rust/src/stacked_borrows.rs
2019-05-15 18:12:58 +02:00

750 lines
30 KiB
Rust

use std::cell::RefCell;
use std::collections::HashSet;
use std::rc::Rc;
use std::fmt;
use std::num::NonZeroU64;
use rustc::ty::{self, layout::Size};
use rustc::hir::{MutMutable, MutImmutable};
use rustc::mir::RetagKind;
use crate::{
EvalResult, InterpError, MiriEvalContext, HelpersEvalContextExt, Evaluator, MutValueVisitor,
MemoryKind, MiriMemoryKind, RangeMap, Allocation, AllocationExtra,
Pointer, Immediate, ImmTy, PlaceTy, MPlaceTy,
};
pub type PtrId = NonZeroU64;
pub type CallId = NonZeroU64;
/// Tracking pointer provenance
#[derive(Copy, Clone, Debug, Hash, PartialEq, Eq)]
pub enum Tag {
Tagged(PtrId),
Untagged,
}
impl fmt::Display for Tag {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match self {
Tag::Tagged(id) => write!(f, "{}", id),
Tag::Untagged => write!(f, "<untagged>"),
}
}
}
/// Indicates which permission is granted (by this item to some pointers)
#[derive(Copy, Clone, Debug, Hash, PartialEq, Eq)]
pub enum Permission {
/// Grants unique mutable access.
Unique,
/// Grants shared mutable access.
SharedReadWrite,
/// Greants shared read-only access.
SharedReadOnly,
}
/// An item in the per-location borrow stack.
#[derive(Copy, Clone, Debug, Hash, PartialEq, Eq)]
pub struct Item {
/// The permission this item grants.
perm: Permission,
/// The pointers the permission is granted to.
tag: Tag,
/// An optional protector, ensuring the item cannot get popped until `CallId` is over.
protector: Option<CallId>,
}
impl fmt::Display for Item {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "[{:?} for {}", self.perm, self.tag)?;
if let Some(call) = self.protector {
write!(f, " (call {})", call)?;
}
write!(f, "]")?;
Ok(())
}
}
/// Extra per-location state.
#[derive(Clone, Debug, PartialEq, Eq)]
pub struct Stack {
/// Used *mostly* as a stack; never empty.
/// We sometimes push into the middle but never remove from the middle.
/// The same tag may occur multiple times, e.g. from a two-phase borrow.
/// Invariants:
/// * Above a `SharedReadOnly` there can only be more `SharedReadOnly`.
borrows: Vec<Item>,
}
/// Extra per-allocation state.
#[derive(Clone, Debug)]
pub struct Stacks {
// Even reading memory can have effects on the stack, so we need a `RefCell` here.
stacks: RefCell<RangeMap<Stack>>,
// Pointer to global state
global: MemoryState,
}
/// Extra global state, available to the memory access hooks.
#[derive(Debug)]
pub struct GlobalState {
next_ptr_id: PtrId,
next_call_id: CallId,
active_calls: HashSet<CallId>,
}
pub type MemoryState = Rc<RefCell<GlobalState>>;
/// Indicates which kind of access is being performed.
#[derive(Copy, Clone, Debug, Hash, PartialEq, Eq)]
pub enum AccessKind {
Read,
Write,
}
impl fmt::Display for AccessKind {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match self {
AccessKind::Read => write!(f, "read"),
AccessKind::Write => write!(f, "write"),
}
}
}
/// Indicates which kind of reference is being created.
/// Used by high-level `reborrow` to compute which permissions to grant to the
/// new pointer.
#[derive(Copy, Clone, Debug, Hash, PartialEq, Eq)]
pub enum RefKind {
/// `&mut` and `Box`.
Unique,
/// `&` with or without interior mutability.
Shared,
/// `*mut`/`*const` (raw pointers).
Raw { mutable: bool },
}
impl fmt::Display for RefKind {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match self {
RefKind::Unique => write!(f, "unique"),
RefKind::Shared => write!(f, "shared"),
RefKind::Raw { mutable: true } => write!(f, "raw (mutable)"),
RefKind::Raw { mutable: false } => write!(f, "raw (constant)"),
}
}
}
/// Utilities for initialization and ID generation
impl Default for GlobalState {
fn default() -> Self {
GlobalState {
next_ptr_id: NonZeroU64::new(1).unwrap(),
next_call_id: NonZeroU64::new(1).unwrap(),
active_calls: HashSet::default(),
}
}
}
impl GlobalState {
pub fn new_ptr(&mut self) -> PtrId {
let id = self.next_ptr_id;
self.next_ptr_id = NonZeroU64::new(id.get() + 1).unwrap();
id
}
pub fn new_call(&mut self) -> CallId {
let id = self.next_call_id;
trace!("new_call: Assigning ID {}", id);
self.active_calls.insert(id);
self.next_call_id = NonZeroU64::new(id.get() + 1).unwrap();
id
}
pub fn end_call(&mut self, id: CallId) {
assert!(self.active_calls.remove(&id));
}
fn is_active(&self, id: CallId) -> bool {
self.active_calls.contains(&id)
}
}
// # Stacked Borrows Core Begin
/// We need to make at least the following things true:
///
/// U1: After creating a `Uniq`, it is at the top.
/// U2: If the top is `Uniq`, accesses must be through that `Uniq` or remove it it.
/// U3: If an access happens with a `Uniq`, it requires the `Uniq` to be in the stack.
///
/// F1: After creating a `&`, the parts outside `UnsafeCell` have our `SharedReadOnly` on top.
/// F2: If a write access happens, it pops the `SharedReadOnly`. This has three pieces:
/// F2a: If a write happens granted by an item below our `SharedReadOnly`, the `SharedReadOnly`
/// gets popped.
/// F2b: No `SharedReadWrite` or `Unique` will ever be added on top of our `SharedReadOnly`.
/// F3: If an access happens with an `&` outside `UnsafeCell`,
/// it requires the `SharedReadOnly` to still be in the stack.
impl Default for Tag {
#[inline(always)]
fn default() -> Tag {
Tag::Untagged
}
}
/// Core relations on `Permission` define which accesses are allowed:
/// On every access, we try to find a *granting* item, and then we remove all
/// *incompatible* items above it.
impl Permission {
/// This defines for a given permission, whether it permits the given kind of access.
fn grants(self, access: AccessKind) -> bool {
match (self, access) {
// Unique and SharedReadWrite allow any kind of access.
(Permission::Unique, _) |
(Permission::SharedReadWrite, _) =>
true,
// SharedReadOnly only permits read access.
(Permission::SharedReadOnly, AccessKind::Read) =>
true,
(Permission::SharedReadOnly, AccessKind::Write) =>
false,
}
}
/// This defines for a given permission, which other permissions it can tolerate "above" itself
/// for which kinds of accesses.
/// If true, then `other` is allowed to remain on top of `self` when `access` happens.
fn compatible_with(self, access: AccessKind, other: Permission) -> bool {
use self::Permission::*;
match (self, access, other) {
// Some cases are impossible.
(SharedReadOnly, _, SharedReadWrite) |
(SharedReadOnly, _, Unique) =>
bug!("There can never be a SharedReadWrite or a Unique on top of a SharedReadOnly"),
// When `other` is `SharedReadOnly`, that is NEVER compatible with
// write accesses.
// This makes sure read-only pointers become invalid on write accesses (ensures F2a).
(_, AccessKind::Write, SharedReadOnly) =>
false,
// When `other` is `Unique`, that is compatible with nothing.
// This makes sure unique pointers become invalid on incompatible accesses (ensures U2).
(_, _, Unique) =>
false,
// When we are unique and this is a write/dealloc, we tolerate nothing.
// This makes sure we re-assert uniqueness ("being on top") on write accesses.
// (This is particularily important such that when a new mutable ref gets created, it gets
// pushed onto the right item -- this behaves like a write and we assert uniqueness of the
// pointer from which this comes, *if* it was a unique pointer.)
(Unique, AccessKind::Write, _) =>
false,
// `SharedReadWrite` items can tolerate any other akin items for any kind of access.
(SharedReadWrite, _, SharedReadWrite) =>
true,
// Any item can tolerate read accesses for shared items.
// This includes unique items! Reads from unique pointers do not invalidate
// other pointers.
(_, AccessKind::Read, SharedReadWrite) |
(_, AccessKind::Read, SharedReadOnly) =>
true,
// That's it.
}
}
}
/// Core per-location operations: access, dealloc, reborrow.
impl<'tcx> Stack {
/// Find the item granting the given kind of access to the given tag, and where
/// *the first incompatible item above it* is on the stack.
fn find_granting(&self, access: AccessKind, tag: Tag) -> Option<(Permission, usize)> {
let (perm, idx) = self.borrows.iter()
.enumerate() // we also need to know *where* in the stack
.rev() // search top-to-bottom
// Return permission of first item that grants access.
// We require a permission with the right tag, ensuring U3 and F3.
.find_map(|(idx, item)|
if item.perm.grants(access) && tag == item.tag {
Some((item.perm, idx))
} else {
None
}
)?;
let mut first_incompatible_idx = idx+1;
while let Some(item) = self.borrows.get(first_incompatible_idx) {
if perm.compatible_with(access, item.perm) {
// Keep this, check next.
first_incompatible_idx += 1;
} else {
// Found it!
break;
}
}
return Some((perm, first_incompatible_idx));
}
/// Test if a memory `access` using pointer tagged `tag` is granted.
/// If yes, return the index of the item that granted it.
fn access(
&mut self,
access: AccessKind,
tag: Tag,
global: &GlobalState,
) -> EvalResult<'tcx> {
// Two main steps: Find granting item, remove all incompatible items above.
// Step 1: Find granting item.
let (granting_perm, first_incompatible_idx) = self.find_granting(access, tag)
.ok_or_else(|| InterpError::MachineError(format!(
"no item granting {} access to tag {} found in borrow stack",
access, tag,
)))?;
// Step 2: Remove everything incompatible above them. Make sure we do not remove protected
// items.
// For writes, this is a simple stack. For reads, however, it is not:
// in `let raw = &mut *x as *mut _; let _val = *x;`, the second statement would pop the `Unique`
// from the reborrow of the first statement, and subsequently also pop the `SharedReadWrite` for `raw`.
// This pattern occurs a lot in the standard library: create a raw pointer, then also create a shared
// reference and use that.
{
// Implemented with indices because there does not seem to be a nice iterator and range-based
// API for this.
let mut cur = first_incompatible_idx;
while let Some(item) = self.borrows.get(cur) {
// If this is a read, we double-check if we really want to kill this.
if access == AccessKind::Read && granting_perm.compatible_with(access, item.perm) {
// Keep this, check next.
cur += 1;
} else {
// Aha! This is a bad one, remove it, and make sure it is not protected.
let item = self.borrows.remove(cur);
if let Some(call) = item.protector {
if global.is_active(call) {
return err!(MachineError(format!(
"not granting {} access to tag {} because incompatible item {} is protected",
access, tag, item
)));
}
}
trace!("access: removing item {}", item);
}
}
}
// Done.
Ok(())
}
/// Deallocate a location: Like a write access, but also there must be no
/// active protectors at all.
fn dealloc(
&mut self,
tag: Tag,
global: &GlobalState,
) -> EvalResult<'tcx> {
// Step 1: Find granting item.
self.find_granting(AccessKind::Write, tag)
.ok_or_else(|| InterpError::MachineError(format!(
"no item granting write access for deallocation to tag {} found in borrow stack",
tag,
)))?;
// We must make sure there are no protected items remaining on the stack.
// Also clear the stack, no more accesses are possible.
for item in self.borrows.drain(..) {
if let Some(call) = item.protector {
if global.is_active(call) {
return err!(MachineError(format!(
"deallocating with active protector ({})", call
)))
}
}
}
Ok(())
}
/// `reborrow` helper function: test that the stack invariants are still maintained.
fn test_invariants(&self) {
let mut saw_shared_read_only = false;
for item in self.borrows.iter() {
match item.perm {
Permission::SharedReadOnly => {
saw_shared_read_only = true;
}
// Otherwise, if we saw one before, that's a bug.
perm if saw_shared_read_only => {
bug!("Found {:?} on top of a SharedReadOnly!", perm);
}
_ => {}
}
}
}
/// Derived a new pointer from one with the given tag.
/// `weak` controls whether this operation is weak or strong: weak granting does not act as
/// an access, and they add the new item directly on top of the one it is derived
/// from instead of all the way at the top of the stack.
fn grant(
&mut self,
derived_from: Tag,
weak: bool,
new: Item,
global: &GlobalState,
) -> EvalResult<'tcx> {
// Figure out which access `perm` corresponds to.
let access = if new.perm.grants(AccessKind::Write) {
AccessKind::Write
} else {
AccessKind::Read
};
// Now we figure out which item grants our parent (`derived_from`) this kind of access.
// We use that to determine where to put the new item.
let (_, first_incompatible_idx) = self.find_granting(access, derived_from)
.ok_or_else(|| InterpError::MachineError(format!(
"no item to reborrow for {:?} from tag {} found in borrow stack", new.perm, derived_from,
)))?;
// Compute where to put the new item.
// Either way, we ensure that we insert the new item in a way that between
// `derived_from` and the new one, there are only items *compatible with* `derived_from`.
let new_idx = if weak {
// A weak SharedReadOnly reborrow might be added below other items, violating the
// invariant that only SharedReadOnly can sit on top of SharedReadOnly.
assert!(new.perm != Permission::SharedReadOnly, "Weak SharedReadOnly reborrows don't work");
// A very liberal reborrow because the new pointer does not expect any kind of aliasing guarantee.
// Just insert new permission as child of old permission, and maintain everything else.
// This inserts "as far down as possible", which is good because it makes this pointer as
// long-lived as possible *and* we want all the items that are incompatible with this
// to actually get removed from the stack. If we pushed a `SharedReadWrite` on top of
// a `SharedReadOnly`, we'd violate the invariant that `SaredReadOnly` are at the top
// and we'd allow write access without invalidating frozen shared references!
// This ensures F2b for `SharedReadWrite` by adding the new item below any
// potentially existing `SharedReadOnly`.
first_incompatible_idx
} else {
// A "safe" reborrow for a pointer that actually expects some aliasing guarantees.
// Here, creating a reference actually counts as an access, and pops incompatible
// stuff off the stack.
// This ensures F2b for `Unique`, by removing offending `SharedReadOnly`.
self.access(access, derived_from, global)?;
if access == AccessKind::Write {
// For write accesses, the position is the same as what it would have been weakly!
assert_eq!(first_incompatible_idx, self.borrows.len());
}
// We insert "as far up as possible": We know only compatible items are remaining
// on top of `derived_from`, and we want the new item at the top so that we
// get the strongest possible guarantees.
// This ensures U1 and F1.
self.borrows.len()
};
// Put the new item there. As an optimization, deduplicate if it is equal to one of its new neighbors.
if self.borrows[new_idx-1] == new || self.borrows.get(new_idx) == Some(&new) {
// Optimization applies, done.
trace!("reborrow: avoiding adding redundant item {}", new);
} else {
trace!("reborrow: adding item {}", new);
self.borrows.insert(new_idx, new);
}
// Make sure that after all this, the stack's invariant is still maintained.
if cfg!(debug_assertions) {
self.test_invariants();
}
Ok(())
}
}
// # Stacked Borrows Core End
/// Map per-stack operations to higher-level per-location-range operations.
impl<'tcx> Stacks {
/// Creates new stack with initial tag.
pub(crate) fn new(
size: Size,
tag: Tag,
extra: MemoryState,
) -> Self {
let item = Item { perm: Permission::Unique, tag, protector: None };
let stack = Stack {
borrows: vec![item],
};
Stacks {
stacks: RefCell::new(RangeMap::new(size, stack)),
global: extra,
}
}
/// Call `f` on every stack in the range.
fn for_each(
&self,
ptr: Pointer<Tag>,
size: Size,
f: impl Fn(&mut Stack, &GlobalState) -> EvalResult<'tcx>,
) -> EvalResult<'tcx> {
let global = self.global.borrow();
let mut stacks = self.stacks.borrow_mut();
for stack in stacks.iter_mut(ptr.offset, size) {
f(stack, &*global)?;
}
Ok(())
}
}
/// Glue code to connect with Miri Machine Hooks
impl Stacks {
pub fn new_allocation(
size: Size,
extra: &MemoryState,
kind: MemoryKind<MiriMemoryKind>,
) -> (Self, Tag) {
let tag = match kind {
MemoryKind::Stack => {
// New unique borrow. This `Uniq` is not accessible by the program,
// so it will only ever be used when using the local directly (i.e.,
// not through a pointer). That is, whenever we directly use a local, this will pop
// everything else off the stack, invalidating all previous pointers,
// and in particular, *all* raw pointers. This subsumes the explicit
// `reset` which the blog post [1] says to perform when accessing a local.
//
// [1]: <https://www.ralfj.de/blog/2018/08/07/stacked-borrows.html>
Tag::Tagged(extra.borrow_mut().new_ptr())
}
_ => {
Tag::Untagged
}
};
let stack = Stacks::new(size, tag, Rc::clone(extra));
(stack, tag)
}
}
impl AllocationExtra<Tag> for Stacks {
#[inline(always)]
fn memory_read<'tcx>(
alloc: &Allocation<Tag, Stacks>,
ptr: Pointer<Tag>,
size: Size,
) -> EvalResult<'tcx> {
trace!("read access with tag {}: {:?}, size {}", ptr.tag, ptr, size.bytes());
alloc.extra.for_each(ptr, size, |stack, global| {
stack.access(AccessKind::Read, ptr.tag, global)?;
Ok(())
})
}
#[inline(always)]
fn memory_written<'tcx>(
alloc: &mut Allocation<Tag, Stacks>,
ptr: Pointer<Tag>,
size: Size,
) -> EvalResult<'tcx> {
trace!("write access with tag {}: {:?}, size {}", ptr.tag, ptr, size.bytes());
alloc.extra.for_each(ptr, size, |stack, global| {
stack.access(AccessKind::Write, ptr.tag, global)?;
Ok(())
})
}
#[inline(always)]
fn memory_deallocated<'tcx>(
alloc: &mut Allocation<Tag, Stacks>,
ptr: Pointer<Tag>,
size: Size,
) -> EvalResult<'tcx> {
trace!("deallocation with tag {}: {:?}, size {}", ptr.tag, ptr, size.bytes());
alloc.extra.for_each(ptr, size, |stack, global| {
stack.dealloc(ptr.tag, global)
})
}
}
/// Retagging/reborrowing. There is some policy in here, such as which permissions
/// to grant for which references, when to add protectors, and how to realize two-phase
/// borrows in terms of the primitives above.
impl<'a, 'mir, 'tcx> EvalContextPrivExt<'a, 'mir, 'tcx> for crate::MiriEvalContext<'a, 'mir, 'tcx> {}
trait EvalContextPrivExt<'a, 'mir, 'tcx: 'a+'mir>: crate::MiriEvalContextExt<'a, 'mir, 'tcx> {
fn reborrow(
&mut self,
place: MPlaceTy<'tcx, Tag>,
size: Size,
kind: RefKind,
new_tag: Tag,
force_weak: bool,
protect: bool,
) -> EvalResult<'tcx> {
let this = self.eval_context_mut();
let protector = if protect { Some(this.frame().extra) } else { None };
let ptr = place.ptr.to_ptr()?;
trace!("reborrow: {:?} reference {} derived from {} (pointee {}): {:?}, size {}",
kind, new_tag, ptr.tag, place.layout.ty, ptr, size.bytes());
// Get the allocation. It might not be mutable, so we cannot use `get_mut`.
let alloc = this.memory().get(ptr.alloc_id)?;
alloc.check_bounds(this, ptr, size)?;
// Update the stacks.
// Make sure that raw pointers and mutable shared references are reborrowed "weak":
// There could be existing unique pointers reborrowed from them that should remain valid!
let perm = match kind {
RefKind::Unique => Permission::Unique,
RefKind::Raw { mutable: true } => Permission::SharedReadWrite,
RefKind::Shared | RefKind::Raw { mutable: false } => {
// Shared references and *const are a whole different kind of game, the
// permission is not uniform across the entire range!
// We need a frozen-sensitive reborrow.
return this.visit_freeze_sensitive(place, size, |cur_ptr, size, frozen| {
// We are only ever `SharedReadOnly` inside the frozen bits.
let perm = if frozen { Permission::SharedReadOnly } else { Permission::SharedReadWrite };
let weak = perm == Permission::SharedReadWrite;
let item = Item { perm, tag: new_tag, protector };
alloc.extra.for_each(cur_ptr, size, |stack, global| {
stack.grant(cur_ptr.tag, force_weak || weak, item, global)
})
});
}
};
debug_assert_ne!(perm, Permission::SharedReadOnly, "SharedReadOnly must be used frozen-sensitive");
let weak = perm == Permission::SharedReadWrite;
let item = Item { perm, tag: new_tag, protector };
alloc.extra.for_each(ptr, size, |stack, global| {
stack.grant(ptr.tag, force_weak || weak, item, global)
})
}
/// Retags an indidual pointer, returning the retagged version.
/// `mutbl` can be `None` to make this a raw pointer.
fn retag_reference(
&mut self,
val: ImmTy<'tcx, Tag>,
kind: RefKind,
protect: bool,
two_phase: bool,
) -> EvalResult<'tcx, Immediate<Tag>> {
let this = self.eval_context_mut();
// We want a place for where the ptr *points to*, so we get one.
let place = this.ref_to_mplace(val)?;
let size = this.size_and_align_of_mplace(place)?
.map(|(size, _)| size)
.unwrap_or_else(|| place.layout.size);
if size == Size::ZERO {
// Nothing to do for ZSTs.
return Ok(*val);
}
// Compute new borrow.
let new_tag = match kind {
RefKind::Raw { .. } => Tag::Untagged,
_ => Tag::Tagged(this.memory().extra.borrow_mut().new_ptr()),
};
// Reborrow.
// TODO: With `two_phase == true`, this performs a weak reborrow for a `Unique`. That
// can lead to some possibly surprising effects, if the parent permission is
// `SharedReadWrite` then we now have a `Unique` in the middle of them, which "splits"
// them in terms of what remains valid when the `Unique` gets used. Is that really
// what we want?
this.reborrow(place, size, kind, new_tag, /*force_weak:*/ two_phase, protect)?;
let new_place = place.replace_tag(new_tag);
// Handle two-phase borrows.
if two_phase {
assert!(kind == RefKind::Unique, "two-phase shared borrows make no sense");
// Grant read access *to the parent pointer* with the old tag *derived from the new tag* (`new_place`).
// This means the old pointer has multiple items in the stack now, which otherwise cannot happen
// for unique references -- but in this case it precisely expresses the semantics we want.
let old_tag = place.ptr.to_ptr().unwrap().tag;
this.reborrow(new_place, size, RefKind::Shared, old_tag, /*force_weak:*/ false, /*protect:*/ false)?;
}
// Return new pointer.
Ok(new_place.to_ref())
}
}
impl<'a, 'mir, 'tcx> EvalContextExt<'a, 'mir, 'tcx> for crate::MiriEvalContext<'a, 'mir, 'tcx> {}
pub trait EvalContextExt<'a, 'mir, 'tcx: 'a+'mir>: crate::MiriEvalContextExt<'a, 'mir, 'tcx> {
fn retag(
&mut self,
kind: RetagKind,
place: PlaceTy<'tcx, Tag>
) -> EvalResult<'tcx> {
let this = self.eval_context_mut();
// Determine mutability and whether to add a protector.
// Cannot use `builtin_deref` because that reports *immutable* for `Box`,
// making it useless.
fn qualify(ty: ty::Ty<'_>, kind: RetagKind) -> Option<(RefKind, bool)> {
match ty.sty {
// References are simple.
ty::Ref(_, _, MutMutable) =>
Some((RefKind::Unique, kind == RetagKind::FnEntry)),
ty::Ref(_, _, MutImmutable) =>
Some((RefKind::Shared, kind == RetagKind::FnEntry)),
// Raw pointers need to be enabled.
ty::RawPtr(tym) if kind == RetagKind::Raw =>
Some((RefKind::Raw { mutable: tym.mutbl == MutMutable }, false)),
// Boxes do not get a protector: protectors reflect that references outlive the call
// they were passed in to; that's just not the case for boxes.
ty::Adt(..) if ty.is_box() => Some((RefKind::Unique, false)),
_ => None,
}
}
// We need a visitor to visit all references. However, that requires
// a `MemPlace`, so we have a fast path for reference types that
// avoids allocating.
if let Some((mutbl, protector)) = qualify(place.layout.ty, kind) {
// Fast path.
let val = this.read_immediate(this.place_to_op(place)?)?;
let val = this.retag_reference(val, mutbl, protector, kind == RetagKind::TwoPhase)?;
this.write_immediate(val, place)?;
return Ok(());
}
let place = this.force_allocation(place)?;
let mut visitor = RetagVisitor { ecx: this, kind };
visitor.visit_value(place)?;
// The actual visitor.
struct RetagVisitor<'ecx, 'a, 'mir, 'tcx> {
ecx: &'ecx mut MiriEvalContext<'a, 'mir, 'tcx>,
kind: RetagKind,
}
impl<'ecx, 'a, 'mir, 'tcx>
MutValueVisitor<'a, 'mir, 'tcx, Evaluator<'tcx>>
for
RetagVisitor<'ecx, 'a, 'mir, 'tcx>
{
type V = MPlaceTy<'tcx, Tag>;
#[inline(always)]
fn ecx(&mut self) -> &mut MiriEvalContext<'a, 'mir, 'tcx> {
&mut self.ecx
}
// Primitives of reference type, that is the one thing we are interested in.
fn visit_primitive(&mut self, place: MPlaceTy<'tcx, Tag>) -> EvalResult<'tcx>
{
// Cannot use `builtin_deref` because that reports *immutable* for `Box`,
// making it useless.
if let Some((mutbl, protector)) = qualify(place.layout.ty, self.kind) {
let val = self.ecx.read_immediate(place.into())?;
let val = self.ecx.retag_reference(
val,
mutbl,
protector,
self.kind == RetagKind::TwoPhase
)?;
self.ecx.write_immediate(val, place.into())?;
}
Ok(())
}
}
Ok(())
}
}