138 lines
3.4 KiB
Python
138 lines
3.4 KiB
Python
#!/usr/bin/env python2.7
|
|
|
|
"""
|
|
Generate powers of ten using William Clinger's ``AlgorithmM`` for use in
|
|
decimal to floating point conversions.
|
|
|
|
Specifically, computes and outputs (as Rust code) a table of 10^e for some
|
|
range of exponents e. The output is one array of 64 bit significands and
|
|
another array of corresponding base two exponents. The approximations are
|
|
normalized and rounded perfectly, i.e., within 0.5 ULP of the true value.
|
|
|
|
The representation ([u64], [i16]) instead of the more natural [(u64, i16)]
|
|
is used because (u64, i16) has a ton of padding which would make the table
|
|
even larger, and it's already uncomfortably large (6 KiB).
|
|
"""
|
|
from __future__ import print_function
|
|
import sys
|
|
from math import ceil, log
|
|
from fractions import Fraction
|
|
from collections import namedtuple
|
|
|
|
|
|
N = 64 # Size of the significand field in bits
|
|
MIN_SIG = 2 ** (N - 1)
|
|
MAX_SIG = (2 ** N) - 1
|
|
|
|
# Hand-rolled fp representation without arithmetic or any other operations.
|
|
# The significand is normalized and always N bit, but the exponent is
|
|
# unrestricted in range.
|
|
Fp = namedtuple('Fp', 'sig exp')
|
|
|
|
|
|
def algorithm_m(f, e):
|
|
assert f > 0
|
|
if e < 0:
|
|
u = f
|
|
v = 10 ** abs(e)
|
|
else:
|
|
u = f * 10 ** e
|
|
v = 1
|
|
k = 0
|
|
x = u // v
|
|
while True:
|
|
if x < MIN_SIG:
|
|
u <<= 1
|
|
k -= 1
|
|
elif x >= MAX_SIG:
|
|
v <<= 1
|
|
k += 1
|
|
else:
|
|
break
|
|
x = u // v
|
|
return ratio_to_float(u, v, k)
|
|
|
|
|
|
def ratio_to_float(u, v, k):
|
|
q, r = divmod(u, v)
|
|
v_r = v - r
|
|
z = Fp(q, k)
|
|
if r < v_r:
|
|
return z
|
|
elif r > v_r:
|
|
return next_float(z)
|
|
elif q % 2 == 0:
|
|
return z
|
|
else:
|
|
return next_float(z)
|
|
|
|
|
|
def next_float(z):
|
|
if z.sig == MAX_SIG:
|
|
return Fp(MIN_SIG, z.exp + 1)
|
|
else:
|
|
return Fp(z.sig + 1, z.exp)
|
|
|
|
|
|
def error(f, e, z):
|
|
decimal = f * Fraction(10) ** e
|
|
binary = z.sig * Fraction(2) ** z.exp
|
|
abs_err = abs(decimal - binary)
|
|
# The unit in the last place has value z.exp
|
|
ulp_err = abs_err / Fraction(2) ** z.exp
|
|
return float(ulp_err)
|
|
|
|
HEADER = """
|
|
//! Tables of approximations of powers of ten.
|
|
//! DO NOT MODIFY: Generated by `src/etc/dec2flt_table.py`
|
|
"""
|
|
|
|
|
|
def main():
|
|
print(HEADER.strip())
|
|
print()
|
|
print_proper_powers()
|
|
print()
|
|
print_short_powers(32, 24)
|
|
print()
|
|
print_short_powers(64, 53)
|
|
|
|
|
|
def print_proper_powers():
|
|
MIN_E = -305
|
|
MAX_E = 305
|
|
e_range = range(MIN_E, MAX_E+1)
|
|
powers = []
|
|
for e in e_range:
|
|
z = algorithm_m(1, e)
|
|
err = error(1, e, z)
|
|
assert err < 0.5
|
|
powers.append(z)
|
|
print("pub const MIN_E: i16 = {};".format(MIN_E))
|
|
print("pub const MAX_E: i16 = {};".format(MAX_E))
|
|
print()
|
|
typ = "([u64; {0}], [i16; {0}])".format(len(powers))
|
|
print("pub const POWERS: ", typ, " = ([", sep='')
|
|
for z in powers:
|
|
print(" 0x{:x},".format(z.sig))
|
|
print("], [")
|
|
for z in powers:
|
|
print(" {},".format(z.exp))
|
|
print("]);")
|
|
|
|
|
|
def print_short_powers(num_bits, significand_size):
|
|
max_sig = 2**significand_size - 1
|
|
# The fast path bails out for exponents >= ceil(log5(max_sig))
|
|
max_e = int(ceil(log(max_sig, 5)))
|
|
e_range = range(max_e)
|
|
typ = "[f{}; {}]".format(num_bits, len(e_range))
|
|
print("pub const F", num_bits, "_SHORT_POWERS: ", typ, " = [", sep='')
|
|
for e in e_range:
|
|
print(" 1e{},".format(e))
|
|
print("];")
|
|
|
|
|
|
if __name__ == '__main__':
|
|
main()
|