater => return self.b.next(),
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
// Nodes keep track of their level in the tree, starting at 1 in the
|
|
// leaves and with a red child sharing the level of the parent.
|
|
#[deriving(Clone)]
|
|
struct TreeNode<K, V> {
|
|
key: K,
|
|
value: V,
|
|
left: Option<Box<TreeNode<K, V>>>,
|
|
right: Option<Box<TreeNode<K, V>>>,
|
|
level: uint
|
|
}
|
|
|
|
impl<K: Ord, V> TreeNode<K, V> {
|
|
/// Creates a new tree node.
|
|
#[inline]
|
|
pub fn new(key: K, value: V) -> TreeNode<K, V> {
|
|
TreeNode{key: key, value: value, left: None, right: None, level: 1}
|
|
}
|
|
}
|
|
|
|
// Remove left horizontal link by rotating right
|
|
fn skew<K: Ord, V>(node: &mut Box<TreeNode<K, V>>) {
|
|
if node.left.as_ref().map_or(false, |x| x.level == node.level) {
|
|
let mut save = node.left.take_unwrap();
|
|
swap(&mut node.left, &mut save.right); // save.right now None
|
|
swap(node, &mut save);
|
|
node.right = Some(save);
|
|
}
|
|
}
|
|
|
|
// Remove dual horizontal link by rotating left and increasing level of
|
|
// the parent
|
|
fn split<K: Ord, V>(node: &mut Box<TreeNode<K, V>>) {
|
|
if node.right.as_ref().map_or(false,
|
|
|x| x.right.as_ref().map_or(false, |y| y.level == node.level)) {
|
|
let mut save = node.right.take_unwrap();
|
|
swap(&mut node.right, &mut save.left); // save.left now None
|
|
save.level += 1;
|
|
swap(node, &mut save);
|
|
node.left = Some(save);
|
|
}
|
|
}
|
|
|
|
fn find_mut<'r, K: Ord, V>(node: &'r mut Option<Box<TreeNode<K, V>>>,
|
|
key: &K)
|
|
-> Option<&'r mut V> {
|
|
match *node {
|
|
Some(ref mut x) => {
|
|
match key.cmp(&x.key) {
|
|
Less => find_mut(&mut x.left, key),
|
|
Greater => find_mut(&mut x.right, key),
|
|
Equal => Some(&mut x.value),
|
|
}
|
|
}
|
|
None => None
|
|
}
|
|
}
|
|
|
|
fn insert<K: Ord, V>(node: &mut Option<Box<TreeNode<K, V>>>,
|
|
key: K, value: V) -> Option<V> {
|
|
match *node {
|
|
Some(ref mut save) => {
|
|
match key.cmp(&save.key) {
|
|
Less => {
|
|
let inserted = insert(&mut save.left, key, value);
|
|
skew(save);
|
|
split(save);
|
|
inserted
|
|
}
|
|
Greater => {
|
|
let inserted = insert(&mut save.right, key, value);
|
|
skew(save);
|
|
split(save);
|
|
inserted
|
|
}
|
|
Equal => {
|
|
save.key = key;
|
|
Some(replace(&mut save.value, value))
|
|
}
|
|
}
|
|
}
|
|
None => {
|
|
*node = Some(box TreeNode::new(key, value));
|
|
None
|
|
}
|
|
}
|
|
}
|
|
|
|
fn remove<K: Ord, V>(node: &mut Option<Box<TreeNode<K, V>>>,
|
|
key: &K) -> Option<V> {
|
|
fn heir_swap<K: Ord, V>(node: &mut Box<TreeNode<K, V>>,
|
|
child: &mut Option<Box<TreeNode<K, V>>>) {
|
|
// *could* be done without recursion, but it won't borrow check
|
|
for x in child.mut_iter() {
|
|
if x.right.is_some() {
|
|
heir_swap(node, &mut x.right);
|
|
} else {
|
|
swap(&mut node.key, &mut x.key);
|
|
swap(&mut node.value, &mut x.value);
|
|
}
|
|
}
|
|
}
|
|
|
|
match *node {
|
|
None => {
|
|
return None; // bottom of tree
|
|
}
|
|
Some(ref mut save) => {
|
|
let (ret, rebalance) = match key.cmp(&save.key) {
|
|
Less => (remove(&mut save.left, key), true),
|
|
Greater => (remove(&mut save.right, key), true),
|
|
Equal => {
|
|
if save.left.is_some() {
|
|
if save.right.is_some() {
|
|
let mut left = save.left.take_unwrap();
|
|
if left.right.is_some() {
|
|
heir_swap(save, &mut left.right);
|
|
} else {
|
|
swap(&mut save.key, &mut left.key);
|
|
swap(&mut save.value, &mut left.value);
|
|
}
|
|
save.left = Some(left);
|
|
(remove(&mut save.left, key), true)
|
|
} else {
|
|
let new = save.left.take_unwrap();
|
|
let box TreeNode{value, ..} = replace(save, new);
|
|
*save = save.left.take_unwrap();
|
|
(Some(value), true)
|
|
}
|
|
} else if save.right.is_some() {
|
|
let new = save.right.take_unwrap();
|
|
let box TreeNode{value, ..} = replace(save, new);
|
|
(Some(value), true)
|
|
} else {
|
|
(None, false)
|
|
}
|
|
}
|
|
};
|
|
|
|
if rebalance {
|
|
let left_level = save.left.as_ref().map_or(0, |x| x.level);
|
|
let right_level = save.right.as_ref().map_or(0, |x| x.level);
|
|
|
|
// re-balance, if necessary
|
|
if left_level < save.level - 1 || right_level < save.level - 1 {
|
|
save.level -= 1;
|
|
|
|
if right_level > save.level {
|
|
for x in save.right.mut_iter() { x.level = save.level }
|
|
}
|
|
|
|
skew(save);
|
|
|
|
for right in save.right.mut_iter() {
|
|
skew(right);
|
|
for x in right.right.mut_iter() { skew(x) }
|
|
}
|
|
|
|
split(save);
|
|
for x in save.right.mut_iter() { split(x) }
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
}
|
|
}
|
|
return match node.take() {
|
|
Some(box TreeNode{value, ..}) => Some(value), None => fail!()
|
|
};
|
|
}
|
|
|
|
impl<K: Ord, V> FromIterator<(K, V)> for TreeMap<K, V> {
|
|
fn from_iter<T: Iterator<(K, V)>>(iter: T) -> TreeMap<K, V> {
|
|
let mut map = TreeMap::new();
|
|
map.extend(iter);
|
|
map
|
|
}
|
|
}
|
|
|
|
impl<K: Ord, V> Extendable<(K, V)> for TreeMap<K, V> {
|
|
#[inline]
|
|
fn extend<T: Iterator<(K, V)>>(&mut self, mut iter: T) {
|
|
for (k, v) in iter {
|
|
self.insert(k, v);
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<T: Ord> FromIterator<T> for TreeSet<T> {
|
|
fn from_iter<Iter: Iterator<T>>(iter: Iter) -> TreeSet<T> {
|
|
let mut set = TreeSet::new();
|
|
set.extend(iter);
|
|
set
|
|
}
|
|
}
|
|
|
|
impl<T: Ord> Extendable<T> for TreeSet<T> {
|
|
#[inline]
|
|
fn extend<Iter: Iterator<T>>(&mut self, mut iter: Iter) {
|
|
for elem in iter {
|
|
self.insert(elem);
|
|
}
|
|
}
|
|
}
|
|
|
|
#[cfg(test)]
|
|
mod test_treemap {
|
|
use std::prelude::*;
|
|
use std::rand::Rng;
|
|
use std::rand;
|
|
|
|
use {Map, MutableMap, Mutable};
|
|
use super::{TreeMap, TreeNode};
|
|
|
|
#[test]
|
|
fn find_empty() {
|
|
let m: TreeMap<int,int> = TreeMap::new();
|
|
assert!(m.find(&5) == None);
|
|
}
|
|
|
|
#[test]
|
|
fn find_not_found() {
|
|
let mut m = TreeMap::new();
|
|
assert!(m.insert(1i, 2i));
|
|
assert!(m.insert(5i, 3i));
|
|
assert!(m.insert(9i, 3i));
|
|
assert_eq!(m.find(&2), None);
|
|
}
|
|
|
|
#[test]
|
|
fn test_find_mut() {
|
|
let mut m = TreeMap::new();
|
|
assert!(m.insert(1i, 12i));
|
|
assert!(m.insert(2, 8));
|
|
assert!(m.insert(5, 14));
|
|
let new = 100;
|
|
match m.find_mut(&5) {
|
|
None => fail!(), Some(x) => *x = new
|
|
}
|
|
assert_eq!(m.find(&5), Some(&new));
|
|
}
|
|
|
|
#[test]
|
|
fn insert_replace() {
|
|
let mut m = TreeMap::new();
|
|
assert!(m.insert(5i, 2i));
|
|
assert!(m.insert(2, 9));
|
|
assert!(!m.insert(2, 11));
|
|
assert_eq!(m.find(&2).unwrap(), &11);
|
|
}
|
|
|
|
#[test]
|
|
fn test_clear() {
|
|
let mut m = TreeMap::new();
|
|
m.clear();
|
|
assert!(m.insert(5i, 11i));
|
|
assert!(m.insert(12, -3));
|
|
assert!(m.insert(19, 2));
|
|
m.clear();
|
|
assert!(m.find(&5).is_none());
|
|
assert!(m.find(&12).is_none());
|
|
assert!(m.find(&19).is_none());
|
|
assert!(m.is_empty());
|
|
}
|
|
|
|
#[test]
|
|
fn u8_map() {
|
|
let mut m = TreeMap::new();
|
|
|
|
let k1 = "foo".as_bytes();
|
|
let k2 = "bar".as_bytes();
|
|
let v1 = "baz".as_bytes();
|
|
let v2 = "foobar".as_bytes();
|
|
|
|
m.insert(k1.clone(), v1.clone());
|
|
m.insert(k2.clone(), v2.clone());
|
|
|
|
assert_eq!(m.find(&k2), Some(&v2));
|
|
assert_eq!(m.find(&k1), Some(&v1));
|
|
}
|
|
|
|
fn check_equal<K: PartialEq + Ord, V: PartialEq>(ctrl: &[(K, V)],
|
|
map: &TreeMap<K, V>) {
|
|
assert_eq!(ctrl.is_empty(), map.is_empty());
|
|
for x in ctrl.iter() {
|
|
let &(ref k, ref v) = x;
|
|
assert!(map.find(k).unwrap() == v)
|
|
}
|
|
for (map_k, map_v) in map.iter() {
|
|
let mut found = false;
|
|
for x in ctrl.iter() {
|
|
let &(ref ctrl_k, ref ctrl_v) = x;
|
|
if *map_k == *ctrl_k {
|
|
assert!(*map_v == *ctrl_v);
|
|
found = true;
|
|
break;
|
|
}
|
|
}
|
|
assert!(found);
|
|
}
|
|
}
|
|
|
|
fn check_left<K: Ord, V>(node: &Option<Box<TreeNode<K, V>>>,
|
|
parent: &Box<TreeNode<K, V>>) {
|
|
match *node {
|
|
Some(ref r) => {
|
|
assert_eq!(r.key.cmp(&parent.key), Less);
|
|
assert!(r.level == parent.level - 1); // left is black
|
|
check_left(&r.left, r);
|
|
check_right(&r.right, r, false);
|
|
}
|
|
None => assert!(parent.level == 1) // parent is leaf
|
|
}
|
|
}
|
|
|
|
fn check_right<K: Ord, V>(node: &Option<Box<TreeNode<K, V>>>,
|
|
parent: &Box<TreeNode<K, V>>,
|
|
parent_red: bool) {
|
|
match *node {
|
|
Some(ref r) => {
|
|
assert_eq!(r.key.cmp(&parent.key), Greater);
|
|
let red = r.level == parent.level;
|
|
if parent_red { assert!(!red) } // no dual horizontal links
|
|
// Right red or black
|
|
assert!(red || r.level == parent.level - 1);
|
|
check_left(&r.left, r);
|
|
check_right(&r.right, r, red);
|
|
}
|
|
None => assert!(parent.level == 1) // parent is leaf
|
|
}
|
|
}
|
|
|
|
fn check_structure<K: Ord, V>(map: &TreeMap<K, V>) {
|
|
match map.root {
|
|
Some(ref r) => {
|
|
check_left(&r.left, r);
|
|
check_right(&r.right, r, false);
|
|
}
|
|
None => ()
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
fn test_rand_int() {
|
|
let mut map: TreeMap<int,int> = TreeMap::new();
|
|
let mut ctrl = vec![];
|
|
|
|
check_equal(ctrl.as_slice(), &map);
|
|
assert!(map.find(&5).is_none());
|
|
|
|
let mut rng: rand::IsaacRng = rand::SeedableRng::from_seed(&[42]);
|
|
|
|
for _ in range(0u, 3) {
|
|
for _ in range(0u, 90) {
|
|
let k = rng.gen();
|
|
let v = rng.gen();
|
|
if !ctrl.iter().any(|x| x == &(k, v)) {
|
|
assert!(map.insert(k, v));
|
|
ctrl.push((k, v));
|
|
check_structure(&map);
|
|
check_equal(ctrl.as_slice(), &map);
|
|
}
|
|
}
|
|
|
|
for _ in range(0u, 30) {
|
|
let r = rng.gen_range(0, ctrl.len());
|
|
let (key, _) = ctrl.remove(r).unwrap();
|
|
assert!(map.remove(&key));
|
|
check_structure(&map);
|
|
check_equal(ctrl.as_slice(), &map);
|
|
}
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
fn test_len() {
|
|
let mut m = TreeMap::new();
|
|
assert!(m.insert(3i, 6i));
|
|
assert_eq!(m.len(), 1);
|
|
assert!(m.insert(0, 0));
|
|
assert_eq!(m.len(), 2);
|
|
assert!(m.insert(4, 8));
|
|
assert_eq!(m.len(), 3);
|
|
assert!(m.remove(&3));
|
|
assert_eq!(m.len(), 2);
|
|
assert!(!m.remove(&5));
|
|
assert_eq!(m.len(), 2);
|
|
assert!(m.insert(2, 4));
|
|
assert_eq!(m.len(), 3);
|
|
assert!(m.insert(1, 2));
|
|
assert_eq!(m.len(), 4);
|
|
}
|
|
|
|
#[test]
|
|
fn test_iterator() {
|
|
let mut m = TreeMap::new();
|
|
|
|
assert!(m.insert(3i, 6i));
|
|
assert!(m.insert(0, 0));
|
|
assert!(m.insert(4, 8));
|
|
assert!(m.insert(2, 4));
|
|
assert!(m.insert(1, 2));
|
|
|
|
let mut n = 0;
|
|
for (k, v) in m.iter() {
|
|
assert_eq!(*k, n);
|
|
assert_eq!(*v, n * 2);
|
|
n += 1;
|
|
}
|
|
assert_eq!(n, 5);
|
|
}
|
|
|
|
#[test]
|
|
fn test_interval_iteration() {
|
|
let mut m = TreeMap::new();
|
|
for i in range(1i, 100i) {
|
|
assert!(m.insert(i * 2, i * 4));
|
|
}
|
|
|
|
for i in range(1i, 198i) {
|
|
let mut lb_it = m.lower_bound(&i);
|
|
let (&k, &v) = lb_it.next().unwrap();
|
|
let lb = i + i % 2;
|
|
assert_eq!(lb, k);
|
|
assert_eq!(lb * 2, v);
|
|
|
|
let mut ub_it = m.upper_bound(&i);
|
|
let (&k, &v) = ub_it.next().unwrap();
|
|
let ub = i + 2 - i % 2;
|
|
assert_eq!(ub, k);
|
|
assert_eq!(ub * 2, v);
|
|
}
|
|
let mut end_it = m.lower_bound(&199);
|
|
assert_eq!(end_it.next(), None);
|
|
}
|
|
|
|
#[test]
|
|
fn test_rev_iter() {
|
|
let mut m = TreeMap::new();
|
|
|
|
assert!(m.insert(3i, 6i));
|
|
assert!(m.insert(0, 0));
|
|
assert!(m.insert(4, 8));
|
|
assert!(m.insert(2, 4));
|
|
assert!(m.insert(1, 2));
|
|
|
|
let mut n = 4;
|
|
for (k, v) in m.rev_iter() {
|
|
assert_eq!(*k, n);
|
|
assert_eq!(*v, n * 2);
|
|
n -= 1;
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
fn test_mut_iter() {
|
|
let mut m = TreeMap::new();
|
|
for i in range(0u, 10) {
|
|
assert!(m.insert(i, 100 * i));
|
|
}
|
|
|
|
for (i, (&k, v)) in m.mut_iter().enumerate() {
|
|
*v += k * 10 + i; // 000 + 00 + 0, 100 + 10 + 1, ...
|
|
}
|
|
|
|
for (&k, &v) in m.iter() {
|
|
assert_eq!(v, 111 * k);
|
|
}
|
|
}
|
|
#[test]
|
|
fn test_mut_rev_iter() {
|
|
let mut m = TreeMap::new();
|
|
for i in range(0u, 10) {
|
|
assert!(m.insert(i, 100 * i));
|
|
}
|
|
|
|
for (i, (&k, v)) in m.mut_rev_iter().enumerate() {
|
|
*v += k * 10 + (9 - i); // 900 + 90 + (9 - 0), 800 + 80 + (9 - 1), ...
|
|
}
|
|
|
|
for (&k, &v) in m.iter() {
|
|
assert_eq!(v, 111 * k);
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
fn test_mut_interval_iter() {
|
|
let mut m_lower = TreeMap::new();
|
|
let mut m_upper = TreeMap::new();
|
|
for i in range(1i, 100i) {
|
|
assert!(m_lower.insert(i * 2, i * 4));
|
|
assert!(m_upper.insert(i * 2, i * 4));
|
|
}
|
|
|
|
for i in range(1i, 199) {
|
|
let mut lb_it = m_lower.mut_lower_bound(&i);
|
|
let (&k, v) = lb_it.next().unwrap();
|
|
let lb = i + i % 2;
|
|
assert_eq!(lb, k);
|
|
*v -= k;
|
|
}
|
|
for i in range(0i, 198) {
|
|
let mut ub_it = m_upper.mut_upper_bound(&i);
|
|
let (&k, v) = ub_it.next().unwrap();
|
|
let ub = i + 2 - i % 2;
|
|
assert_eq!(ub, k);
|
|
*v -= k;
|
|
}
|
|
|
|
assert!(m_lower.mut_lower_bound(&199).next().is_none());
|
|
|
|
assert!(m_upper.mut_upper_bound(&198).next().is_none());
|
|
|
|
assert!(m_lower.iter().all(|(_, &x)| x == 0));
|
|
assert!(m_upper.iter().all(|(_, &x)| x == 0));
|
|
}
|
|
|
|
#[test]
|
|
fn test_eq() {
|
|
let mut a = TreeMap::new();
|
|
let mut b = TreeMap::new();
|
|
|
|
assert!(a == b);
|
|
assert!(a.insert(0i, 5i));
|
|
assert!(a != b);
|
|
assert!(b.insert(0, 4));
|
|
assert!(a != b);
|
|
assert!(a.insert(5, 19));
|
|
assert!(a != b);
|
|
assert!(!b.insert(0, 5));
|
|
assert!(a != b);
|
|
assert!(b.insert(5, 19));
|
|
assert!(a == b);
|
|
}
|
|
|
|
#[test]
|
|
fn test_lt() {
|
|
let mut a = TreeMap::new();
|
|
let mut b = TreeMap::new();
|
|
|
|
assert!(!(a < b) && !(b < a));
|
|
assert!(b.insert(0i, 5i));
|
|
assert!(a < b);
|
|
assert!(a.insert(0, 7));
|
|
assert!(!(a < b) && b < a);
|
|
assert!(b.insert(-2, 0));
|
|
assert!(b < a);
|
|
assert!(a.insert(-5, 2));
|
|
assert!(a < b);
|
|
assert!(a.insert(6, 2));
|
|
assert!(a < b && !(b < a));
|
|
}
|
|
|
|
#[test]
|
|
fn test_ord() {
|
|
let mut a = TreeMap::new();
|
|
let mut b = TreeMap::new();
|
|
|
|
assert!(a <= b && a >= b);
|
|
assert!(a.insert(1i, 1i));
|
|
assert!(a > b && a >= b);
|
|
assert!(b < a && b <= a);
|
|
assert!(b.insert(2, 2));
|
|
assert!(b > a && b >= a);
|
|
assert!(a < b && a <= b);
|
|
}
|
|
|
|
#[test]
|
|
fn test_show() {
|
|
let mut map: TreeMap<int, int> = TreeMap::new();
|
|
let empty: TreeMap<int, int> = TreeMap::new();
|
|
|
|
map.insert(1, 2);
|
|
map.insert(3, 4);
|
|
|
|
let map_str = format!("{}", map);
|
|
|
|
assert!(map_str == "{1: 2, 3: 4}".to_string());
|
|
assert_eq!(format!("{}", empty), "{}".to_string());
|
|
}
|
|
|
|
#[test]
|
|
fn test_lazy_iterator() {
|
|
let mut m = TreeMap::new();
|
|
let (x1, y1) = (2i, 5i);
|
|
let (x2, y2) = (9, 12);
|
|
let (x3, y3) = (20, -3);
|
|
let (x4, y4) = (29, 5);
|
|
let (x5, y5) = (103, 3);
|
|
|
|
assert!(m.insert(x1, y1));
|
|
assert!(m.insert(x2, y2));
|
|
assert!(m.insert(x3, y3));
|
|
assert!(m.insert(x4, y4));
|
|
assert!(m.insert(x5, y5));
|
|
|
|
let m = m;
|
|
let mut a = m.iter();
|
|
|
|
assert_eq!(a.next().unwrap(), (&x1, &y1));
|
|
assert_eq!(a.next().unwrap(), (&x2, &y2));
|
|
assert_eq!(a.next().unwrap(), (&x3, &y3));
|
|
assert_eq!(a.next().unwrap(), (&x4, &y4));
|
|
assert_eq!(a.next().unwrap(), (&x5, &y5));
|
|
|
|
assert!(a.next().is_none());
|
|
|
|
let mut b = m.iter();
|
|
|
|
let expected = [(&x1, &y1), (&x2, &y2), (&x3, &y3), (&x4, &y4),
|
|
(&x5, &y5)];
|
|
let mut i = 0;
|
|
|
|
for x in b {
|
|
assert_eq!(expected[i], x);
|
|
i += 1;
|
|
|
|
if i == 2 {
|
|
break
|
|
}
|
|
}
|
|
|
|
for x in b {
|
|
assert_eq!(expected[i], x);
|
|
i += 1;
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
fn test_from_iter() {
|
|
let xs = [(1i, 1i), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6)];
|
|
|
|
let map: TreeMap<int, int> = xs.iter().map(|&x| x).collect();
|
|
|
|
for &(k, v) in xs.iter() {
|
|
assert_eq!(map.find(&k), Some(&v));
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
#[cfg(test)]
|
|
mod bench {
|
|
use test::Bencher;
|
|
|
|
use super::TreeMap;
|
|
use deque::bench::{insert_rand_n, insert_seq_n, find_rand_n, find_seq_n};
|
|
|
|
// Find seq
|
|
#[bench]
|
|
pub fn insert_rand_100(b: &mut Bencher) {
|
|
let mut m : TreeMap<uint,uint> = TreeMap::new();
|
|
insert_rand_n(100, &mut m, b);
|
|
}
|
|
|
|
#[bench]
|
|
pub fn insert_rand_10_000(b: &mut Bencher) {
|
|
let mut m : TreeMap<uint,uint> = TreeMap::new();
|
|
insert_rand_n(10_000, &mut m, b);
|
|
}
|
|
|
|
// Insert seq
|
|
#[bench]
|
|
pub fn insert_seq_100(b: &mut Bencher) {
|
|
let mut m : TreeMap<uint,uint> = TreeMap::new();
|
|
insert_seq_n(100, &mut m, b);
|
|
}
|
|
|
|
#[bench]
|
|
pub fn insert_seq_10_000(b: &mut Bencher) {
|
|
let mut m : TreeMap<uint,uint> = TreeMap::new();
|
|
insert_seq_n(10_000, &mut m, b);
|
|
}
|
|
|
|
// Find rand
|
|
#[bench]
|
|
pub fn find_rand_100(b: &mut Bencher) {
|
|
let mut m : TreeMap<uint,uint> = TreeMap::new();
|
|
find_rand_n(100, &mut m, b);
|
|
}
|
|
|
|
#[bench]
|
|
pub fn find_rand_10_000(b: &mut Bencher) {
|
|
let mut m : TreeMap<uint,uint> = TreeMap::new();
|
|
find_rand_n(10_000, &mut m, b);
|
|
}
|
|
|
|
// Find seq
|
|
#[bench]
|
|
pub fn find_seq_100(b: &mut Bencher) {
|
|
let mut m : TreeMap<uint,uint> = TreeMap::new();
|
|
find_seq_n(100, &mut m, b);
|
|
}
|
|
|
|
#[bench]
|
|
pub fn find_seq_10_000(b: &mut Bencher) {
|
|
let mut m : TreeMap<uint,uint> = TreeMap::new();
|
|
find_seq_n(10_000, &mut m, b);
|
|
}
|
|
}
|
|
|
|
#[cfg(test)]
|
|
mod test_set {
|
|
use std::prelude::*;
|
|
|
|
use {Set, MutableSet, Mutable, MutableMap};
|
|
use super::{TreeMap, TreeSet};
|
|
|
|
#[test]
|
|
fn test_clear() {
|
|
let mut s = TreeSet::new();
|
|
s.clear();
|
|
assert!(s.insert(5i));
|
|
assert!(s.insert(12));
|
|
assert!(s.insert(19));
|
|
s.clear();
|
|
assert!(!s.contains(&5));
|
|
assert!(!s.contains(&12));
|
|
assert!(!s.contains(&19));
|
|
assert!(s.is_empty());
|
|
}
|
|
|
|
#[test]
|
|
fn test_disjoint() {
|
|
let mut xs = TreeSet::new();
|
|
let mut ys = TreeSet::new();
|
|
assert!(xs.is_disjoint(&ys));
|
|
assert!(ys.is_disjoint(&xs));
|
|
assert!(xs.insert(5i));
|
|
assert!(ys.insert(11i));
|
|
assert!(xs.is_disjoint(&ys));
|
|
assert!(ys.is_disjoint(&xs));
|
|
assert!(xs.insert(7));
|
|
assert!(xs.insert(19));
|
|
assert!(xs.insert(4));
|
|
assert!(ys.insert(2));
|
|
assert!(ys.insert(-11));
|
|
assert!(xs.is_disjoint(&ys));
|
|
assert!(ys.is_disjoint(&xs));
|
|
assert!(ys.insert(7));
|
|
assert!(!xs.is_disjoint(&ys));
|
|
assert!(!ys.is_disjoint(&xs));
|
|
}
|
|
|
|
#[test]
|
|
fn test_subset_and_superset() {
|
|
let mut a = TreeSet::new();
|
|
assert!(a.insert(0i));
|
|
assert!(a.insert(5));
|
|
assert!(a.insert(11));
|
|
assert!(a.insert(7));
|
|
|
|
let mut b = TreeSet::new();
|
|
assert!(b.insert(0i));
|
|
assert!(b.insert(7));
|
|
assert!(b.insert(19));
|
|
assert!(b.insert(250));
|
|
assert!(b.insert(11));
|
|
assert!(b.insert(200));
|
|
|
|
assert!(!a.is_subset(&b));
|
|
assert!(!a.is_superset(&b));
|
|
assert!(!b.is_subset(&a));
|
|
assert!(!b.is_superset(&a));
|
|
|
|
assert!(b.insert(5));
|
|
|
|
assert!(a.is_subset(&b));
|
|
assert!(!a.is_superset(&b));
|
|
assert!(!b.is_subset(&a));
|
|
assert!(b.is_superset(&a));
|
|
}
|
|
|
|
#[test]
|
|
fn test_iterator() {
|
|
let mut m = TreeSet::new();
|
|
|
|
assert!(m.insert(3i));
|
|
assert!(m.insert(0));
|
|
assert!(m.insert(4));
|
|
assert!(m.insert(2));
|
|
assert!(m.insert(1));
|
|
|
|
let mut n = 0;
|
|
for x in m.iter() {
|
|
assert_eq!(*x, n);
|
|
n += 1
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
fn test_rev_iter() {
|
|
let mut m = TreeSet::new();
|
|
|
|
assert!(m.insert(3i));
|
|
assert!(m.insert(0));
|
|
assert!(m.insert(4));
|
|
assert!(m.insert(2));
|
|
assert!(m.insert(1));
|
|
|
|
let mut n = 4;
|
|
for x in m.rev_iter() {
|
|
assert_eq!(*x, n);
|
|
n -= 1;
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
fn test_move_iter() {
|
|
let s: TreeSet<int> = range(0i, 5).collect();
|
|
|
|
let mut n = 0;
|
|
for x in s.move_iter() {
|
|
assert_eq!(x, n);
|
|
n += 1;
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
fn test_move_iter_size_hint() {
|
|
let s: TreeSet<int> = vec!(0i, 1).move_iter().collect();
|
|
|
|
let mut it = s.move_iter();
|
|
|
|
assert_eq!(it.size_hint(), (2, Some(2)));
|
|
assert!(it.next() != None);
|
|
|
|
assert_eq!(it.size_hint(), (1, Some(1)));
|
|
assert!(it.next() != None);
|
|
|
|
assert_eq!(it.size_hint(), (0, Some(0)));
|
|
assert_eq!(it.next(), None);
|
|
}
|
|
|
|
#[test]
|
|
fn test_clone_eq() {
|
|
let mut m = TreeSet::new();
|
|
|
|
m.insert(1i);
|
|
m.insert(2);
|
|
|
|
assert!(m.clone() == m);
|
|
}
|
|
|
|
fn check(a: &[int],
|
|
b: &[int],
|
|
expected: &[int],
|
|
f: |&TreeSet<int>, &TreeSet<int>, f: |&int| -> bool| -> bool) {
|
|
let mut set_a = TreeSet::new();
|
|
let mut set_b = TreeSet::new();
|
|
|
|
for x in a.iter() { assert!(set_a.insert(*x)) }
|
|
for y in b.iter() { assert!(set_b.insert(*y)) }
|
|
|
|
let mut i = 0;
|
|
f(&set_a, &set_b, |x| {
|
|
assert_eq!(*x, expected[i]);
|
|
i += 1;
|
|
true
|
|
});
|
|
assert_eq!(i, expected.len());
|
|
}
|
|
|
|
#[test]
|
|
fn test_intersection() {
|
|
fn check_intersection(a: &[int], b: &[int], expected: &[int]) {
|
|
check(a, b, expected, |x, y, f| x.intersection(y).advance(f))
|
|
}
|
|
|
|
check_intersection([], [], []);
|
|
check_intersection([1, 2, 3], [], []);
|
|
check_intersection([], [1, 2, 3], []);
|
|
check_intersection([2], [1, 2, 3], [2]);
|
|
check_intersection([1, 2, 3], [2], [2]);
|
|
check_intersection([11, 1, 3, 77, 103, 5, -5],
|
|
[2, 11, 77, -9, -42, 5, 3],
|
|
[3, 5, 11, 77]);
|
|
}
|
|
|
|
#[test]
|
|
fn test_difference() {
|
|
fn check_difference(a: &[int], b: &[int], expected: &[int]) {
|
|
check(a, b, expected, |x, y, f| x.difference(y).advance(f))
|
|
}
|
|
|
|
check_difference([], [], []);
|
|
check_difference([1, 12], [], [1, 12]);
|
|
check_difference([], [1, 2, 3, 9], []);
|
|
check_difference([1, 3, 5, 9, 11],
|
|
[3, 9],
|
|
[1, 5, 11]);
|
|
check_difference([-5, 11, 22, 33, 40, 42],
|
|
[-12, -5, 14, 23, 34, 38, 39, 50],
|
|
[11, 22, 33, 40, 42]);
|
|
}
|
|
|
|
#[test]
|
|
fn test_symmetric_difference() {
|
|
fn check_symmetric_difference(a: &[int], b: &[int],
|
|
expected: &[int]) {
|
|
check(a, b, expected, |x, y, f| x.symmetric_difference(y).advance(f))
|
|
}
|
|
|
|
check_symmetric_difference([], [], []);
|
|
check_symmetric_difference([1, 2, 3], [2], [1, 3]);
|
|
check_symmetric_difference([2], [1, 2, 3], [1, 3]);
|
|
check_symmetric_difference([1, 3, 5, 9, 11],
|
|
[-2, 3, 9, 14, 22],
|
|
[-2, 1, 5, 11, 14, 22]);
|
|
}
|
|
|
|
#[test]
|
|
fn test_union() {
|
|
fn check_union(a: &[int], b: &[int],
|
|
expected: &[int]) {
|
|
check(a, b, expected, |x, y, f| x.union(y).advance(f))
|
|
}
|
|
|
|
check_union([], [], []);
|
|
check_union([1, 2, 3], [2], [1, 2, 3]);
|
|
check_union([2], [1, 2, 3], [1, 2, 3]);
|
|
check_union([1, 3, 5, 9, 11, 16, 19, 24],
|
|
[-2, 1, 5, 9, 13, 19],
|
|
[-2, 1, 3, 5, 9, 11, 13, 16, 19, 24]);
|
|
}
|
|
|
|
#[test]
|
|
fn test_zip() {
|
|
let mut x = TreeSet::new();
|
|
x.insert(5u);
|
|
x.insert(12u);
|
|
x.insert(11u);
|
|
|
|
let mut y = TreeSet::new();
|
|
y.insert("foo");
|
|
y.insert("bar");
|
|
|
|
let x = x;
|
|
let y = y;
|
|
let mut z = x.iter().zip(y.iter());
|
|
|
|
// FIXME: #5801: this needs a type hint to compile...
|
|
let result: Option<(&uint, & &'static str)> = z.next();
|
|
assert_eq!(result.unwrap(), (&5u, &("bar")));
|
|
|
|
let result: Option<(&uint, & &'static str)> = z.next();
|
|
assert_eq!(result.unwrap(), (&11u, &("foo")));
|
|
|
|
let result: Option<(&uint, & &'static str)> = z.next();
|
|
assert!(result.is_none());
|
|
}
|
|
|
|
#[test]
|
|
fn test_swap() {
|
|
let mut m = TreeMap::new();
|
|
assert_eq!(m.swap(1u, 2i), None);
|
|
assert_eq!(m.swap(1u, 3i), Some(2));
|
|
assert_eq!(m.swap(1u, 4i), Some(3));
|
|
}
|
|
|
|
#[test]
|
|
fn test_pop() {
|
|
let mut m = TreeMap::new();
|
|
m.insert(1u, 2i);
|
|
assert_eq!(m.pop(&1), Some(2));
|
|
assert_eq!(m.pop(&1), None);
|
|
}
|
|
|
|
#[test]
|
|
fn test_from_iter() {
|
|
let xs = [1i, 2, 3, 4, 5, 6, 7, 8, 9];
|
|
|
|
let set: TreeSet<int> = xs.iter().map(|&x| x).collect();
|
|
|
|
for x in xs.iter() {
|
|
assert!(set.contains(x));
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
fn test_show() {
|
|
let mut set: TreeSet<int> = TreeSet::new();
|
|
let empty: TreeSet<int> = TreeSet::new();
|
|
|
|
set.insert(1);
|
|
set.insert(2);
|
|
|
|
let set_str = format!("{}", set);
|
|
|
|
assert!(set_str == "{1, 2}".to_string());
|
|
assert_eq!(format!("{}", empty), "{}".to_string());
|
|
}
|
|
}
|