01d693b1cd
Use the integer sizes LLVM uses, rather than having random projections laying around. Sizes are u64, Alignments are u32, C_*int is target-dependent but 64-bit is fine (the int -> C_int conversion is non-precision-losing, but it can be preceded by `as int` conversions which are, so it is somewhat ugly. However, being able to suffix a `u` to properly infer integer types is nice).
129 lines
4.8 KiB
Rust
129 lines
4.8 KiB
Rust
// Copyright 2012-2013 The Rust Project Developers. See the COPYRIGHT
|
|
// file at the top-level directory of this distribution and at
|
|
// http://rust-lang.org/COPYRIGHT.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
|
|
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
|
|
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
|
|
// option. This file may not be copied, modified, or distributed
|
|
// except according to those terms.
|
|
|
|
// Information concerning the machine representation of various types.
|
|
|
|
#![allow(non_camel_case_types)]
|
|
|
|
use llvm;
|
|
use llvm::{ValueRef};
|
|
use llvm::False;
|
|
use middle::trans::common::*;
|
|
|
|
use middle::trans::type_::Type;
|
|
|
|
pub type llbits = u64;
|
|
pub type llsize = u64;
|
|
pub type llalign = u32;
|
|
|
|
// ______________________________________________________________________
|
|
// compute sizeof / alignof
|
|
|
|
// Returns the number of bytes clobbered by a Store to this type.
|
|
pub fn llsize_of_store(cx: &CrateContext, ty: Type) -> llsize {
|
|
unsafe {
|
|
return llvm::LLVMStoreSizeOfType(cx.td().lltd, ty.to_ref());
|
|
}
|
|
}
|
|
|
|
// Returns the number of bytes between successive elements of type T in an
|
|
// array of T. This is the "ABI" size. It includes any ABI-mandated padding.
|
|
pub fn llsize_of_alloc(cx: &CrateContext, ty: Type) -> llsize {
|
|
unsafe {
|
|
return llvm::LLVMABISizeOfType(cx.td().lltd, ty.to_ref());
|
|
}
|
|
}
|
|
|
|
// Returns, as near as we can figure, the "real" size of a type. As in, the
|
|
// bits in this number of bytes actually carry data related to the datum
|
|
// with the type. Not junk, padding, accidentally-damaged words, or
|
|
// whatever. Rounds up to the nearest byte though, so if you have a 1-bit
|
|
// value, we return 1 here, not 0. Most of rustc works in bytes. Be warned
|
|
// that LLVM *does* distinguish between e.g. a 1-bit value and an 8-bit value
|
|
// at the codegen level! In general you should prefer `llbitsize_of_real`
|
|
// below.
|
|
pub fn llsize_of_real(cx: &CrateContext, ty: Type) -> llsize {
|
|
unsafe {
|
|
let nbits = llvm::LLVMSizeOfTypeInBits(cx.td().lltd, ty.to_ref());
|
|
if nbits & 7 != 0 {
|
|
// Not an even number of bytes, spills into "next" byte.
|
|
1 + (nbits >> 3)
|
|
} else {
|
|
nbits >> 3
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Returns the "real" size of the type in bits.
|
|
pub fn llbitsize_of_real(cx: &CrateContext, ty: Type) -> llbits {
|
|
unsafe {
|
|
llvm::LLVMSizeOfTypeInBits(cx.td().lltd, ty.to_ref())
|
|
}
|
|
}
|
|
|
|
/// Returns the size of the type as an LLVM constant integer value.
|
|
pub fn llsize_of(cx: &CrateContext, ty: Type) -> ValueRef {
|
|
// Once upon a time, this called LLVMSizeOf, which does a
|
|
// getelementptr(1) on a null pointer and casts to an int, in
|
|
// order to obtain the type size as a value without requiring the
|
|
// target data layout. But we have the target data layout, so
|
|
// there's no need for that contrivance. The instruction
|
|
// selection DAG generator would flatten that GEP(1) node into a
|
|
// constant of the type's alloc size, so let's save it some work.
|
|
return C_uint(cx, llsize_of_alloc(cx, ty));
|
|
}
|
|
|
|
// Returns the "default" size of t (see above), or 1 if the size would
|
|
// be zero. This is important for things like vectors that expect
|
|
// space to be consumed.
|
|
pub fn nonzero_llsize_of(cx: &CrateContext, ty: Type) -> ValueRef {
|
|
if llbitsize_of_real(cx, ty) == 0 {
|
|
unsafe { llvm::LLVMConstInt(cx.int_type().to_ref(), 1, False) }
|
|
} else {
|
|
llsize_of(cx, ty)
|
|
}
|
|
}
|
|
|
|
// Returns the preferred alignment of the given type for the current target.
|
|
// The preferred alignment may be larger than the alignment used when
|
|
// packing the type into structs. This will be used for things like
|
|
// allocations inside a stack frame, which LLVM has a free hand in.
|
|
pub fn llalign_of_pref(cx: &CrateContext, ty: Type) -> llalign {
|
|
unsafe {
|
|
return llvm::LLVMPreferredAlignmentOfType(cx.td().lltd, ty.to_ref());
|
|
}
|
|
}
|
|
|
|
// Returns the minimum alignment of a type required by the platform.
|
|
// This is the alignment that will be used for struct fields, arrays,
|
|
// and similar ABI-mandated things.
|
|
pub fn llalign_of_min(cx: &CrateContext, ty: Type) -> llalign {
|
|
unsafe {
|
|
return llvm::LLVMABIAlignmentOfType(cx.td().lltd, ty.to_ref());
|
|
}
|
|
}
|
|
|
|
// Returns the "default" alignment of t, which is calculated by casting
|
|
// null to a record containing a single-bit followed by a t value, then
|
|
// doing gep(0,1) to get at the trailing (and presumably padded) t cell.
|
|
pub fn llalign_of(cx: &CrateContext, ty: Type) -> ValueRef {
|
|
unsafe {
|
|
return llvm::LLVMConstIntCast(
|
|
llvm::LLVMAlignOf(ty.to_ref()), cx.int_type().to_ref(), False);
|
|
}
|
|
}
|
|
|
|
pub fn llelement_offset(cx: &CrateContext, struct_ty: Type, element: uint) -> u64 {
|
|
unsafe {
|
|
return llvm::LLVMOffsetOfElement(cx.td().lltd, struct_ty.to_ref(),
|
|
element as u32);
|
|
}
|
|
}
|