f4acaf6934
We should probalby warn when defining a method foo on {foo: int} etc. This should reduce the amount of useless typevars that are allocated. Issue #1227
2906 lines
91 KiB
Rust
2906 lines
91 KiB
Rust
import vec;
|
|
import str;
|
|
import uint;
|
|
import std::ufind;
|
|
import std::map;
|
|
import std::map::hashmap;
|
|
import std::math;
|
|
import option;
|
|
import option::none;
|
|
import option::some;
|
|
import std::smallintmap;
|
|
import driver::session;
|
|
import syntax::ast;
|
|
import syntax::ast::*;
|
|
import syntax::ast_util;
|
|
import syntax::codemap::span;
|
|
import metadata::csearch;
|
|
import util::common::*;
|
|
import syntax::util::interner;
|
|
import util::ppaux::ty_to_str;
|
|
import util::ppaux::ty_constr_to_str;
|
|
import util::ppaux::mode_str_1;
|
|
import syntax::print::pprust::*;
|
|
|
|
export node_id_to_monotype;
|
|
export node_id_to_type;
|
|
export node_id_to_type_params;
|
|
export node_id_to_ty_param_substs_opt_and_ty;
|
|
export arg;
|
|
export args_eq;
|
|
export ast_constr_to_constr;
|
|
export bind_params_in_type;
|
|
export block_ty;
|
|
export constr;
|
|
export cast_type;
|
|
export constr_general;
|
|
export constr_table;
|
|
export count_ty_params;
|
|
export ctxt;
|
|
export def_has_ty_params;
|
|
export eq_ty;
|
|
export expr_has_ty_params;
|
|
export expr_ty;
|
|
export expr_ty_params_and_ty;
|
|
export expr_is_lval;
|
|
export fold_ty;
|
|
export field;
|
|
export field_idx;
|
|
export get_field;
|
|
export fm_general;
|
|
export get_element_type;
|
|
export hash_ty;
|
|
export idx_nil;
|
|
export is_binopable;
|
|
export is_pred_ty;
|
|
export lookup_item_type;
|
|
export method;
|
|
export method_idx;
|
|
export method_ty_to_fn_ty;
|
|
export mk_bool;
|
|
export mk_bot;
|
|
export mk_box;
|
|
export mk_char;
|
|
export mk_constr;
|
|
export mk_ctxt;
|
|
export mk_float;
|
|
export mk_fn;
|
|
export mk_imm_box;
|
|
export mk_imm_uniq;
|
|
export mk_mut_ptr;
|
|
export mk_int;
|
|
export mk_str;
|
|
export mk_vec;
|
|
export mk_mach_int;
|
|
export mk_mach_uint;
|
|
export mk_mach_float;
|
|
export mk_native;
|
|
export mk_native_fn;
|
|
export mk_nil;
|
|
export mk_obj;
|
|
export mk_res;
|
|
export mk_param;
|
|
export mk_ptr;
|
|
export mk_rec;
|
|
export mk_tag;
|
|
export mk_tup;
|
|
export mk_type;
|
|
export mk_send_type;
|
|
export mk_uint;
|
|
export mk_uniq;
|
|
export mk_var;
|
|
export mk_opaque_closure;
|
|
export gen_ty;
|
|
export mode;
|
|
export mt;
|
|
export node_type_table;
|
|
export pat_ty;
|
|
export cname;
|
|
export rename;
|
|
export ret_ty_of_fn;
|
|
export sequence_element_type;
|
|
export struct;
|
|
export sort_methods;
|
|
export stmt_node_id;
|
|
export strip_cname;
|
|
export sty;
|
|
export substitute_type_params;
|
|
export t;
|
|
export tag_variants;
|
|
export tag_variant_with_id;
|
|
export triv_cast;
|
|
export triv_eq_ty;
|
|
export ty_param_substs_opt_and_ty;
|
|
export ty_param_kinds_and_ty;
|
|
export ty_native_fn;
|
|
export ty_bool;
|
|
export ty_bot;
|
|
export ty_box;
|
|
export ty_constr;
|
|
export ty_opaque_closure;
|
|
export ty_constr_arg;
|
|
export ty_float;
|
|
export ty_fn;
|
|
export ty_fn_proto;
|
|
export ty_fn_ret;
|
|
export ty_fn_ret_style;
|
|
export ty_int;
|
|
export ty_str;
|
|
export ty_vec;
|
|
export ty_native;
|
|
export ty_nil;
|
|
export ty_obj;
|
|
export ty_res;
|
|
export ty_param;
|
|
export ty_ptr;
|
|
export ty_rec;
|
|
export ty_tag;
|
|
export ty_to_machine_ty;
|
|
export ty_tup;
|
|
export ty_type;
|
|
export ty_send_type;
|
|
export ty_uint;
|
|
export ty_uniq;
|
|
export ty_var;
|
|
export ty_var_id;
|
|
export ty_param_substs_opt_and_ty_to_monotype;
|
|
export ty_fn_args;
|
|
export type_constr;
|
|
export type_contains_params;
|
|
export type_contains_vars;
|
|
export kind_lteq;
|
|
export type_kind;
|
|
export type_err;
|
|
export type_err_to_str;
|
|
export type_has_dynamic_size;
|
|
export type_needs_drop;
|
|
export type_is_bool;
|
|
export type_is_bot;
|
|
export type_is_box;
|
|
export type_is_boxed;
|
|
export type_is_unique_box;
|
|
export type_is_unsafe_ptr;
|
|
export type_is_vec;
|
|
export type_is_fp;
|
|
export type_allows_implicit_copy;
|
|
export type_is_integral;
|
|
export type_is_numeric;
|
|
export type_is_native;
|
|
export type_is_nil;
|
|
export type_is_pod;
|
|
export type_is_scalar;
|
|
export type_is_immediate;
|
|
export type_is_sequence;
|
|
export type_is_signed;
|
|
export type_is_structural;
|
|
export type_is_copyable;
|
|
export type_is_tup_like;
|
|
export type_is_str;
|
|
export type_is_unique;
|
|
export type_structurally_contains_uniques;
|
|
export type_autoderef;
|
|
export type_param;
|
|
export unify;
|
|
export variant_info;
|
|
export walk_ty;
|
|
export occurs_check_fails;
|
|
export closure_kind;
|
|
export closure_block;
|
|
export closure_shared;
|
|
export closure_send;
|
|
|
|
// Data types
|
|
|
|
type arg = {mode: mode, ty: t};
|
|
|
|
type field = {ident: ast::ident, mt: mt};
|
|
|
|
type method =
|
|
{proto: ast::proto,
|
|
ident: ast::ident,
|
|
inputs: [arg],
|
|
output: t,
|
|
cf: ret_style,
|
|
constrs: [@constr]};
|
|
|
|
type constr_table = hashmap<ast::node_id, [constr]>;
|
|
|
|
type mt = {ty: t, mut: ast::mutability};
|
|
|
|
|
|
// Contains information needed to resolve types and (in the future) look up
|
|
// the types of AST nodes.
|
|
type creader_cache = hashmap<{cnum: int, pos: uint, len: uint}, ty::t>;
|
|
|
|
type tag_var_cache =
|
|
@smallintmap::smallintmap<@mutable [variant_info]>;
|
|
|
|
tag cast_type {
|
|
/* cast may be ignored after substituting primitive with machine types
|
|
since expr already has the right type */
|
|
triv_cast;
|
|
}
|
|
|
|
type ctxt =
|
|
// constr_table fn_constrs,
|
|
// We need the ext_map just for printing the types of tags defined in
|
|
// other crates. Once we get cnames back it should go.
|
|
@{ts: @type_store,
|
|
sess: session::session,
|
|
def_map: resolve::def_map,
|
|
ext_map: resolve::ext_map,
|
|
cast_map: hashmap<ast::node_id, cast_type>,
|
|
node_types: node_type_table,
|
|
items: ast_map::map,
|
|
freevars: freevars::freevar_map,
|
|
tcache: type_cache,
|
|
rcache: creader_cache,
|
|
short_names_cache: hashmap<t, @str>,
|
|
needs_drop_cache: hashmap<t, bool>,
|
|
kind_cache: hashmap<t, ast::kind>,
|
|
ast_ty_to_ty_cache: hashmap<@ast::ty, option::t<t>>,
|
|
tag_var_cache: tag_var_cache};
|
|
|
|
type ty_ctxt = ctxt;
|
|
|
|
|
|
// Needed for disambiguation from unify::ctxt.
|
|
// Convert from method type to function type. Pretty easy; we just drop
|
|
// 'ident'.
|
|
fn method_ty_to_fn_ty(cx: ctxt, m: method) -> t {
|
|
ret mk_fn(cx, m.proto, m.inputs, m.output, m.cf, m.constrs);
|
|
}
|
|
|
|
|
|
// Never construct these manually. These are interned.
|
|
type raw_t =
|
|
{struct: sty,
|
|
cname: option::t<str>,
|
|
hash: uint,
|
|
has_params: bool,
|
|
has_vars: bool};
|
|
|
|
type t = uint;
|
|
|
|
tag closure_kind {
|
|
closure_block;
|
|
closure_shared;
|
|
closure_send;
|
|
}
|
|
|
|
// NB: If you change this, you'll probably want to change the corresponding
|
|
// AST structure in front/ast::rs as well.
|
|
tag sty {
|
|
ty_nil;
|
|
ty_bot;
|
|
ty_bool;
|
|
ty_int(ast::int_ty);
|
|
ty_uint(ast::uint_ty);
|
|
ty_float(ast::float_ty);
|
|
ty_str;
|
|
ty_tag(def_id, [t]);
|
|
ty_box(mt);
|
|
ty_uniq(mt);
|
|
ty_vec(mt);
|
|
ty_ptr(mt);
|
|
ty_rec([field]);
|
|
ty_fn(ast::proto, [arg], t, ret_style, [@constr]);
|
|
ty_native_fn([arg], t);
|
|
ty_obj([method]);
|
|
ty_res(def_id, t, [t]);
|
|
ty_tup([t]);
|
|
ty_var(int); // type variable
|
|
|
|
ty_param(uint, ast::kind); // fn/tag type param
|
|
|
|
ty_type; // type_desc*
|
|
ty_send_type; // type_desc* that has been cloned into exchange heap
|
|
ty_native(def_id);
|
|
ty_constr(t, [@type_constr]);
|
|
ty_opaque_closure; // type of a captured environment.
|
|
}
|
|
|
|
// In the middle end, constraints have a def_id attached, referring
|
|
// to the definition of the operator in the constraint.
|
|
type constr_general<ARG> = spanned<constr_general_<ARG, def_id>>;
|
|
type type_constr = constr_general<@path>;
|
|
type constr = constr_general<uint>;
|
|
|
|
// Data structures used in type unification
|
|
tag type_err {
|
|
terr_mismatch;
|
|
terr_ret_style_mismatch(ast::ret_style, ast::ret_style);
|
|
terr_box_mutability;
|
|
terr_vec_mutability;
|
|
terr_tuple_size(uint, uint);
|
|
terr_record_size(uint, uint);
|
|
terr_record_mutability;
|
|
terr_record_fields(ast::ident, ast::ident);
|
|
terr_meth_count;
|
|
terr_obj_meths(ast::ident, ast::ident);
|
|
terr_arg_count;
|
|
terr_mode_mismatch(mode, mode);
|
|
terr_constr_len(uint, uint);
|
|
terr_constr_mismatch(@type_constr, @type_constr);
|
|
}
|
|
|
|
type ty_param_kinds_and_ty = {kinds: [ast::kind], ty: t};
|
|
|
|
type type_cache = hashmap<ast::def_id, ty_param_kinds_and_ty>;
|
|
|
|
const idx_nil: uint = 0u;
|
|
|
|
const idx_bool: uint = 1u;
|
|
|
|
const idx_int: uint = 2u;
|
|
|
|
const idx_float: uint = 3u;
|
|
|
|
const idx_uint: uint = 4u;
|
|
|
|
const idx_i8: uint = 5u;
|
|
|
|
const idx_i16: uint = 6u;
|
|
|
|
const idx_i32: uint = 7u;
|
|
|
|
const idx_i64: uint = 8u;
|
|
|
|
const idx_u8: uint = 9u;
|
|
|
|
const idx_u16: uint = 10u;
|
|
|
|
const idx_u32: uint = 11u;
|
|
|
|
const idx_u64: uint = 12u;
|
|
|
|
const idx_f32: uint = 13u;
|
|
|
|
const idx_f64: uint = 14u;
|
|
|
|
const idx_char: uint = 15u;
|
|
|
|
const idx_str: uint = 16u;
|
|
|
|
const idx_type: uint = 17u;
|
|
|
|
const idx_send_type: uint = 18u;
|
|
|
|
const idx_bot: uint = 19u;
|
|
|
|
const idx_opaque_closure: uint = 20u;
|
|
|
|
const idx_first_others: uint = 21u;
|
|
|
|
type type_store = interner::interner<@raw_t>;
|
|
|
|
type ty_param_substs_opt_and_ty = {substs: option::t<[ty::t]>, ty: ty::t};
|
|
|
|
type node_type_table =
|
|
@smallintmap::smallintmap<ty::ty_param_substs_opt_and_ty>;
|
|
|
|
fn populate_type_store(cx: ctxt) {
|
|
intern(cx, ty_nil, none);
|
|
intern(cx, ty_bool, none);
|
|
intern(cx, ty_int(ast::ty_i), none);
|
|
intern(cx, ty_float(ast::ty_f), none);
|
|
intern(cx, ty_uint(ast::ty_u), none);
|
|
intern(cx, ty_int(ast::ty_i8), none);
|
|
intern(cx, ty_int(ast::ty_i16), none);
|
|
intern(cx, ty_int(ast::ty_i32), none);
|
|
intern(cx, ty_int(ast::ty_i64), none);
|
|
intern(cx, ty_uint(ast::ty_u8), none);
|
|
intern(cx, ty_uint(ast::ty_u16), none);
|
|
intern(cx, ty_uint(ast::ty_u32), none);
|
|
intern(cx, ty_uint(ast::ty_u64), none);
|
|
intern(cx, ty_float(ast::ty_f32), none);
|
|
intern(cx, ty_float(ast::ty_f64), none);
|
|
intern(cx, ty_int(ast::ty_char), none);
|
|
intern(cx, ty_str, none);
|
|
intern(cx, ty_type, none);
|
|
intern(cx, ty_send_type, none);
|
|
intern(cx, ty_bot, none);
|
|
intern(cx, ty_opaque_closure, none);
|
|
assert (vec::len(cx.ts.vect) == idx_first_others);
|
|
}
|
|
|
|
fn mk_rcache() -> creader_cache {
|
|
type val = {cnum: int, pos: uint, len: uint};
|
|
fn hash_cache_entry(k: val) -> uint {
|
|
ret (k.cnum as uint) + k.pos + k.len;
|
|
}
|
|
fn eq_cache_entries(a: val, b: val) -> bool {
|
|
ret a.cnum == b.cnum && a.pos == b.pos && a.len == b.len;
|
|
}
|
|
ret map::mk_hashmap(hash_cache_entry, eq_cache_entries);
|
|
}
|
|
|
|
|
|
fn mk_ctxt(s: session::session, dm: resolve::def_map,
|
|
em: hashmap<def_id, [ident]>, amap: ast_map::map,
|
|
freevars: freevars::freevar_map) -> ctxt {
|
|
let ntt: node_type_table =
|
|
@smallintmap::mk::<ty::ty_param_substs_opt_and_ty>();
|
|
let tcache = new_def_hash::<ty::ty_param_kinds_and_ty>();
|
|
let ts = @interner::mk::<@raw_t>(hash_raw_ty, eq_raw_ty);
|
|
let cx =
|
|
@{ts: ts,
|
|
sess: s,
|
|
def_map: dm,
|
|
ext_map: em,
|
|
cast_map: ast_util::new_node_hash(),
|
|
node_types: ntt,
|
|
items: amap,
|
|
freevars: freevars,
|
|
tcache: tcache,
|
|
rcache: mk_rcache(),
|
|
short_names_cache: map::mk_hashmap(ty::hash_ty, ty::eq_ty),
|
|
needs_drop_cache: map::mk_hashmap(ty::hash_ty, ty::eq_ty),
|
|
kind_cache: map::mk_hashmap(ty::hash_ty, ty::eq_ty),
|
|
ast_ty_to_ty_cache:
|
|
map::mk_hashmap(ast_util::hash_ty, ast_util::eq_ty),
|
|
tag_var_cache: @smallintmap::mk()};
|
|
populate_type_store(cx);
|
|
ret cx;
|
|
}
|
|
|
|
|
|
// Type constructors
|
|
fn mk_raw_ty(cx: ctxt, st: sty, _in_cname: option::t<str>) -> @raw_t {
|
|
let cname: option::t<str> = none;
|
|
let h = hash_type_info(st, cname);
|
|
let has_params: bool = false;
|
|
let has_vars: bool = false;
|
|
fn derive_flags_t(cx: ctxt, &has_params: bool, &has_vars: bool, tt: t) {
|
|
let rt = interner::get::<@raw_t>(*cx.ts, tt);
|
|
has_params = has_params || rt.has_params;
|
|
has_vars = has_vars || rt.has_vars;
|
|
}
|
|
fn derive_flags_mt(cx: ctxt, &has_params: bool, &has_vars: bool, m: mt) {
|
|
derive_flags_t(cx, has_params, has_vars, m.ty);
|
|
}
|
|
fn derive_flags_arg(cx: ctxt, &has_params: bool, &has_vars: bool,
|
|
a: arg) {
|
|
derive_flags_t(cx, has_params, has_vars, a.ty);
|
|
}
|
|
fn derive_flags_sig(cx: ctxt, &has_params: bool, &has_vars: bool,
|
|
args: [arg], tt: t) {
|
|
for a: arg in args { derive_flags_arg(cx, has_params, has_vars, a); }
|
|
derive_flags_t(cx, has_params, has_vars, tt);
|
|
}
|
|
alt st {
|
|
ty_nil. | ty_bot. | ty_bool. | ty_int(_) | ty_float(_) | ty_uint(_) |
|
|
ty_str. | ty_send_type. | ty_type. | ty_native(_) | ty_opaque_closure. {
|
|
/* no-op */
|
|
}
|
|
ty_param(_, _) { has_params = true; }
|
|
ty_var(_) { has_vars = true; }
|
|
ty_tag(_, tys) {
|
|
for tt: t in tys { derive_flags_t(cx, has_params, has_vars, tt); }
|
|
}
|
|
ty_box(m) { derive_flags_mt(cx, has_params, has_vars, m); }
|
|
ty_uniq(m) { derive_flags_mt(cx, has_params, has_vars, m); }
|
|
ty_vec(m) { derive_flags_mt(cx, has_params, has_vars, m); }
|
|
ty_ptr(m) { derive_flags_mt(cx, has_params, has_vars, m); }
|
|
ty_rec(flds) {
|
|
for f: field in flds {
|
|
derive_flags_mt(cx, has_params, has_vars, f.mt);
|
|
}
|
|
}
|
|
ty_tup(ts) {
|
|
for tt in ts { derive_flags_t(cx, has_params, has_vars, tt); }
|
|
}
|
|
ty_fn(_, args, tt, _, _) {
|
|
derive_flags_sig(cx, has_params, has_vars, args, tt);
|
|
}
|
|
ty_native_fn(args, tt) {
|
|
derive_flags_sig(cx, has_params, has_vars, args, tt);
|
|
}
|
|
ty_obj(meths) {
|
|
for m: method in meths {
|
|
derive_flags_sig(cx, has_params, has_vars, m.inputs, m.output);
|
|
}
|
|
}
|
|
ty_res(_, tt, tps) {
|
|
derive_flags_t(cx, has_params, has_vars, tt);
|
|
for tt: t in tps { derive_flags_t(cx, has_params, has_vars, tt); }
|
|
}
|
|
ty_constr(tt, _) { derive_flags_t(cx, has_params, has_vars, tt); }
|
|
}
|
|
ret @{struct: st,
|
|
cname: cname,
|
|
hash: h,
|
|
has_params: has_params,
|
|
has_vars: has_vars};
|
|
}
|
|
|
|
fn intern(cx: ctxt, st: sty, cname: option::t<str>) {
|
|
interner::intern(*cx.ts, mk_raw_ty(cx, st, cname));
|
|
}
|
|
|
|
fn gen_ty_full(cx: ctxt, st: sty, cname: option::t<str>) -> t {
|
|
let raw_type = mk_raw_ty(cx, st, cname);
|
|
ret interner::intern(*cx.ts, raw_type);
|
|
}
|
|
|
|
|
|
// These are private constructors to this module. External users should always
|
|
// use the mk_foo() functions below.
|
|
fn gen_ty(cx: ctxt, st: sty) -> t { ret gen_ty_full(cx, st, none); }
|
|
|
|
fn mk_nil(_cx: ctxt) -> t { ret idx_nil; }
|
|
|
|
fn mk_bot(_cx: ctxt) -> t { ret idx_bot; }
|
|
|
|
fn mk_bool(_cx: ctxt) -> t { ret idx_bool; }
|
|
|
|
fn mk_int(_cx: ctxt) -> t { ret idx_int; }
|
|
|
|
fn mk_float(_cx: ctxt) -> t { ret idx_float; }
|
|
|
|
fn mk_uint(_cx: ctxt) -> t { ret idx_uint; }
|
|
|
|
fn mk_mach_int(_cx: ctxt, tm: ast::int_ty) -> t {
|
|
alt tm {
|
|
ast::ty_i. { ret idx_int; }
|
|
ast::ty_char. { ret idx_char; }
|
|
ast::ty_i8. { ret idx_i8; }
|
|
ast::ty_i16. { ret idx_i16; }
|
|
ast::ty_i32. { ret idx_i32; }
|
|
ast::ty_i64. { ret idx_i64; }
|
|
}
|
|
}
|
|
|
|
fn mk_mach_uint(_cx: ctxt, tm: ast::uint_ty) -> t {
|
|
alt tm {
|
|
ast::ty_u. { ret idx_uint; }
|
|
ast::ty_u8. { ret idx_u8; }
|
|
ast::ty_u16. { ret idx_u16; }
|
|
ast::ty_u32. { ret idx_u32; }
|
|
ast::ty_u64. { ret idx_u64; }
|
|
}
|
|
}
|
|
|
|
fn mk_mach_float(_cx: ctxt, tm: ast::float_ty) -> t {
|
|
alt tm {
|
|
ast::ty_f. { ret idx_float; }
|
|
ast::ty_f32. { ret idx_f32; }
|
|
ast::ty_f64. { ret idx_f64; }
|
|
}
|
|
}
|
|
|
|
|
|
fn mk_char(_cx: ctxt) -> t { ret idx_char; }
|
|
|
|
fn mk_str(_cx: ctxt) -> t { ret idx_str; }
|
|
|
|
fn mk_tag(cx: ctxt, did: ast::def_id, tys: [t]) -> t {
|
|
ret gen_ty(cx, ty_tag(did, tys));
|
|
}
|
|
|
|
fn mk_box(cx: ctxt, tm: mt) -> t { ret gen_ty(cx, ty_box(tm)); }
|
|
|
|
fn mk_uniq(cx: ctxt, tm: mt) -> t { ret gen_ty(cx, ty_uniq(tm)); }
|
|
|
|
fn mk_imm_uniq(cx: ctxt, ty: t) -> t {
|
|
ret mk_uniq(cx, {ty: ty, mut: ast::imm});
|
|
}
|
|
|
|
fn mk_ptr(cx: ctxt, tm: mt) -> t { ret gen_ty(cx, ty_ptr(tm)); }
|
|
|
|
fn mk_imm_box(cx: ctxt, ty: t) -> t {
|
|
ret mk_box(cx, {ty: ty, mut: ast::imm});
|
|
}
|
|
|
|
fn mk_mut_ptr(cx: ctxt, ty: t) -> t {
|
|
ret mk_ptr(cx, {ty: ty, mut: ast::mut});
|
|
}
|
|
|
|
fn mk_vec(cx: ctxt, tm: mt) -> t { ret gen_ty(cx, ty_vec(tm)); }
|
|
|
|
fn mk_rec(cx: ctxt, fs: [field]) -> t { ret gen_ty(cx, ty_rec(fs)); }
|
|
|
|
fn mk_constr(cx: ctxt, t: t, cs: [@type_constr]) -> t {
|
|
ret gen_ty(cx, ty_constr(t, cs));
|
|
}
|
|
|
|
fn mk_tup(cx: ctxt, ts: [t]) -> t { ret gen_ty(cx, ty_tup(ts)); }
|
|
|
|
fn mk_fn(cx: ctxt, proto: ast::proto, args: [arg], ty: t, cf: ret_style,
|
|
constrs: [@constr]) -> t {
|
|
ret gen_ty(cx, ty_fn(proto, args, ty, cf, constrs));
|
|
}
|
|
|
|
fn mk_native_fn(cx: ctxt, args: [arg], ty: t) -> t {
|
|
ret gen_ty(cx, ty_native_fn(args, ty));
|
|
}
|
|
|
|
fn mk_obj(cx: ctxt, meths: [method]) -> t { ret gen_ty(cx, ty_obj(meths)); }
|
|
|
|
fn mk_res(cx: ctxt, did: ast::def_id, inner: t, tps: [t]) -> t {
|
|
ret gen_ty(cx, ty_res(did, inner, tps));
|
|
}
|
|
|
|
fn mk_var(cx: ctxt, v: int) -> t { ret gen_ty(cx, ty_var(v)); }
|
|
|
|
fn mk_param(cx: ctxt, n: uint, k: ast::kind) -> t {
|
|
ret gen_ty(cx, ty_param(n, k));
|
|
}
|
|
|
|
fn mk_type(_cx: ctxt) -> t { ret idx_type; }
|
|
|
|
fn mk_send_type(_cx: ctxt) -> t { ret idx_send_type; }
|
|
|
|
fn mk_native(cx: ctxt, did: def_id) -> t { ret gen_ty(cx, ty_native(did)); }
|
|
|
|
fn mk_opaque_closure(_cx: ctxt) -> t {
|
|
ret idx_opaque_closure;
|
|
}
|
|
|
|
// Returns the one-level-deep type structure of the given type.
|
|
pure fn struct(cx: ctxt, typ: t) -> sty { interner::get(*cx.ts, typ).struct }
|
|
|
|
|
|
// Returns the canonical name of the given type.
|
|
fn cname(cx: ctxt, typ: t) -> option::t<str> {
|
|
ret interner::get(*cx.ts, typ).cname;
|
|
}
|
|
|
|
|
|
// Type folds
|
|
type ty_walk = fn@(t);
|
|
|
|
fn walk_ty(cx: ctxt, walker: ty_walk, ty: t) {
|
|
alt struct(cx, ty) {
|
|
ty_nil. | ty_bot. | ty_bool. | ty_int(_) | ty_uint(_) | ty_float(_) |
|
|
ty_str. | ty_send_type. | ty_type. | ty_native(_) | ty_opaque_closure. {
|
|
/* no-op */
|
|
}
|
|
ty_box(tm) | ty_vec(tm) | ty_ptr(tm) { walk_ty(cx, walker, tm.ty); }
|
|
ty_tag(tid, subtys) {
|
|
for subty: t in subtys { walk_ty(cx, walker, subty); }
|
|
}
|
|
ty_rec(fields) {
|
|
for fl: field in fields { walk_ty(cx, walker, fl.mt.ty); }
|
|
}
|
|
ty_tup(ts) { for tt in ts { walk_ty(cx, walker, tt); } }
|
|
ty_fn(proto, args, ret_ty, _, _) {
|
|
for a: arg in args { walk_ty(cx, walker, a.ty); }
|
|
walk_ty(cx, walker, ret_ty);
|
|
}
|
|
ty_native_fn(args, ret_ty) {
|
|
for a: arg in args { walk_ty(cx, walker, a.ty); }
|
|
walk_ty(cx, walker, ret_ty);
|
|
}
|
|
ty_obj(methods) {
|
|
for m: method in methods {
|
|
for a: arg in m.inputs { walk_ty(cx, walker, a.ty); }
|
|
walk_ty(cx, walker, m.output);
|
|
}
|
|
}
|
|
ty_res(_, sub, tps) {
|
|
walk_ty(cx, walker, sub);
|
|
for tp: t in tps { walk_ty(cx, walker, tp); }
|
|
}
|
|
ty_constr(sub, _) { walk_ty(cx, walker, sub); }
|
|
ty_var(_) {/* no-op */ }
|
|
ty_param(_, _) {/* no-op */ }
|
|
ty_uniq(tm) { walk_ty(cx, walker, tm.ty); }
|
|
}
|
|
walker(ty);
|
|
}
|
|
|
|
tag fold_mode {
|
|
fm_var(fn@(int) -> t);
|
|
fm_param(fn@(uint, ast::kind) -> t);
|
|
fm_general(fn@(t) -> t);
|
|
}
|
|
|
|
fn fold_ty(cx: ctxt, fld: fold_mode, ty_0: t) -> t {
|
|
let ty = ty_0;
|
|
// Fast paths.
|
|
|
|
alt fld {
|
|
fm_var(_) { if !type_contains_vars(cx, ty) { ret ty; } }
|
|
fm_param(_) { if !type_contains_params(cx, ty) { ret ty; } }
|
|
fm_general(_) {/* no fast path */ }
|
|
}
|
|
alt struct(cx, ty) {
|
|
ty_nil. | ty_bot. | ty_bool. | ty_int(_) | ty_uint(_) | ty_float(_) |
|
|
ty_str. | ty_send_type. | ty_type. | ty_native(_) | ty_opaque_closure. {
|
|
/* no-op */
|
|
}
|
|
ty_box(tm) {
|
|
ty = mk_box(cx, {ty: fold_ty(cx, fld, tm.ty), mut: tm.mut});
|
|
}
|
|
ty_uniq(tm) {
|
|
ty = mk_uniq(cx, {ty: fold_ty(cx, fld, tm.ty), mut: tm.mut});
|
|
}
|
|
ty_ptr(tm) {
|
|
ty = mk_ptr(cx, {ty: fold_ty(cx, fld, tm.ty), mut: tm.mut});
|
|
}
|
|
ty_vec(tm) {
|
|
ty = mk_vec(cx, {ty: fold_ty(cx, fld, tm.ty), mut: tm.mut});
|
|
}
|
|
ty_tag(tid, subtys) {
|
|
let new_subtys: [t] = [];
|
|
for subty: t in subtys { new_subtys += [fold_ty(cx, fld, subty)]; }
|
|
ty = copy_cname(cx, mk_tag(cx, tid, new_subtys), ty);
|
|
}
|
|
ty_rec(fields) {
|
|
let new_fields: [field] = [];
|
|
for fl: field in fields {
|
|
let new_ty = fold_ty(cx, fld, fl.mt.ty);
|
|
let new_mt = {ty: new_ty, mut: fl.mt.mut};
|
|
new_fields += [{ident: fl.ident, mt: new_mt}];
|
|
}
|
|
ty = copy_cname(cx, mk_rec(cx, new_fields), ty);
|
|
}
|
|
ty_tup(ts) {
|
|
let new_ts = [];
|
|
for tt in ts { new_ts += [fold_ty(cx, fld, tt)]; }
|
|
ty = copy_cname(cx, mk_tup(cx, new_ts), ty);
|
|
}
|
|
ty_fn(proto, args, ret_ty, cf, constrs) {
|
|
let new_args: [arg] = [];
|
|
for a: arg in args {
|
|
let new_ty = fold_ty(cx, fld, a.ty);
|
|
new_args += [{mode: a.mode, ty: new_ty}];
|
|
}
|
|
ty = copy_cname(cx, mk_fn(cx, proto, new_args,
|
|
fold_ty(cx, fld, ret_ty), cf, constrs), ty);
|
|
}
|
|
ty_native_fn(args, ret_ty) {
|
|
let new_args: [arg] = [];
|
|
for a: arg in args {
|
|
let new_ty = fold_ty(cx, fld, a.ty);
|
|
new_args += [{mode: a.mode, ty: new_ty}];
|
|
}
|
|
ty = copy_cname(cx, mk_native_fn(cx, new_args,
|
|
fold_ty(cx, fld, ret_ty)), ty);
|
|
}
|
|
ty_obj(methods) {
|
|
let new_methods: [method] = [];
|
|
for m: method in methods {
|
|
let new_args: [arg] = [];
|
|
for a: arg in m.inputs {
|
|
new_args += [{mode: a.mode, ty: fold_ty(cx, fld, a.ty)}];
|
|
}
|
|
new_methods +=
|
|
[{proto: m.proto,
|
|
ident: m.ident,
|
|
inputs: new_args,
|
|
output: fold_ty(cx, fld, m.output),
|
|
cf: m.cf,
|
|
constrs: m.constrs}];
|
|
}
|
|
ty = copy_cname(cx, mk_obj(cx, new_methods), ty);
|
|
}
|
|
ty_res(did, subty, tps) {
|
|
let new_tps = [];
|
|
for tp: t in tps { new_tps += [fold_ty(cx, fld, tp)]; }
|
|
ty =
|
|
copy_cname(cx, mk_res(cx, did, fold_ty(cx, fld, subty), new_tps),
|
|
ty);
|
|
}
|
|
ty_var(id) {
|
|
alt fld { fm_var(folder) { ty = folder(id); } _ {/* no-op */ } }
|
|
}
|
|
ty_param(id, k) {
|
|
alt fld { fm_param(folder) { ty = folder(id, k); } _ {/* no-op */ } }
|
|
}
|
|
}
|
|
|
|
// If this is a general type fold, then we need to run it now.
|
|
alt fld { fm_general(folder) { ret folder(ty); } _ { ret ty; } }
|
|
}
|
|
|
|
|
|
// Type utilities
|
|
|
|
fn rename(cx: ctxt, typ: t, new_cname: str) -> t {
|
|
ret gen_ty_full(cx, struct(cx, typ), some(new_cname));
|
|
}
|
|
|
|
fn strip_cname(cx: ctxt, typ: t) -> t {
|
|
ret gen_ty_full(cx, struct(cx, typ), none);
|
|
}
|
|
|
|
// Returns a type with the structural part taken from `struct_ty` and the
|
|
// canonical name from `cname_ty`.
|
|
fn copy_cname(cx: ctxt, struct_ty: t, cname_ty: t) -> t {
|
|
ret gen_ty_full(cx, struct(cx, struct_ty), cname(cx, cname_ty));
|
|
}
|
|
|
|
fn type_is_nil(cx: ctxt, ty: t) -> bool {
|
|
alt struct(cx, ty) { ty_nil. { ret true; } _ { ret false; } }
|
|
}
|
|
|
|
fn type_is_bot(cx: ctxt, ty: t) -> bool {
|
|
alt struct(cx, ty) { ty_bot. { ret true; } _ { ret false; } }
|
|
}
|
|
|
|
fn type_is_bool(cx: ctxt, ty: t) -> bool {
|
|
alt struct(cx, ty) { ty_bool. { ret true; } _ { ret false; } }
|
|
}
|
|
|
|
fn type_is_structural(cx: ctxt, ty: t) -> bool {
|
|
alt struct(cx, ty) {
|
|
ty_rec(_) { ret true; }
|
|
ty_tup(_) { ret true; }
|
|
ty_tag(_, _) { ret true; }
|
|
ty_fn(_, _, _, _, _) { ret true; }
|
|
ty_native_fn(_, _) { ret true; }
|
|
ty_obj(_) { ret true; }
|
|
ty_res(_, _, _) { ret true; }
|
|
_ { ret false; }
|
|
}
|
|
}
|
|
|
|
fn type_is_copyable(cx: ctxt, ty: t) -> bool {
|
|
ret ast::kind_can_be_copied(type_kind(cx, ty));
|
|
}
|
|
|
|
fn type_is_sequence(cx: ctxt, ty: t) -> bool {
|
|
alt struct(cx, ty) {
|
|
ty_str. { ret true; }
|
|
ty_vec(_) { ret true; }
|
|
_ { ret false; }
|
|
}
|
|
}
|
|
|
|
fn type_is_str(cx: ctxt, ty: t) -> bool {
|
|
alt struct(cx, ty) { ty_str. { ret true; } _ { ret false; } }
|
|
}
|
|
|
|
fn sequence_element_type(cx: ctxt, ty: t) -> t {
|
|
alt struct(cx, ty) {
|
|
ty_str. { ret mk_mach_uint(cx, ast::ty_u8); }
|
|
ty_vec(mt) { ret mt.ty; }
|
|
_ { cx.sess.bug("sequence_element_type called on non-sequence value"); }
|
|
}
|
|
}
|
|
|
|
pure fn type_is_tup_like(cx: ctxt, ty: t) -> bool {
|
|
let sty = struct(cx, ty);
|
|
alt sty {
|
|
ty_box(_) | ty_rec(_) | ty_tup(_) | ty_tag(_,_) { true }
|
|
_ { false }
|
|
}
|
|
}
|
|
|
|
fn get_element_type(cx: ctxt, ty: t, i: uint) -> t {
|
|
alt struct(cx, ty) {
|
|
ty_rec(flds) { ret flds[i].mt.ty; }
|
|
ty_tup(ts) { ret ts[i]; }
|
|
_ {
|
|
cx.sess.bug("get_element_type called on type " + ty_to_str(cx, ty) +
|
|
" - expected a \
|
|
tuple or record");
|
|
}
|
|
}
|
|
// NB: This is not exhaustive -- struct(cx, ty) could be a box or a
|
|
// tag.
|
|
}
|
|
|
|
pure fn type_is_box(cx: ctxt, ty: t) -> bool {
|
|
alt struct(cx, ty) {
|
|
ty_box(_) { ret true; }
|
|
_ { ret false; }
|
|
}
|
|
}
|
|
|
|
pure fn type_is_boxed(cx: ctxt, ty: t) -> bool {
|
|
alt struct(cx, ty) {
|
|
ty_box(_) { ret true; }
|
|
_ { ret false; }
|
|
}
|
|
}
|
|
|
|
pure fn type_is_unique_box(cx: ctxt, ty: t) -> bool {
|
|
alt struct(cx, ty) {
|
|
ty_uniq(_) { ret true; }
|
|
_ { ret false; }
|
|
}
|
|
}
|
|
|
|
pure fn type_is_unsafe_ptr(cx: ctxt, ty: t) -> bool {
|
|
alt struct(cx, ty) {
|
|
ty_ptr(_) { ret true; }
|
|
_ { ret false; }
|
|
}
|
|
}
|
|
|
|
pure fn type_is_vec(cx: ctxt, ty: t) -> bool {
|
|
ret alt struct(cx, ty) {
|
|
ty_vec(_) { true }
|
|
ty_str. { true }
|
|
_ { false }
|
|
};
|
|
}
|
|
|
|
pure fn type_is_unique(cx: ctxt, ty: t) -> bool {
|
|
alt struct(cx, ty) {
|
|
ty_uniq(_) { ret true; }
|
|
ty_vec(_) { true }
|
|
ty_str. { true }
|
|
_ { ret false; }
|
|
}
|
|
}
|
|
|
|
pure fn type_is_scalar(cx: ctxt, ty: t) -> bool {
|
|
alt struct(cx, ty) {
|
|
ty_nil. | ty_bool. | ty_int(_) | ty_float(_) | ty_uint(_) |
|
|
ty_send_type. | ty_type. | ty_native(_) | ty_ptr(_) { true }
|
|
_ { false }
|
|
}
|
|
}
|
|
|
|
// FIXME maybe inline this for speed?
|
|
fn type_is_immediate(cx: ctxt, ty: t) -> bool {
|
|
ret type_is_scalar(cx, ty) || type_is_boxed(cx, ty) ||
|
|
type_is_unique(cx, ty) || type_is_native(cx, ty);
|
|
}
|
|
|
|
fn type_needs_drop(cx: ctxt, ty: t) -> bool {
|
|
alt cx.needs_drop_cache.find(ty) {
|
|
some(result) { ret result; }
|
|
none. {/* fall through */ }
|
|
}
|
|
|
|
let accum = false;
|
|
let result = alt struct(cx, ty) {
|
|
// scalar types
|
|
ty_nil. | ty_bot. | ty_bool. | ty_int(_) | ty_float(_) | ty_uint(_) |
|
|
ty_type. | ty_native(_) | ty_ptr(_) { false }
|
|
ty_rec(flds) {
|
|
for f in flds { if type_needs_drop(cx, f.mt.ty) { accum = true; } }
|
|
accum
|
|
}
|
|
ty_tup(elts) {
|
|
for m in elts { if type_needs_drop(cx, m) { accum = true; } }
|
|
accum
|
|
}
|
|
ty_tag(did, tps) {
|
|
let variants = tag_variants(cx, did);
|
|
for variant in *variants {
|
|
for aty in variant.args {
|
|
// Perform any type parameter substitutions.
|
|
let arg_ty = substitute_type_params(cx, tps, aty);
|
|
if type_needs_drop(cx, arg_ty) { accum = true; }
|
|
}
|
|
if accum { break; }
|
|
}
|
|
accum
|
|
}
|
|
_ { true }
|
|
};
|
|
|
|
cx.needs_drop_cache.insert(ty, result);
|
|
ret result;
|
|
}
|
|
|
|
fn kind_lteq(a: kind, b: kind) -> bool {
|
|
alt a {
|
|
kind_noncopyable. { true }
|
|
kind_copyable. { b != kind_noncopyable }
|
|
kind_sendable. { b == kind_sendable }
|
|
}
|
|
}
|
|
|
|
fn lower_kind(a: kind, b: kind) -> kind {
|
|
if ty::kind_lteq(a, b) { a } else { b }
|
|
}
|
|
|
|
fn type_kind(cx: ctxt, ty: t) -> ast::kind {
|
|
alt cx.kind_cache.find(ty) {
|
|
some(result) { ret result; }
|
|
none. {/* fall through */ }
|
|
}
|
|
|
|
// Insert a default in case we loop back on self recursively.
|
|
cx.kind_cache.insert(ty, ast::kind_sendable);
|
|
|
|
let result = alt struct(cx, ty) {
|
|
// Scalar and unique types are sendable
|
|
ty_nil. | ty_bot. | ty_bool. | ty_int(_) | ty_uint(_) | ty_float(_) |
|
|
ty_native(_) | ty_ptr(_) |
|
|
ty_send_type. | ty_str. | ty_native_fn(_, _) { ast::kind_sendable }
|
|
ty_type. { kind_copyable }
|
|
// FIXME: obj is broken for now, since we aren't asserting
|
|
// anything about its fields.
|
|
ty_obj(_) { kind_copyable }
|
|
ty_fn(proto, _, _, _, _) { ast::proto_kind(proto) }
|
|
ty_opaque_closure. { kind_noncopyable }
|
|
// Those with refcounts-to-inner raise pinned to shared,
|
|
// lower unique to shared. Therefore just set result to shared.
|
|
ty_box(mt) { ast::kind_copyable }
|
|
// Boxes and unique pointers raise pinned to shared.
|
|
ty_vec(tm) | ty_uniq(tm) { type_kind(cx, tm.ty) }
|
|
// Records lower to the lowest of their members.
|
|
ty_rec(flds) {
|
|
let lowest = ast::kind_sendable;
|
|
for f in flds { lowest = lower_kind(lowest, type_kind(cx, f.mt.ty)); }
|
|
lowest
|
|
}
|
|
// Tuples lower to the lowest of their members.
|
|
ty_tup(tys) {
|
|
let lowest = ast::kind_sendable;
|
|
for ty in tys { lowest = lower_kind(lowest, type_kind(cx, ty)); }
|
|
lowest
|
|
}
|
|
// Tags lower to the lowest of their variants.
|
|
ty_tag(did, tps) {
|
|
let lowest = ast::kind_sendable;
|
|
for variant in *tag_variants(cx, did) {
|
|
for aty in variant.args {
|
|
// Perform any type parameter substitutions.
|
|
let arg_ty = substitute_type_params(cx, tps, aty);
|
|
lowest = lower_kind(lowest, type_kind(cx, arg_ty));
|
|
if lowest == ast::kind_noncopyable { break; }
|
|
}
|
|
}
|
|
lowest
|
|
}
|
|
// Resources are always noncopyable.
|
|
ty_res(did, inner, tps) { ast::kind_noncopyable }
|
|
ty_param(_, k) { k }
|
|
ty_constr(t, _) { type_kind(cx, t) }
|
|
};
|
|
|
|
cx.kind_cache.insert(ty, result);
|
|
ret result;
|
|
}
|
|
|
|
// FIXME: should we just return true for native types in
|
|
// type_is_scalar?
|
|
fn type_is_native(cx: ctxt, ty: t) -> bool {
|
|
alt struct(cx, ty) { ty_native(_) { ret true; } _ { ret false; } }
|
|
}
|
|
|
|
fn type_structurally_contains(cx: ctxt, ty: t, test: fn(sty) -> bool) ->
|
|
bool {
|
|
let sty = struct(cx, ty);
|
|
if test(sty) { ret true; }
|
|
alt sty {
|
|
ty_tag(did, tps) {
|
|
for variant in *tag_variants(cx, did) {
|
|
for aty in variant.args {
|
|
let sty = substitute_type_params(cx, tps, aty);
|
|
if type_structurally_contains(cx, sty, test) { ret true; }
|
|
}
|
|
}
|
|
ret false;
|
|
}
|
|
ty_rec(fields) {
|
|
for field in fields {
|
|
if type_structurally_contains(cx, field.mt.ty, test) { ret true; }
|
|
}
|
|
ret false;
|
|
}
|
|
ty_tup(ts) {
|
|
for tt in ts {
|
|
if type_structurally_contains(cx, tt, test) { ret true; }
|
|
}
|
|
ret false;
|
|
}
|
|
ty_res(_, sub, tps) {
|
|
let sty = substitute_type_params(cx, tps, sub);
|
|
ret type_structurally_contains(cx, sty, test);
|
|
}
|
|
_ { ret false; }
|
|
}
|
|
}
|
|
|
|
pure fn type_has_dynamic_size(cx: ctxt, ty: t) -> bool {
|
|
|
|
/* type_structurally_contains can't be declared pure
|
|
because it takes a function argument. But it should be
|
|
referentially transparent, since a given type's size should
|
|
never change once it's created.
|
|
(It would be interesting to think about how to make such properties
|
|
actually checkable. It seems to me like a lot of properties
|
|
that the type context tracks about types should be immutable.)
|
|
*/
|
|
unchecked{
|
|
type_structurally_contains(cx, ty,
|
|
fn (sty: sty) -> bool {
|
|
ret alt sty {
|
|
ty_param(_, _) { true }
|
|
_ { false }
|
|
};
|
|
})
|
|
}
|
|
}
|
|
|
|
// Returns true for noncopyable types and types where a copy of a value can be
|
|
// distinguished from the value itself. I.e. types with mutable content that's
|
|
// not shared through a pointer.
|
|
fn type_allows_implicit_copy(cx: ctxt, ty: t) -> bool {
|
|
ret !type_structurally_contains(cx, ty, fn (sty: sty) -> bool {
|
|
ret alt sty {
|
|
ty_param(_, _) { true }
|
|
ty_vec(mt) {
|
|
mt.mut != ast::imm
|
|
}
|
|
ty_rec(fields) {
|
|
for field in fields {
|
|
if field.mt.mut !=
|
|
ast::imm {
|
|
ret true;
|
|
}
|
|
}
|
|
false
|
|
}
|
|
_ { false }
|
|
};
|
|
}) && type_kind(cx, ty) != ast::kind_noncopyable;
|
|
}
|
|
|
|
fn type_structurally_contains_uniques(cx: ctxt, ty: t) -> bool {
|
|
ret type_structurally_contains(cx, ty, fn (sty: sty) -> bool {
|
|
ret alt sty {
|
|
ty_uniq(_) { ret true; }
|
|
ty_vec(_) { true }
|
|
ty_str. { true }
|
|
_ { ret false; }
|
|
};
|
|
});
|
|
}
|
|
|
|
fn type_is_integral(cx: ctxt, ty: t) -> bool {
|
|
alt struct(cx, ty) {
|
|
ty_int(_) | ty_uint(_) | ty_bool. { true }
|
|
_ { false }
|
|
}
|
|
}
|
|
|
|
fn type_is_fp(cx: ctxt, ty: t) -> bool {
|
|
alt struct(cx, ty) {
|
|
ty_float(_) { true }
|
|
_ { false }
|
|
}
|
|
}
|
|
|
|
fn type_is_numeric(cx: ctxt, ty: t) -> bool {
|
|
ret type_is_integral(cx, ty) || type_is_fp(cx, ty);
|
|
}
|
|
|
|
fn type_is_signed(cx: ctxt, ty: t) -> bool {
|
|
alt struct(cx, ty) {
|
|
ty_int(_) { true }
|
|
_ { false }
|
|
}
|
|
}
|
|
|
|
// Whether a type is Plain Old Data (i.e. can be safely memmoved).
|
|
fn type_is_pod(cx: ctxt, ty: t) -> bool {
|
|
let result = true;
|
|
alt struct(cx, ty) {
|
|
// Scalar types
|
|
ty_nil. | ty_bot. | ty_bool. | ty_int(_) | ty_float(_) | ty_uint(_) |
|
|
ty_send_type. | ty_type. | ty_native(_) | ty_ptr(_) { result = true; }
|
|
// Boxed types
|
|
ty_str. | ty_box(_) | ty_uniq(_) | ty_vec(_) | ty_fn(_, _, _, _, _) |
|
|
ty_native_fn(_, _) | ty_obj(_) {
|
|
result = false;
|
|
}
|
|
// Structural types
|
|
ty_tag(did, tps) {
|
|
let variants = tag_variants(cx, did);
|
|
for variant: variant_info in *variants {
|
|
let tup_ty = mk_tup(cx, variant.args);
|
|
|
|
// Perform any type parameter substitutions.
|
|
tup_ty = substitute_type_params(cx, tps, tup_ty);
|
|
if !type_is_pod(cx, tup_ty) { result = false; }
|
|
}
|
|
}
|
|
ty_rec(flds) {
|
|
for f: field in flds {
|
|
if !type_is_pod(cx, f.mt.ty) { result = false; }
|
|
}
|
|
}
|
|
ty_tup(elts) {
|
|
for elt in elts { if !type_is_pod(cx, elt) { result = false; } }
|
|
}
|
|
ty_res(_, inner, tps) {
|
|
result = type_is_pod(cx, substitute_type_params(cx, tps, inner));
|
|
}
|
|
ty_constr(subt, _) { result = type_is_pod(cx, subt); }
|
|
ty_var(_) {
|
|
fail "ty_var in type_is_pod";
|
|
}
|
|
ty_param(_, _) { result = false; }
|
|
}
|
|
|
|
ret result;
|
|
}
|
|
|
|
fn type_param(cx: ctxt, ty: t) -> option::t<uint> {
|
|
alt struct(cx, ty) {
|
|
ty_param(id, _) { ret some(id); }
|
|
_ {/* fall through */ }
|
|
}
|
|
ret none;
|
|
}
|
|
|
|
// Returns a vec of all the type variables
|
|
// occurring in t. It may contain duplicates.
|
|
fn vars_in_type(cx: ctxt, ty: t) -> [int] {
|
|
fn collect_var(cx: ctxt, vars: @mutable [int], ty: t) {
|
|
alt struct(cx, ty) { ty_var(v) { *vars += [v]; } _ { } }
|
|
}
|
|
let rslt: @mutable [int] = @mutable [];
|
|
walk_ty(cx, bind collect_var(cx, rslt, _), ty);
|
|
// Works because of a "convenient" bug that lets us
|
|
// return a mutable vec as if it's immutable
|
|
ret *rslt;
|
|
}
|
|
|
|
fn type_autoderef(cx: ctxt, t: ty::t) -> ty::t {
|
|
let t1 = t;
|
|
while true {
|
|
alt struct(cx, t1) {
|
|
ty_box(mt) | ty_uniq(mt) { t1 = mt.ty; }
|
|
ty_res(_, inner, tps) {
|
|
t1 = substitute_type_params(cx, tps, inner);
|
|
}
|
|
ty_tag(did, tps) {
|
|
let variants = tag_variants(cx, did);
|
|
if vec::len(*variants) != 1u || vec::len(variants[0].args) != 1u {
|
|
break;
|
|
}
|
|
t1 = substitute_type_params(cx, tps, variants[0].args[0]);
|
|
}
|
|
_ { break; }
|
|
}
|
|
}
|
|
ret t1;
|
|
}
|
|
|
|
// Type hashing. This function is private to this module (and slow); external
|
|
// users should use `hash_ty()` instead.
|
|
fn hash_type_structure(st: sty) -> uint {
|
|
fn hash_uint(id: uint, n: uint) -> uint {
|
|
let h = id;
|
|
h += (h << 5u) + n;
|
|
ret h;
|
|
}
|
|
fn hash_def(id: uint, did: ast::def_id) -> uint {
|
|
let h = id;
|
|
h += (h << 5u) + (did.crate as uint);
|
|
h += (h << 5u) + (did.node as uint);
|
|
ret h;
|
|
}
|
|
fn hash_subty(id: uint, subty: t) -> uint {
|
|
let h = id;
|
|
h += (h << 5u) + hash_ty(subty);
|
|
ret h;
|
|
}
|
|
fn hash_subtys(id: uint, subtys: [t]) -> uint {
|
|
let h = id;
|
|
vec::iter(subtys) { |subty|
|
|
h = hash_subty(h, subty);
|
|
}
|
|
ret h;
|
|
}
|
|
fn hash_type_constr(id: uint, c: @type_constr) -> uint {
|
|
let h = id;
|
|
h += (h << 5u) + hash_def(h, c.node.id);
|
|
ret hash_type_constr_args(h, c.node.args);
|
|
}
|
|
fn hash_type_constr_args(id: uint, args: [@ty_constr_arg]) -> uint {
|
|
let h = id;
|
|
for a: @ty_constr_arg in args {
|
|
alt a.node {
|
|
carg_base. { h += h << 5u; }
|
|
carg_lit(_) {
|
|
// FIXME
|
|
fail "lit args not implemented yet";
|
|
}
|
|
carg_ident(p) {
|
|
// FIXME: Not sure what to do here.
|
|
h += h << 5u;
|
|
}
|
|
}
|
|
}
|
|
ret h;
|
|
}
|
|
|
|
fn hash_fn(id: uint, args: [arg], rty: t) -> uint {
|
|
let h = id;
|
|
for a: arg in args { h += (h << 5u) + hash_ty(a.ty); }
|
|
h += (h << 5u) + hash_ty(rty);
|
|
ret h;
|
|
}
|
|
alt st {
|
|
ty_nil. { 0u } ty_bool. { 1u }
|
|
ty_int(t) {
|
|
alt t {
|
|
ast::ty_i. { 2u } ast::ty_char. { 3u } ast::ty_i8. { 4u }
|
|
ast::ty_i16. { 5u } ast::ty_i32. { 6u } ast::ty_i64. { 7u }
|
|
}
|
|
}
|
|
ty_uint(t) {
|
|
alt t {
|
|
ast::ty_u. { 8u } ast::ty_u8. { 9u } ast::ty_u16. { 10u }
|
|
ast::ty_u32. { 11u } ast::ty_u64. { 12u }
|
|
}
|
|
}
|
|
ty_float(t) {
|
|
alt t { ast::ty_f. { 13u } ast::ty_f32. { 14u } ast::ty_f64. { 15u } }
|
|
}
|
|
ty_str. { ret 17u; }
|
|
ty_tag(did, tys) {
|
|
let h = hash_def(18u, did);
|
|
for typ: t in tys { h += (h << 5u) + hash_ty(typ); }
|
|
ret h;
|
|
}
|
|
ty_box(mt) { ret hash_subty(19u, mt.ty); }
|
|
ty_vec(mt) { ret hash_subty(21u, mt.ty); }
|
|
ty_rec(fields) {
|
|
let h = 26u;
|
|
for f: field in fields { h += (h << 5u) + hash_ty(f.mt.ty); }
|
|
ret h;
|
|
}
|
|
ty_tup(ts) { ret hash_subtys(25u, ts); }
|
|
|
|
// ???
|
|
ty_fn(_, args, rty, _, _) {
|
|
ret hash_fn(27u, args, rty);
|
|
}
|
|
ty_native_fn(args, rty) { ret hash_fn(28u, args, rty); }
|
|
ty_obj(methods) {
|
|
let h = 29u;
|
|
for m: method in methods { h += (h << 5u) + str::hash(m.ident); }
|
|
ret h;
|
|
}
|
|
ty_var(v) { ret hash_uint(30u, v as uint); }
|
|
ty_param(pid, _) { ret hash_uint(31u, pid); }
|
|
ty_type. { ret 32u; }
|
|
ty_native(did) { ret hash_def(33u, did); }
|
|
ty_bot. { ret 34u; }
|
|
ty_ptr(mt) { ret hash_subty(35u, mt.ty); }
|
|
ty_res(did, sub, tps) {
|
|
let h = hash_subty(hash_def(18u, did), sub);
|
|
ret hash_subtys(h, tps);
|
|
}
|
|
ty_constr(t, cs) {
|
|
let h = 36u;
|
|
for c: @type_constr in cs { h += (h << 5u) + hash_type_constr(h, c); }
|
|
ret h;
|
|
}
|
|
ty_uniq(mt) { ret hash_subty(37u, mt.ty); }
|
|
ty_send_type. { ret 38u; }
|
|
ty_opaque_closure. { ret 39u; }
|
|
}
|
|
}
|
|
|
|
fn hash_type_info(st: sty, cname_opt: option::t<str>) -> uint {
|
|
let h = hash_type_structure(st);
|
|
alt cname_opt {
|
|
none. {/* no-op */ }
|
|
some(s) { h += (h << 5u) + str::hash(s); }
|
|
}
|
|
ret h;
|
|
}
|
|
|
|
fn hash_raw_ty(&&rt: @raw_t) -> uint { ret rt.hash; }
|
|
|
|
fn hash_ty(&&typ: t) -> uint { ret typ; }
|
|
|
|
|
|
// Type equality. This function is private to this module (and slow); external
|
|
// users should use `eq_ty()` instead.
|
|
fn eq_int(&&x: uint, &&y: uint) -> bool { ret x == y; }
|
|
|
|
fn arg_eq<T>(eq: fn(T, T) -> bool, a: @sp_constr_arg<T>, b: @sp_constr_arg<T>)
|
|
-> bool {
|
|
alt a.node {
|
|
ast::carg_base. {
|
|
alt b.node { ast::carg_base. { ret true; } _ { ret false; } }
|
|
}
|
|
ast::carg_ident(s) {
|
|
alt b.node { ast::carg_ident(t) { ret eq(s, t); } _ { ret false; } }
|
|
}
|
|
ast::carg_lit(l) {
|
|
alt b.node {
|
|
ast::carg_lit(m) { ret ast_util::lit_eq(l, m); } _ { ret false; }
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
fn args_eq<T>(eq: fn(T, T) -> bool, a: [@sp_constr_arg<T>],
|
|
b: [@sp_constr_arg<T>]) -> bool {
|
|
let i: uint = 0u;
|
|
for arg: @sp_constr_arg<T> in a {
|
|
if !arg_eq(eq, arg, b[i]) { ret false; }
|
|
i += 1u;
|
|
}
|
|
ret true;
|
|
}
|
|
|
|
fn constr_eq(c: @constr, d: @constr) -> bool {
|
|
ret path_to_str(c.node.path) == path_to_str(d.node.path) &&
|
|
// FIXME: hack
|
|
args_eq(eq_int, c.node.args, d.node.args);
|
|
}
|
|
|
|
fn constrs_eq(cs: [@constr], ds: [@constr]) -> bool {
|
|
if vec::len(cs) != vec::len(ds) { ret false; }
|
|
let i = 0u;
|
|
for c: @constr in cs { if !constr_eq(c, ds[i]) { ret false; } i += 1u; }
|
|
ret true;
|
|
}
|
|
|
|
// An expensive type equality function. This function is private to this
|
|
// module.
|
|
fn eq_raw_ty(&&a: @raw_t, &&b: @raw_t) -> bool {
|
|
// Check hashes (fast path).
|
|
|
|
if a.hash != b.hash { ret false; }
|
|
// Check canonical names.
|
|
|
|
alt a.cname {
|
|
none. { alt b.cname { none. {/* ok */ } _ { ret false; } } }
|
|
some(s_a) {
|
|
alt b.cname {
|
|
some(s_b) { if !str::eq(s_a, s_b) { ret false; } }
|
|
_ { ret false; }
|
|
}
|
|
}
|
|
}
|
|
// Check structures.
|
|
|
|
ret a.struct == b.struct;
|
|
}
|
|
|
|
|
|
// This is the equality function the public should use. It works as long as
|
|
// the types are interned.
|
|
fn eq_ty(&&a: t, &&b: t) -> bool { ret a == b; }
|
|
|
|
|
|
// Convert type to machine type
|
|
// (i.e. replace uint, int, float with target architecture machine types)
|
|
//
|
|
// FIXME somewhat expensive but this should only be called rarely
|
|
fn ty_to_machine_ty(cx: ctxt, ty: t) -> t {
|
|
fn sub_fn(cx: ctxt, uint_ty: t, int_ty: t, float_ty: t, in: t) -> t {
|
|
alt struct(cx, in) {
|
|
ty_uint(ast::ty_u.) { ret uint_ty; }
|
|
ty_int(ast::ty_i.) { ret int_ty; }
|
|
ty_float(ast::ty_f.) { ret float_ty; }
|
|
_ { ret in; }
|
|
}
|
|
}
|
|
|
|
let cfg = cx.sess.get_targ_cfg();
|
|
let uint_ty = mk_mach_uint(cx, cfg.uint_type);
|
|
let int_ty = mk_mach_int(cx, cfg.int_type);
|
|
let float_ty = mk_mach_float(cx, cfg.float_type);
|
|
let fold_m = fm_general(bind sub_fn(cx, uint_ty, int_ty, float_ty, _));
|
|
|
|
ret fold_ty(cx, fold_m, ty);
|
|
}
|
|
|
|
// Two types are trivially equal if they are either
|
|
// equal or if they are equal after substituting all occurences of
|
|
// machine independent primitive types by their machine type equivalents
|
|
// for the current target architecture
|
|
fn triv_eq_ty(cx: ctxt, &&a: t, &&b: t) -> bool {
|
|
ret eq_ty(a, b)
|
|
|| eq_ty(ty_to_machine_ty(cx, a), ty_to_machine_ty(cx, b));
|
|
}
|
|
|
|
// Type lookups
|
|
fn node_id_to_ty_param_substs_opt_and_ty(cx: ctxt, id: ast::node_id) ->
|
|
ty_param_substs_opt_and_ty {
|
|
|
|
|
|
// Pull out the node type table.
|
|
alt smallintmap::find(*cx.node_types, id as uint) {
|
|
none. {
|
|
cx.sess.bug("node_id_to_ty_param_substs_opt_and_ty() called on " +
|
|
"an untyped node (" + int::to_str(id, 10u) +
|
|
")");
|
|
}
|
|
some(tpot) { ret tpot; }
|
|
}
|
|
}
|
|
|
|
fn node_id_to_type(cx: ctxt, id: ast::node_id) -> t {
|
|
ret node_id_to_ty_param_substs_opt_and_ty(cx, id).ty;
|
|
}
|
|
|
|
fn node_id_to_type_params(cx: ctxt, id: ast::node_id) -> [t] {
|
|
alt node_id_to_ty_param_substs_opt_and_ty(cx, id).substs {
|
|
none. { ret []; }
|
|
some(tps) { ret tps; }
|
|
}
|
|
}
|
|
|
|
fn node_id_has_type_params(cx: ctxt, id: ast::node_id) -> bool {
|
|
ret vec::len(node_id_to_type_params(cx, id)) > 0u;
|
|
}
|
|
|
|
|
|
// Returns a type with type parameter substitutions performed if applicable.
|
|
fn ty_param_substs_opt_and_ty_to_monotype(cx: ctxt,
|
|
tpot: ty_param_substs_opt_and_ty) ->
|
|
t {
|
|
alt tpot.substs {
|
|
none. { ret tpot.ty; }
|
|
some(tps) { ret substitute_type_params(cx, tps, tpot.ty); }
|
|
}
|
|
}
|
|
|
|
|
|
// Returns the type of an annotation, with type parameter substitutions
|
|
// performed if applicable.
|
|
fn node_id_to_monotype(cx: ctxt, id: ast::node_id) -> t {
|
|
let tpot = node_id_to_ty_param_substs_opt_and_ty(cx, id);
|
|
ret ty_param_substs_opt_and_ty_to_monotype(cx, tpot);
|
|
}
|
|
|
|
|
|
// Returns the number of distinct type parameters in the given type.
|
|
fn count_ty_params(cx: ctxt, ty: t) -> uint {
|
|
fn counter(cx: ctxt, param_indices: @mutable [uint], ty: t) {
|
|
alt struct(cx, ty) {
|
|
ty_param(param_idx, _) {
|
|
let seen = false;
|
|
for other_param_idx: uint in *param_indices {
|
|
if param_idx == other_param_idx { seen = true; }
|
|
}
|
|
if !seen { *param_indices += [param_idx]; }
|
|
}
|
|
_ {/* fall through */ }
|
|
}
|
|
}
|
|
let param_indices: @mutable [uint] = @mutable [];
|
|
let f = bind counter(cx, param_indices, _);
|
|
walk_ty(cx, f, ty);
|
|
ret vec::len::<uint>(*param_indices);
|
|
}
|
|
|
|
fn type_contains_vars(cx: ctxt, typ: t) -> bool {
|
|
ret interner::get(*cx.ts, typ).has_vars;
|
|
}
|
|
|
|
fn type_contains_params(cx: ctxt, typ: t) -> bool {
|
|
ret interner::get(*cx.ts, typ).has_params;
|
|
}
|
|
|
|
|
|
// Type accessors for substructures of types
|
|
fn ty_fn_args(cx: ctxt, fty: t) -> [arg] {
|
|
alt struct(cx, fty) {
|
|
ty::ty_fn(_, a, _, _, _) { ret a; }
|
|
ty::ty_native_fn(a, _) { ret a; }
|
|
_ { cx.sess.bug("ty_fn_args() called on non-fn type"); }
|
|
}
|
|
}
|
|
|
|
fn ty_fn_proto(cx: ctxt, fty: t) -> ast::proto {
|
|
alt struct(cx, fty) {
|
|
ty::ty_fn(p, _, _, _, _) { ret p; }
|
|
ty::ty_native_fn(_, _) {
|
|
// FIXME: This should probably be proto_bare
|
|
ret ast::proto_shared(ast::sugar_normal);
|
|
}
|
|
_ { cx.sess.bug("ty_fn_proto() called on non-fn type"); }
|
|
}
|
|
}
|
|
|
|
pure fn ty_fn_ret(cx: ctxt, fty: t) -> t {
|
|
let sty = struct(cx, fty);
|
|
alt sty {
|
|
ty::ty_fn(_, _, r, _, _) { ret r; }
|
|
ty::ty_native_fn(_, r) { ret r; }
|
|
_ {
|
|
// Unchecked is ok since we diverge here
|
|
// (might want to change the typechecker to allow
|
|
// it without an unchecked)
|
|
// Or, it wouldn't be necessary if we had the right
|
|
// typestate constraint on cx and t (then we could
|
|
// call unreachable() instead)
|
|
unchecked { cx.sess.bug("ty_fn_ret() called on non-fn type"); }}
|
|
}
|
|
}
|
|
|
|
fn ty_fn_ret_style(cx: ctxt, fty: t) -> ast::ret_style {
|
|
alt struct(cx, fty) {
|
|
ty::ty_fn(_, _, _, rs, _) { rs }
|
|
ty::ty_native_fn(_, _) { ast::return_val }
|
|
_ { cx.sess.bug("ty_fn_ret_style() called on non-fn type"); }
|
|
}
|
|
}
|
|
|
|
fn is_fn_ty(cx: ctxt, fty: t) -> bool {
|
|
alt struct(cx, fty) {
|
|
ty::ty_fn(_, _, _, _, _) { ret true; }
|
|
ty::ty_native_fn(_, _) { ret true; }
|
|
_ { ret false; }
|
|
}
|
|
}
|
|
|
|
// Just checks whether it's a fn that returns bool,
|
|
// not its purity.
|
|
fn is_pred_ty(cx: ctxt, fty: t) -> bool {
|
|
is_fn_ty(cx, fty) && type_is_bool(cx, ty_fn_ret(cx, fty))
|
|
}
|
|
|
|
fn ty_var_id(cx: ctxt, typ: t) -> int {
|
|
alt struct(cx, typ) {
|
|
ty::ty_var(vid) { ret vid; }
|
|
_ { log_err "ty_var_id called on non-var ty"; fail; }
|
|
}
|
|
}
|
|
|
|
|
|
// Type accessors for AST nodes
|
|
fn block_ty(cx: ctxt, b: ast::blk) -> t {
|
|
ret node_id_to_type(cx, b.node.id);
|
|
}
|
|
|
|
|
|
// Returns the type of a pattern as a monotype. Like @expr_ty, this function
|
|
// doesn't provide type parameter substitutions.
|
|
fn pat_ty(cx: ctxt, pat: @ast::pat) -> t {
|
|
ret node_id_to_monotype(cx, pat.id);
|
|
}
|
|
|
|
|
|
// Returns the type of an expression as a monotype.
|
|
//
|
|
// NB: This type doesn't provide type parameter substitutions; e.g. if you
|
|
// ask for the type of "id" in "id(3)", it will return "fn(&int) -> int"
|
|
// instead of "fn(t) -> T with T = int". If this isn't what you want, see
|
|
// expr_ty_params_and_ty() below.
|
|
fn expr_ty(cx: ctxt, expr: @ast::expr) -> t {
|
|
ret node_id_to_monotype(cx, expr.id);
|
|
}
|
|
|
|
fn expr_ty_params_and_ty(cx: ctxt, expr: @ast::expr) -> {params: [t], ty: t} {
|
|
ret {params: node_id_to_type_params(cx, expr.id),
|
|
ty: node_id_to_type(cx, expr.id)};
|
|
}
|
|
|
|
fn expr_has_ty_params(cx: ctxt, expr: @ast::expr) -> bool {
|
|
ret node_id_has_type_params(cx, expr.id);
|
|
}
|
|
|
|
fn expr_is_lval(method_map: typeck::method_map, tcx: ty::ctxt,
|
|
e: @ast::expr) -> bool {
|
|
alt e.node {
|
|
ast::expr_path(_) | ast::expr_index(_, _) |
|
|
ast::expr_unary(ast::deref., _) { true }
|
|
ast::expr_field(base, ident) {
|
|
method_map.contains_key(e.id) ? false : {
|
|
let basety = type_autoderef(tcx, expr_ty(tcx, base));
|
|
alt struct(tcx, basety) {
|
|
ty_obj(_) { false }
|
|
ty_rec(_) { true }
|
|
}
|
|
}
|
|
}
|
|
_ { false }
|
|
}
|
|
}
|
|
|
|
fn stmt_node_id(s: @ast::stmt) -> ast::node_id {
|
|
alt s.node {
|
|
ast::stmt_decl(_, id) { ret id; }
|
|
ast::stmt_expr(_, id) { ret id; }
|
|
}
|
|
}
|
|
|
|
fn field_idx(id: ast::ident, fields: [field]) -> option::t<uint> {
|
|
let i = 0u;
|
|
for f in fields { if f.ident == id { ret some(i); } i += 1u; }
|
|
ret none;
|
|
}
|
|
|
|
fn get_field(tcx: ctxt, rec_ty: t, id: ast::ident) -> field {
|
|
alt struct(tcx, rec_ty) {
|
|
ty_rec(fields) {
|
|
alt vec::find(fields, {|f| str::eq(f.ident, id) }) {
|
|
some(f) { ret f; }
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
fn method_idx(id: ast::ident, meths: [method]) -> option::t<uint> {
|
|
let i = 0u;
|
|
for m in meths { if m.ident == id { ret some(i); } i += 1u; }
|
|
ret none;
|
|
}
|
|
|
|
fn sort_methods(meths: [method]) -> [method] {
|
|
fn method_lteq(a: method, b: method) -> bool {
|
|
ret str::lteq(a.ident, b.ident);
|
|
}
|
|
ret std::sort::merge_sort::<method>(bind method_lteq(_, _), meths);
|
|
}
|
|
|
|
fn occurs_check_fails(tcx: ctxt, sp: option::t<span>, vid: int, rt: t) ->
|
|
bool {
|
|
if !type_contains_vars(tcx, rt) {
|
|
// Fast path
|
|
ret false;
|
|
}
|
|
|
|
// Occurs check!
|
|
if vec::member(vid, vars_in_type(tcx, rt)) {
|
|
alt sp {
|
|
some(s) {
|
|
// Maybe this should be span_err -- however, there's an
|
|
// assertion later on that the type doesn't contain
|
|
// variables, so in this case we have to be sure to die.
|
|
tcx.sess.span_fatal
|
|
(s, "Type inference failed because I \
|
|
could not find a type\n that's both of the form "
|
|
+ ty_to_str(tcx, ty::mk_var(tcx, vid)) +
|
|
" and of the form " + ty_to_str(tcx, rt) +
|
|
". Such a type would have to be infinitely large.");
|
|
}
|
|
_ { ret true; }
|
|
}
|
|
} else { ret false; }
|
|
}
|
|
|
|
// Type unification via Robinson's algorithm (Robinson 1965). Implemented as
|
|
// described in Hoder and Voronkov:
|
|
//
|
|
// http://www.cs.man.ac.uk/~hoderk/ubench/unification_full.pdf
|
|
mod unify {
|
|
|
|
export fixup_result;
|
|
export fixup_vars;
|
|
export fix_ok;
|
|
export fix_err;
|
|
export mk_var_bindings;
|
|
export resolve_type_structure;
|
|
export resolve_type_var;
|
|
export result;
|
|
export unify;
|
|
export ures_ok;
|
|
export ures_err;
|
|
export var_bindings;
|
|
|
|
tag result { ures_ok(t); ures_err(type_err); }
|
|
tag union_result { unres_ok; unres_err(type_err); }
|
|
tag fixup_result {
|
|
fix_ok(t); // fixup succeeded
|
|
fix_err(int); // fixup failed because a type variable was unresolved
|
|
}
|
|
type var_bindings =
|
|
{sets: ufind::ufind, types: smallintmap::smallintmap<t>};
|
|
|
|
type ctxt = {vb: @var_bindings, tcx: ty_ctxt};
|
|
|
|
fn mk_var_bindings() -> @var_bindings {
|
|
ret @{sets: ufind::make(), types: smallintmap::mk::<t>()};
|
|
}
|
|
|
|
// Unifies two sets.
|
|
fn union(cx: @ctxt, set_a: uint, set_b: uint,
|
|
variance: variance) -> union_result {
|
|
ufind::grow(cx.vb.sets, math::max(set_a, set_b) + 1u);
|
|
let root_a = ufind::find(cx.vb.sets, set_a);
|
|
let root_b = ufind::find(cx.vb.sets, set_b);
|
|
|
|
let replace_type =
|
|
bind fn (cx: @ctxt, t: t, set_a: uint, set_b: uint) {
|
|
ufind::union(cx.vb.sets, set_a, set_b);
|
|
let root_c: uint = ufind::find(cx.vb.sets, set_a);
|
|
smallintmap::insert::<t>(cx.vb.types, root_c, t);
|
|
}(_, _, set_a, set_b);
|
|
|
|
|
|
alt smallintmap::find(cx.vb.types, root_a) {
|
|
none. {
|
|
alt smallintmap::find(cx.vb.types, root_b) {
|
|
none. { ufind::union(cx.vb.sets, set_a, set_b); ret unres_ok; }
|
|
some(t_b) { replace_type(cx, t_b); ret unres_ok; }
|
|
}
|
|
}
|
|
some(t_a) {
|
|
alt smallintmap::find(cx.vb.types, root_b) {
|
|
none. { replace_type(cx, t_a); ret unres_ok; }
|
|
some(t_b) {
|
|
alt unify_step(cx, t_a, t_b, variance) {
|
|
ures_ok(t_c) { replace_type(cx, t_c); ret unres_ok; }
|
|
ures_err(terr) { ret unres_err(terr); }
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
fn record_var_binding_for_expected(
|
|
cx: @ctxt, key: int, typ: t, variance: variance) -> result {
|
|
record_var_binding(
|
|
cx, key, typ, variance_transform(variance, covariant))
|
|
}
|
|
|
|
fn record_var_binding_for_actual(
|
|
cx: @ctxt, key: int, typ: t, variance: variance) -> result {
|
|
// Unifying in 'the other direction' so flip the variance
|
|
record_var_binding(
|
|
cx, key, typ, variance_transform(variance, contravariant))
|
|
}
|
|
|
|
fn record_var_binding(
|
|
cx: @ctxt, key: int, typ: t, variance: variance) -> result {
|
|
|
|
ufind::grow(cx.vb.sets, (key as uint) + 1u);
|
|
let root = ufind::find(cx.vb.sets, key as uint);
|
|
let result_type = typ;
|
|
alt smallintmap::find::<t>(cx.vb.types, root) {
|
|
some(old_type) {
|
|
alt unify_step(cx, old_type, typ, variance) {
|
|
ures_ok(unified_type) { result_type = unified_type; }
|
|
rs { ret rs; }
|
|
}
|
|
}
|
|
none. {/* fall through */ }
|
|
}
|
|
smallintmap::insert::<t>(cx.vb.types, root, result_type);
|
|
ret ures_ok(typ);
|
|
}
|
|
|
|
// Wraps the given type in an appropriate cname.
|
|
//
|
|
// TODO: This doesn't do anything yet. We should carry the cname up from
|
|
// the expected and/or actual types when unification results in a type
|
|
// identical to one or both of the two. The precise algorithm for this is
|
|
// something we'll probably need to develop over time.
|
|
|
|
// Simple structural type comparison.
|
|
fn struct_cmp(cx: @ctxt, expected: t, actual: t) -> result {
|
|
if struct(cx.tcx, expected) == struct(cx.tcx, actual) {
|
|
ret ures_ok(expected);
|
|
}
|
|
ret ures_err(terr_mismatch);
|
|
}
|
|
|
|
// Right now this just checks that the lists of constraints are
|
|
// pairwise equal.
|
|
fn unify_constrs(base_t: t, expected: [@type_constr],
|
|
actual: [@type_constr]) -> result {
|
|
let expected_len = vec::len(expected);
|
|
let actual_len = vec::len(actual);
|
|
|
|
if expected_len != actual_len {
|
|
ret ures_err(terr_constr_len(expected_len, actual_len));
|
|
}
|
|
let i = 0u;
|
|
let rslt;
|
|
for c: @type_constr in expected {
|
|
rslt = unify_constr(base_t, c, actual[i]);
|
|
alt rslt { ures_ok(_) { } ures_err(_) { ret rslt; } }
|
|
i += 1u;
|
|
}
|
|
ret ures_ok(base_t);
|
|
}
|
|
fn unify_constr(base_t: t, expected: @type_constr,
|
|
actual_constr: @type_constr) -> result {
|
|
let ok_res = ures_ok(base_t);
|
|
let err_res = ures_err(terr_constr_mismatch(expected, actual_constr));
|
|
if expected.node.id != actual_constr.node.id { ret err_res; }
|
|
let expected_arg_len = vec::len(expected.node.args);
|
|
let actual_arg_len = vec::len(actual_constr.node.args);
|
|
if expected_arg_len != actual_arg_len { ret err_res; }
|
|
let i = 0u;
|
|
let actual;
|
|
for a: @ty_constr_arg in expected.node.args {
|
|
actual = actual_constr.node.args[i];
|
|
alt a.node {
|
|
carg_base. {
|
|
alt actual.node { carg_base. { } _ { ret err_res; } }
|
|
}
|
|
carg_lit(l) {
|
|
alt actual.node {
|
|
carg_lit(m) { if l != m { ret err_res; } }
|
|
_ { ret err_res; }
|
|
}
|
|
}
|
|
carg_ident(p) {
|
|
alt actual.node {
|
|
carg_ident(q) { if p.node != q.node { ret err_res; } }
|
|
_ { ret err_res; }
|
|
}
|
|
}
|
|
}
|
|
i += 1u;
|
|
}
|
|
ret ok_res;
|
|
}
|
|
|
|
// Unifies two mutability flags.
|
|
fn unify_mut(expected: ast::mutability, actual: ast::mutability,
|
|
variance: variance) ->
|
|
option::t<(ast::mutability, variance)> {
|
|
|
|
// If you're unifying on something mutable then we have to
|
|
// be invariant on the inner type
|
|
let newvariance = alt expected {
|
|
ast::mut. {
|
|
variance_transform(variance, invariant)
|
|
}
|
|
_ {
|
|
variance_transform(variance, covariant)
|
|
}
|
|
};
|
|
|
|
if expected == actual { ret some((expected, newvariance)); }
|
|
if variance == covariant {
|
|
if expected == ast::maybe_mut {
|
|
ret some((actual, newvariance));
|
|
}
|
|
} else if variance == contravariant {
|
|
if actual == ast::maybe_mut {
|
|
ret some((expected, newvariance));
|
|
}
|
|
}
|
|
ret none;
|
|
}
|
|
tag fn_common_res {
|
|
fn_common_res_err(result);
|
|
fn_common_res_ok([arg], t);
|
|
}
|
|
fn unify_fn_common(cx: @ctxt, _expected: t, _actual: t,
|
|
expected_inputs: [arg], expected_output: t,
|
|
actual_inputs: [arg], actual_output: t,
|
|
variance: variance) ->
|
|
fn_common_res {
|
|
let expected_len = vec::len::<arg>(expected_inputs);
|
|
let actual_len = vec::len::<arg>(actual_inputs);
|
|
if expected_len != actual_len {
|
|
ret fn_common_res_err(ures_err(terr_arg_count));
|
|
}
|
|
// TODO: as above, we should have an iter2 iterator.
|
|
|
|
let result_ins: [arg] = [];
|
|
let i = 0u;
|
|
while i < expected_len {
|
|
let expected_input = expected_inputs[i];
|
|
let actual_input = actual_inputs[i];
|
|
// Unify the result modes.
|
|
|
|
let result_mode = if expected_input.mode == ast::mode_infer {
|
|
actual_input.mode
|
|
} else if actual_input.mode == ast::mode_infer {
|
|
expected_input.mode
|
|
} else if expected_input.mode != actual_input.mode {
|
|
ret fn_common_res_err
|
|
(ures_err(terr_mode_mismatch(expected_input.mode,
|
|
actual_input.mode)));
|
|
} else { expected_input.mode };
|
|
// The variance changes (flips basically) when descending
|
|
// into arguments of function types
|
|
let result = unify_step(
|
|
cx, expected_input.ty, actual_input.ty,
|
|
variance_transform(variance, contravariant));
|
|
alt result {
|
|
ures_ok(rty) { result_ins += [{mode: result_mode, ty: rty}]; }
|
|
_ { ret fn_common_res_err(result); }
|
|
}
|
|
i += 1u;
|
|
}
|
|
// Check the output.
|
|
|
|
let result = unify_step(cx, expected_output, actual_output, variance);
|
|
alt result {
|
|
ures_ok(rty) { ret fn_common_res_ok(result_ins, rty); }
|
|
_ { ret fn_common_res_err(result); }
|
|
}
|
|
}
|
|
fn unify_fn_proto(e_proto: ast::proto, a_proto: ast::proto,
|
|
variance: variance) -> option::t<result> {
|
|
fn rank(proto: ast::proto) -> int {
|
|
ret alt proto {
|
|
ast::proto_block. { 0 }
|
|
ast::proto_shared(_) { 1 }
|
|
ast::proto_send. { 2 }
|
|
ast::proto_bare. { 3 }
|
|
};
|
|
}
|
|
|
|
fn gt(e_proto: ast::proto, a_proto: ast::proto) -> bool {
|
|
ret rank(e_proto) > rank(a_proto);
|
|
}
|
|
|
|
ret if e_proto == a_proto {
|
|
none
|
|
} else if variance == invariant {
|
|
some(ures_err(terr_mismatch))
|
|
} else if variance == covariant {
|
|
if gt(e_proto, a_proto) {
|
|
some(ures_err(terr_mismatch))
|
|
} else {
|
|
none
|
|
}
|
|
} else if variance == contravariant {
|
|
if gt(a_proto, e_proto) {
|
|
some(ures_err(terr_mismatch))
|
|
} else {
|
|
none
|
|
}
|
|
} else {
|
|
fail
|
|
}
|
|
}
|
|
fn unify_fn(cx: @ctxt, e_proto: ast::proto, a_proto: ast::proto,
|
|
expected: t, actual: t, expected_inputs: [arg],
|
|
expected_output: t, actual_inputs: [arg], actual_output: t,
|
|
expected_cf: ret_style, actual_cf: ret_style,
|
|
_expected_constrs: [@constr], actual_constrs: [@constr],
|
|
variance: variance) ->
|
|
result {
|
|
|
|
alt unify_fn_proto(e_proto, a_proto, variance) {
|
|
some(err) { ret err; }
|
|
none. { /* fall through */ }
|
|
}
|
|
|
|
if actual_cf != ast::noreturn && actual_cf != expected_cf {
|
|
/* even though typestate checking is mostly
|
|
responsible for checking control flow annotations,
|
|
this check is necessary to ensure that the
|
|
annotation in an object method matches the
|
|
declared object type */
|
|
ret ures_err(terr_ret_style_mismatch(expected_cf, actual_cf));
|
|
}
|
|
let t =
|
|
unify_fn_common(cx, expected, actual, expected_inputs,
|
|
expected_output, actual_inputs, actual_output,
|
|
variance);
|
|
alt t {
|
|
fn_common_res_err(r) { ret r; }
|
|
fn_common_res_ok(result_ins, result_out) {
|
|
let t2 =
|
|
mk_fn(cx.tcx, e_proto, result_ins, result_out, actual_cf,
|
|
actual_constrs);
|
|
ret ures_ok(t2);
|
|
}
|
|
}
|
|
}
|
|
fn unify_native_fn(cx: @ctxt, expected: t, actual: t,
|
|
expected_inputs: [arg], expected_output: t,
|
|
actual_inputs: [arg], actual_output: t,
|
|
variance: variance) -> result {
|
|
let t =
|
|
unify_fn_common(cx, expected, actual, expected_inputs,
|
|
expected_output, actual_inputs, actual_output,
|
|
variance);
|
|
alt t {
|
|
fn_common_res_err(r) { ret r; }
|
|
fn_common_res_ok(result_ins, result_out) {
|
|
let t2 = mk_native_fn(cx.tcx, result_ins, result_out);
|
|
ret ures_ok(t2);
|
|
}
|
|
}
|
|
}
|
|
fn unify_obj(cx: @ctxt, expected: t, actual: t, expected_meths: [method],
|
|
actual_meths: [method], variance: variance) -> result {
|
|
let result_meths: [method] = [];
|
|
let i: uint = 0u;
|
|
let expected_len: uint = vec::len::<method>(expected_meths);
|
|
let actual_len: uint = vec::len::<method>(actual_meths);
|
|
if expected_len != actual_len { ret ures_err(terr_meth_count); }
|
|
while i < expected_len {
|
|
let e_meth = expected_meths[i];
|
|
let a_meth = actual_meths[i];
|
|
if !str::eq(e_meth.ident, a_meth.ident) {
|
|
ret ures_err(terr_obj_meths(e_meth.ident, a_meth.ident));
|
|
}
|
|
let r =
|
|
unify_fn(cx, e_meth.proto, a_meth.proto, expected, actual,
|
|
e_meth.inputs, e_meth.output, a_meth.inputs,
|
|
a_meth.output, e_meth.cf, a_meth.cf, e_meth.constrs,
|
|
a_meth.constrs, variance);
|
|
alt r {
|
|
ures_ok(tfn) {
|
|
alt struct(cx.tcx, tfn) {
|
|
ty_fn(proto, ins, out, cf, constrs) {
|
|
result_meths +=
|
|
[{inputs: ins, output: out, cf: cf, constrs: constrs
|
|
with e_meth}];
|
|
}
|
|
}
|
|
}
|
|
_ { ret r; }
|
|
}
|
|
i += 1u;
|
|
}
|
|
let t = mk_obj(cx.tcx, result_meths);
|
|
ret ures_ok(t);
|
|
}
|
|
|
|
// If the given type is a variable, returns the structure of that type.
|
|
fn resolve_type_structure(tcx: ty_ctxt, vb: @var_bindings, typ: t) ->
|
|
fixup_result {
|
|
alt struct(tcx, typ) {
|
|
ty_var(vid) {
|
|
if vid as uint >= ufind::set_count(vb.sets) { ret fix_err(vid); }
|
|
let root_id = ufind::find(vb.sets, vid as uint);
|
|
alt smallintmap::find::<t>(vb.types, root_id) {
|
|
none. { ret fix_err(vid); }
|
|
some(rt) { ret fix_ok(rt); }
|
|
}
|
|
}
|
|
_ { ret fix_ok(typ); }
|
|
}
|
|
}
|
|
|
|
// Specifies the allowable subtyping between expected and actual types
|
|
tag variance {
|
|
// Actual may be a subtype of expected
|
|
covariant;
|
|
// Actual may be a supertype of expected
|
|
contravariant;
|
|
// Actual must be the same type as expected
|
|
invariant;
|
|
}
|
|
|
|
// The calculation for recursive variance
|
|
// "Taming the Wildcards: Combining Definition- and Use-Site Variance"
|
|
// by John Altidor, et. al.
|
|
//
|
|
// I'm just copying the table from figure 1 - haven't actually
|
|
// read the paper (yet).
|
|
fn variance_transform(a: variance, b: variance) -> variance {
|
|
alt a {
|
|
covariant. {
|
|
alt b {
|
|
covariant. { covariant }
|
|
contravariant. { contravariant }
|
|
invariant. { invariant }
|
|
}
|
|
}
|
|
contravariant. {
|
|
alt b {
|
|
covariant. { contravariant }
|
|
contravariant. { covariant }
|
|
invariant. { invariant }
|
|
}
|
|
}
|
|
invariant. {
|
|
alt b {
|
|
covariant. { invariant }
|
|
contravariant. { invariant }
|
|
invariant. { invariant }
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
fn unify_step(cx: @ctxt, expected: t, actual: t,
|
|
variance: variance) -> result {
|
|
// TODO: rewrite this using tuple pattern matching when available, to
|
|
// avoid all this rightward drift and spikiness.
|
|
|
|
// Fast path.
|
|
|
|
if eq_ty(expected, actual) { ret ures_ok(expected); }
|
|
// Stage 1: Handle the cases in which one side or another is a type
|
|
// variable.
|
|
|
|
alt struct(cx.tcx, actual) {
|
|
// If the RHS is a variable type, then just do the
|
|
// appropriate binding.
|
|
ty::ty_var(actual_id) {
|
|
let actual_n = actual_id as uint;
|
|
alt struct(cx.tcx, expected) {
|
|
ty::ty_var(expected_id) {
|
|
let expected_n = expected_id as uint;
|
|
alt union(cx, expected_n, actual_n, variance) {
|
|
unres_ok. {/* fall through */ }
|
|
unres_err(t_e) { ret ures_err(t_e); }
|
|
}
|
|
}
|
|
_ {
|
|
// Just bind the type variable to the expected type.
|
|
alt record_var_binding_for_actual(
|
|
cx, actual_id, expected, variance) {
|
|
ures_ok(_) {/* fall through */ }
|
|
rs { ret rs; }
|
|
}
|
|
}
|
|
}
|
|
ret ures_ok(mk_var(cx.tcx, actual_id));
|
|
}
|
|
_ {/* empty */ }
|
|
}
|
|
alt struct(cx.tcx, expected) {
|
|
ty::ty_var(expected_id) {
|
|
// Add a binding. (`actual` can't actually be a var here.)
|
|
|
|
alt record_var_binding_for_expected(
|
|
cx, expected_id, actual,
|
|
variance) {
|
|
ures_ok(_) {/* fall through */ }
|
|
rs { ret rs; }
|
|
}
|
|
ret ures_ok(mk_var(cx.tcx, expected_id));
|
|
}
|
|
_ {/* fall through */ }
|
|
}
|
|
// Stage 2: Handle all other cases.
|
|
|
|
alt struct(cx.tcx, actual) {
|
|
ty::ty_bot. { ret ures_ok(expected); }
|
|
_ {/* fall through */ }
|
|
}
|
|
alt struct(cx.tcx, expected) {
|
|
ty::ty_nil. { ret struct_cmp(cx, expected, actual); }
|
|
// _|_ unifies with anything
|
|
ty::ty_bot. {
|
|
ret ures_ok(actual);
|
|
}
|
|
ty::ty_bool. | ty::ty_int(_) | ty_uint(_) | ty_float(_) |
|
|
ty::ty_str. | ty::ty_type. | ty::ty_send_type. {
|
|
ret struct_cmp(cx, expected, actual);
|
|
}
|
|
ty::ty_native(ex_id) {
|
|
alt struct(cx.tcx, actual) {
|
|
ty_native(act_id) {
|
|
if ex_id.crate == act_id.crate && ex_id.node == act_id.node {
|
|
ret ures_ok(actual);
|
|
} else { ret ures_err(terr_mismatch); }
|
|
}
|
|
_ { ret ures_err(terr_mismatch); }
|
|
}
|
|
}
|
|
ty::ty_param(_, _) { ret struct_cmp(cx, expected, actual); }
|
|
ty::ty_tag(expected_id, expected_tps) {
|
|
alt struct(cx.tcx, actual) {
|
|
ty::ty_tag(actual_id, actual_tps) {
|
|
if expected_id.crate != actual_id.crate ||
|
|
expected_id.node != actual_id.node {
|
|
ret ures_err(terr_mismatch);
|
|
}
|
|
// TODO: factor this cruft out
|
|
let result_tps: [t] = [];
|
|
let i = 0u;
|
|
let expected_len = vec::len::<t>(expected_tps);
|
|
while i < expected_len {
|
|
let expected_tp = expected_tps[i];
|
|
let actual_tp = actual_tps[i];
|
|
let result = unify_step(
|
|
cx, expected_tp, actual_tp, variance);
|
|
alt result {
|
|
ures_ok(rty) { result_tps += [rty]; }
|
|
_ { ret result; }
|
|
}
|
|
i += 1u;
|
|
}
|
|
ret ures_ok(mk_tag(cx.tcx, expected_id, result_tps));
|
|
}
|
|
_ {/* fall through */ }
|
|
}
|
|
ret ures_err(terr_mismatch);
|
|
}
|
|
ty::ty_box(expected_mt) {
|
|
alt struct(cx.tcx, actual) {
|
|
ty::ty_box(actual_mt) {
|
|
let (mut, var) = alt unify_mut(
|
|
expected_mt.mut, actual_mt.mut, variance) {
|
|
none. { ret ures_err(terr_box_mutability); }
|
|
some(mv) { mv }
|
|
};
|
|
let result = unify_step(
|
|
cx, expected_mt.ty, actual_mt.ty, var);
|
|
alt result {
|
|
ures_ok(result_sub) {
|
|
let mt = {ty: result_sub, mut: mut};
|
|
ret ures_ok(mk_box(cx.tcx, mt));
|
|
}
|
|
_ { ret result; }
|
|
}
|
|
}
|
|
_ { ret ures_err(terr_mismatch); }
|
|
}
|
|
}
|
|
ty::ty_uniq(expected_mt) {
|
|
alt struct(cx.tcx, actual) {
|
|
ty::ty_uniq(actual_mt) {
|
|
let (mut, var) = alt unify_mut(
|
|
expected_mt.mut, actual_mt.mut, variance) {
|
|
none. { ret ures_err(terr_box_mutability); }
|
|
some(mv) { mv }
|
|
};
|
|
let result = unify_step(
|
|
cx, expected_mt.ty, actual_mt.ty, var);
|
|
alt result {
|
|
ures_ok(result_mt) {
|
|
let mt = {ty: result_mt, mut: mut};
|
|
ret ures_ok(mk_uniq(cx.tcx, mt));
|
|
}
|
|
_ { ret result; }
|
|
}
|
|
}
|
|
_ { ret ures_err(terr_mismatch); }
|
|
}
|
|
}
|
|
ty::ty_vec(expected_mt) {
|
|
alt struct(cx.tcx, actual) {
|
|
ty::ty_vec(actual_mt) {
|
|
let (mut, var) = alt unify_mut(
|
|
expected_mt.mut, actual_mt.mut, variance) {
|
|
none. { ret ures_err(terr_vec_mutability); }
|
|
some(mv) { mv }
|
|
};
|
|
let result = unify_step(
|
|
cx, expected_mt.ty, actual_mt.ty, var);
|
|
alt result {
|
|
ures_ok(result_sub) {
|
|
let mt = {ty: result_sub, mut: mut};
|
|
ret ures_ok(mk_vec(cx.tcx, mt));
|
|
}
|
|
_ { ret result; }
|
|
}
|
|
}
|
|
_ { ret ures_err(terr_mismatch); }
|
|
}
|
|
}
|
|
ty::ty_ptr(expected_mt) {
|
|
alt struct(cx.tcx, actual) {
|
|
ty::ty_ptr(actual_mt) {
|
|
let (mut, var) = alt unify_mut(
|
|
expected_mt.mut, actual_mt.mut, variance) {
|
|
none. { ret ures_err(terr_vec_mutability); }
|
|
some(mv) { mv }
|
|
};
|
|
let result = unify_step(
|
|
cx, expected_mt.ty, actual_mt.ty, var);
|
|
alt result {
|
|
ures_ok(result_sub) {
|
|
let mt = {ty: result_sub, mut: mut};
|
|
ret ures_ok(mk_ptr(cx.tcx, mt));
|
|
}
|
|
_ { ret result; }
|
|
}
|
|
}
|
|
_ { ret ures_err(terr_mismatch); }
|
|
}
|
|
}
|
|
ty::ty_res(ex_id, ex_inner, ex_tps) {
|
|
alt struct(cx.tcx, actual) {
|
|
ty::ty_res(act_id, act_inner, act_tps) {
|
|
if ex_id.crate != act_id.crate || ex_id.node != act_id.node {
|
|
ret ures_err(terr_mismatch);
|
|
}
|
|
let result = unify_step(
|
|
cx, ex_inner, act_inner, variance);
|
|
alt result {
|
|
ures_ok(res_inner) {
|
|
let i = 0u;
|
|
let res_tps = [];
|
|
for ex_tp: t in ex_tps {
|
|
let result = unify_step(
|
|
cx, ex_tp, act_tps[i], variance);
|
|
alt result {
|
|
ures_ok(rty) { res_tps += [rty]; }
|
|
_ { ret result; }
|
|
}
|
|
i += 1u;
|
|
}
|
|
ret ures_ok(mk_res(cx.tcx, act_id, res_inner, res_tps));
|
|
}
|
|
_ { ret result; }
|
|
}
|
|
}
|
|
_ { ret ures_err(terr_mismatch); }
|
|
}
|
|
}
|
|
ty::ty_rec(expected_fields) {
|
|
alt struct(cx.tcx, actual) {
|
|
ty::ty_rec(actual_fields) {
|
|
let expected_len = vec::len::<field>(expected_fields);
|
|
let actual_len = vec::len::<field>(actual_fields);
|
|
if expected_len != actual_len {
|
|
let err = terr_record_size(expected_len, actual_len);
|
|
ret ures_err(err);
|
|
}
|
|
// TODO: implement an iterator that can iterate over
|
|
// two arrays simultaneously.
|
|
|
|
let result_fields: [field] = [];
|
|
let i = 0u;
|
|
while i < expected_len {
|
|
let expected_field = expected_fields[i];
|
|
let actual_field = actual_fields[i];
|
|
let (mut, var) = alt unify_mut(
|
|
expected_field.mt.mut, actual_field.mt.mut, variance)
|
|
{
|
|
none. { ret ures_err(terr_record_mutability); }
|
|
some(mv) { mv }
|
|
};
|
|
if !str::eq(expected_field.ident, actual_field.ident) {
|
|
let err =
|
|
terr_record_fields(expected_field.ident,
|
|
actual_field.ident);
|
|
ret ures_err(err);
|
|
}
|
|
let result =
|
|
unify_step(cx, expected_field.mt.ty,
|
|
actual_field.mt.ty, var);
|
|
alt result {
|
|
ures_ok(rty) {
|
|
let mt = {ty: rty, mut: mut};
|
|
result_fields += [{mt: mt with expected_field}];
|
|
}
|
|
_ { ret result; }
|
|
}
|
|
i += 1u;
|
|
}
|
|
ret ures_ok(mk_rec(cx.tcx, result_fields));
|
|
}
|
|
_ { ret ures_err(terr_mismatch); }
|
|
}
|
|
}
|
|
ty::ty_tup(expected_elems) {
|
|
alt struct(cx.tcx, actual) {
|
|
ty::ty_tup(actual_elems) {
|
|
let expected_len = vec::len(expected_elems);
|
|
let actual_len = vec::len(actual_elems);
|
|
if expected_len != actual_len {
|
|
let err = terr_tuple_size(expected_len, actual_len);
|
|
ret ures_err(err);
|
|
}
|
|
// TODO: implement an iterator that can iterate over
|
|
// two arrays simultaneously.
|
|
|
|
let result_elems = [];
|
|
let i = 0u;
|
|
while i < expected_len {
|
|
let expected_elem = expected_elems[i];
|
|
let actual_elem = actual_elems[i];
|
|
let result = unify_step(
|
|
cx, expected_elem, actual_elem, variance);
|
|
alt result {
|
|
ures_ok(rty) { result_elems += [rty]; }
|
|
_ { ret result; }
|
|
}
|
|
i += 1u;
|
|
}
|
|
ret ures_ok(mk_tup(cx.tcx, result_elems));
|
|
}
|
|
_ { ret ures_err(terr_mismatch); }
|
|
}
|
|
}
|
|
ty::ty_fn(ep, expected_inputs, expected_output, expected_cf,
|
|
expected_constrs) {
|
|
alt struct(cx.tcx, actual) {
|
|
ty::ty_fn(ap, actual_inputs, actual_output, actual_cf,
|
|
actual_constrs) {
|
|
ret unify_fn(cx, ep, ap, expected, actual, expected_inputs,
|
|
expected_output, actual_inputs, actual_output,
|
|
expected_cf, actual_cf, expected_constrs,
|
|
actual_constrs, variance);
|
|
}
|
|
_ { ret ures_err(terr_mismatch); }
|
|
}
|
|
}
|
|
ty::ty_native_fn(expected_inputs, expected_output) {
|
|
alt struct(cx.tcx, actual) {
|
|
ty::ty_native_fn(actual_inputs, actual_output) {
|
|
ret unify_native_fn(cx, expected, actual,
|
|
expected_inputs, expected_output,
|
|
actual_inputs, actual_output, variance);
|
|
}
|
|
_ { ret ures_err(terr_mismatch); }
|
|
}
|
|
}
|
|
ty::ty_obj(expected_meths) {
|
|
alt struct(cx.tcx, actual) {
|
|
ty::ty_obj(actual_meths) {
|
|
ret unify_obj(cx, expected, actual, expected_meths,
|
|
actual_meths, variance);
|
|
}
|
|
_ { ret ures_err(terr_mismatch); }
|
|
}
|
|
}
|
|
ty::ty_constr(expected_t, expected_constrs) {
|
|
|
|
// unify the base types...
|
|
alt struct(cx.tcx, actual) {
|
|
ty::ty_constr(actual_t, actual_constrs) {
|
|
let rslt = unify_step(
|
|
cx, expected_t, actual_t, variance);
|
|
alt rslt {
|
|
ures_ok(rty) {
|
|
// FIXME: probably too restrictive --
|
|
// requires the constraints to be
|
|
// syntactically equal
|
|
ret unify_constrs(expected, expected_constrs,
|
|
actual_constrs);
|
|
}
|
|
_ { ret rslt; }
|
|
}
|
|
}
|
|
_ {
|
|
// If the actual type is *not* a constrained type,
|
|
// then we go ahead and just ignore the constraints on
|
|
// the expected type. typestate handles the rest.
|
|
ret unify_step(
|
|
cx, expected_t, actual, variance);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
fn unify(expected: t, actual: t, vb: @var_bindings, tcx: ty_ctxt) ->
|
|
result {
|
|
let cx = @{vb: vb, tcx: tcx};
|
|
ret unify_step(cx, expected, actual, covariant);
|
|
}
|
|
fn dump_var_bindings(tcx: ty_ctxt, vb: @var_bindings) {
|
|
let i = 0u;
|
|
while i < vec::len::<ufind::node>(vb.sets.nodes) {
|
|
let sets = "";
|
|
let j = 0u;
|
|
while j < vec::len::<option::t<uint>>(vb.sets.nodes) {
|
|
if ufind::find(vb.sets, j) == i { sets += #fmt[" %u", j]; }
|
|
j += 1u;
|
|
}
|
|
let typespec;
|
|
alt smallintmap::find::<t>(vb.types, i) {
|
|
none. { typespec = ""; }
|
|
some(typ) { typespec = " =" + ty_to_str(tcx, typ); }
|
|
}
|
|
log_err #fmt["set %u:%s%s", i, typespec, sets];
|
|
i += 1u;
|
|
}
|
|
}
|
|
|
|
// Fixups and substitutions
|
|
// Takes an optional span - complain about occurs check violations
|
|
// iff the span is present (so that if we already know we're going
|
|
// to error anyway, we don't complain)
|
|
fn fixup_vars(tcx: ty_ctxt, sp: option::t<span>, vb: @var_bindings,
|
|
typ: t) -> fixup_result {
|
|
fn subst_vars(tcx: ty_ctxt, sp: option::t<span>, vb: @var_bindings,
|
|
unresolved: @mutable option::t<int>, vid: int) -> t {
|
|
// Should really return a fixup_result instead of a t, but fold_ty
|
|
// doesn't allow returning anything but a t.
|
|
if vid as uint >= ufind::set_count(vb.sets) {
|
|
*unresolved = some(vid);
|
|
ret ty::mk_var(tcx, vid);
|
|
}
|
|
let root_id = ufind::find(vb.sets, vid as uint);
|
|
alt smallintmap::find::<t>(vb.types, root_id) {
|
|
none. { *unresolved = some(vid); ret ty::mk_var(tcx, vid); }
|
|
some(rt) {
|
|
if occurs_check_fails(tcx, sp, vid, rt) {
|
|
// Return the type unchanged, so we can error out
|
|
// downstream
|
|
ret rt;
|
|
}
|
|
ret fold_ty(tcx,
|
|
fm_var(bind subst_vars(tcx, sp, vb, unresolved,
|
|
_)), rt);
|
|
}
|
|
}
|
|
}
|
|
let unresolved = @mutable none::<int>;
|
|
let rty =
|
|
fold_ty(tcx, fm_var(bind subst_vars(tcx, sp, vb, unresolved, _)),
|
|
typ);
|
|
let ur = *unresolved;
|
|
alt ur {
|
|
none. { ret fix_ok(rty); }
|
|
some(var_id) { ret fix_err(var_id); }
|
|
}
|
|
}
|
|
fn resolve_type_var(tcx: ty_ctxt, sp: option::t<span>, vb: @var_bindings,
|
|
vid: int) -> fixup_result {
|
|
if vid as uint >= ufind::set_count(vb.sets) { ret fix_err(vid); }
|
|
let root_id = ufind::find(vb.sets, vid as uint);
|
|
alt smallintmap::find::<t>(vb.types, root_id) {
|
|
none. { ret fix_err(vid); }
|
|
some(rt) { ret fixup_vars(tcx, sp, vb, rt); }
|
|
}
|
|
}
|
|
}
|
|
|
|
fn type_err_to_str(err: ty::type_err) -> str {
|
|
alt err {
|
|
terr_mismatch. { ret "types differ"; }
|
|
terr_ret_style_mismatch(expect, actual) {
|
|
fn to_str(s: ast::ret_style) -> str {
|
|
alt s {
|
|
ast::noreturn. { "non-returning" }
|
|
ast::return_val. { "return-by-value" }
|
|
}
|
|
}
|
|
ret to_str(actual) + " function found where " + to_str(expect) +
|
|
" function was expected";
|
|
}
|
|
terr_box_mutability. { ret "boxed values differ in mutability"; }
|
|
terr_vec_mutability. { ret "vectors differ in mutability"; }
|
|
terr_tuple_size(e_sz, a_sz) {
|
|
ret "expected a tuple with " + uint::to_str(e_sz, 10u) +
|
|
" elements but found one with " + uint::to_str(a_sz, 10u) +
|
|
" elements";
|
|
}
|
|
terr_record_size(e_sz, a_sz) {
|
|
ret "expected a record with " + uint::to_str(e_sz, 10u) +
|
|
" fields but found one with " + uint::to_str(a_sz, 10u) +
|
|
" fields";
|
|
}
|
|
terr_record_mutability. { ret "record elements differ in mutability"; }
|
|
terr_record_fields(e_fld, a_fld) {
|
|
ret "expected a record with field '" + e_fld +
|
|
"' but found one with field '" + a_fld + "'";
|
|
}
|
|
terr_arg_count. { ret "incorrect number of function parameters"; }
|
|
terr_meth_count. { ret "incorrect number of object methods"; }
|
|
terr_obj_meths(e_meth, a_meth) {
|
|
ret "expected an obj with method '" + e_meth +
|
|
"' but found one with method '" + a_meth + "'";
|
|
}
|
|
terr_mode_mismatch(e_mode, a_mode) {
|
|
ret "expected argument mode " + mode_str_1(e_mode) + " but found " +
|
|
mode_str_1(a_mode);
|
|
}
|
|
terr_constr_len(e_len, a_len) {
|
|
ret "Expected a type with " + uint::str(e_len) +
|
|
" constraints, but found one with " + uint::str(a_len) +
|
|
" constraints";
|
|
}
|
|
terr_constr_mismatch(e_constr, a_constr) {
|
|
ret "Expected a type with constraint " + ty_constr_to_str(e_constr) +
|
|
" but found one with constraint " +
|
|
ty_constr_to_str(a_constr);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
// Converts type parameters in a type to type variables and returns the
|
|
// resulting type along with a list of type variable IDs.
|
|
fn bind_params_in_type(sp: span, cx: ctxt, next_ty_var: fn@() -> int, typ: t,
|
|
ty_param_count: uint) -> {ids: [int], ty: t} {
|
|
let param_var_ids: @mutable [int] = @mutable [];
|
|
let i = 0u;
|
|
while i < ty_param_count { *param_var_ids += [next_ty_var()]; i += 1u; }
|
|
fn binder(sp: span, cx: ctxt, param_var_ids: @mutable [int],
|
|
_next_ty_var: fn@() -> int, index: uint,
|
|
_kind: ast::kind) -> t {
|
|
if index < vec::len(*param_var_ids) {
|
|
ret mk_var(cx, param_var_ids[index]);
|
|
} else {
|
|
cx.sess.span_fatal(sp, "Unbound type parameter in callee's type");
|
|
}
|
|
}
|
|
let new_typ =
|
|
fold_ty(cx,
|
|
fm_param(bind binder(sp, cx, param_var_ids, next_ty_var, _,
|
|
_)), typ);
|
|
ret {ids: *param_var_ids, ty: new_typ};
|
|
}
|
|
|
|
|
|
// Replaces type parameters in the given type using the given list of
|
|
// substitions.
|
|
fn substitute_type_params(cx: ctxt, substs: [ty::t], typ: t) -> t {
|
|
if !type_contains_params(cx, typ) { ret typ; }
|
|
fn substituter(_cx: ctxt, substs: @[ty::t], idx: uint, _kind: ast::kind)
|
|
-> t {
|
|
// FIXME: bounds check can fail
|
|
ret substs[idx];
|
|
}
|
|
ret fold_ty(cx, fm_param(bind substituter(cx, @substs, _, _)), typ);
|
|
}
|
|
|
|
fn def_has_ty_params(def: ast::def) -> bool {
|
|
alt def {
|
|
ast::def_obj_field(_, _) | ast::def_mod(_) | ast::def_const(_) |
|
|
ast::def_arg(_, _) | ast::def_local(_, _) | ast::def_upvar(_, _, _) |
|
|
ast::def_ty_param(_, _) | ast::def_binding(_) | ast::def_use(_) |
|
|
ast::def_native_ty(_) | ast::def_self(_) | ast::def_ty(_) { false }
|
|
ast::def_fn(_, _) | ast::def_variant(_, _) |
|
|
ast::def_native_fn(_, _) { true }
|
|
}
|
|
}
|
|
|
|
|
|
// Tag information
|
|
type variant_info = @{args: [ty::t], ctor_ty: ty::t, id: ast::def_id};
|
|
|
|
fn tag_variants(cx: ctxt, id: ast::def_id) -> @mutable [variant_info] {
|
|
if ast::local_crate != id.crate {
|
|
ret @mutable csearch::get_tag_variants(cx, id);
|
|
}
|
|
assert (id.node >= 0);
|
|
alt smallintmap::find(*cx.tag_var_cache, id.node as uint) {
|
|
option::some(variants) { ret variants; }
|
|
_ { /* fallthrough */ }
|
|
}
|
|
let item =
|
|
alt cx.items.find(id.node) {
|
|
some(i) { i }
|
|
none. { cx.sess.bug("expected to find cached node_item") }
|
|
};
|
|
alt item {
|
|
ast_map::node_item(item) {
|
|
alt item.node {
|
|
ast::item_tag(variants, _) {
|
|
let result: @mutable [variant_info] = @mutable [];
|
|
for variant: ast::variant in variants {
|
|
let ctor_ty = node_id_to_monotype(cx, variant.node.id);
|
|
let arg_tys: [t] = [];
|
|
if vec::len(variant.node.args) > 0u {
|
|
for a: arg in ty_fn_args(cx, ctor_ty) {
|
|
arg_tys += [a.ty];
|
|
}
|
|
}
|
|
let did = variant.node.id;
|
|
*result +=
|
|
[@{args: arg_tys,
|
|
ctor_ty: ctor_ty,
|
|
id: ast_util::local_def(did)}];
|
|
}
|
|
smallintmap::insert(*cx.tag_var_cache, id.node as uint, result);
|
|
ret result;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
// Returns information about the tag variant with the given ID:
|
|
fn tag_variant_with_id(cx: ctxt, tag_id: ast::def_id, variant_id: ast::def_id)
|
|
-> variant_info {
|
|
let variants = tag_variants(cx, tag_id);
|
|
let i = 0u;
|
|
while i < vec::len::<variant_info>(*variants) {
|
|
let variant = variants[i];
|
|
if def_eq(variant.id, variant_id) { ret variant; }
|
|
i += 1u;
|
|
}
|
|
cx.sess.bug("tag_variant_with_id(): no variant exists with that ID");
|
|
}
|
|
|
|
|
|
// If the given item is in an external crate, looks up its type and adds it to
|
|
// the type cache. Returns the type parameters and type.
|
|
fn lookup_item_type(cx: ctxt, did: ast::def_id) -> ty_param_kinds_and_ty {
|
|
if did.crate == ast::local_crate {
|
|
// The item is in this crate. The caller should have added it to the
|
|
// type cache already; we simply return it.
|
|
|
|
ret cx.tcache.get(did);
|
|
}
|
|
alt cx.tcache.find(did) {
|
|
some(tpt) { ret tpt; }
|
|
none. {
|
|
let tyt = csearch::get_type(cx, did);
|
|
cx.tcache.insert(did, tyt);
|
|
ret tyt;
|
|
}
|
|
}
|
|
}
|
|
|
|
fn ret_ty_of_fn(cx: ctxt, id: ast::node_id) -> t {
|
|
ty_fn_ret(cx, node_id_to_type(cx, id))
|
|
}
|
|
|
|
fn is_binopable(cx: ctxt, ty: t, op: ast::binop) -> bool {
|
|
|
|
const tycat_other: int = 0;
|
|
const tycat_bool: int = 1;
|
|
const tycat_int: int = 2;
|
|
const tycat_float: int = 3;
|
|
const tycat_str: int = 4;
|
|
const tycat_vec: int = 5;
|
|
const tycat_struct: int = 6;
|
|
const tycat_bot: int = 7;
|
|
|
|
const opcat_add: int = 0;
|
|
const opcat_sub: int = 1;
|
|
const opcat_mult: int = 2;
|
|
const opcat_shift: int = 3;
|
|
const opcat_rel: int = 4;
|
|
const opcat_eq: int = 5;
|
|
const opcat_bit: int = 6;
|
|
const opcat_logic: int = 7;
|
|
|
|
fn opcat(op: ast::binop) -> int {
|
|
alt op {
|
|
ast::add. { opcat_add }
|
|
ast::sub. { opcat_sub }
|
|
ast::mul. { opcat_mult }
|
|
ast::div. { opcat_mult }
|
|
ast::rem. { opcat_mult }
|
|
ast::and. { opcat_logic }
|
|
ast::or. { opcat_logic }
|
|
ast::bitxor. { opcat_bit }
|
|
ast::bitand. { opcat_bit }
|
|
ast::bitor. { opcat_bit }
|
|
ast::lsl. { opcat_shift }
|
|
ast::lsr. { opcat_shift }
|
|
ast::asr. { opcat_shift }
|
|
ast::eq. { opcat_eq }
|
|
ast::ne. { opcat_eq }
|
|
ast::lt. { opcat_rel }
|
|
ast::le. { opcat_rel }
|
|
ast::ge. { opcat_rel }
|
|
ast::gt. { opcat_rel }
|
|
}
|
|
}
|
|
|
|
fn tycat(cx: ctxt, ty: t) -> int {
|
|
alt struct(cx, ty) {
|
|
ty_bool. { tycat_bool }
|
|
ty_int(_) { tycat_int }
|
|
ty_uint(_) { tycat_int }
|
|
ty_float(_) { tycat_float }
|
|
ty_str. { tycat_str }
|
|
ty_vec(_) { tycat_vec }
|
|
ty_rec(_) { tycat_struct }
|
|
ty_tup(_) { tycat_struct }
|
|
ty_tag(_, _) { tycat_struct }
|
|
ty_bot. { tycat_bot }
|
|
_ { tycat_other }
|
|
}
|
|
}
|
|
|
|
const t: bool = true;
|
|
const f: bool = false;
|
|
|
|
/*. add, shift, bit
|
|
. sub, rel, logic
|
|
. mult, eq, */
|
|
/*other*/
|
|
/*bool*/
|
|
/*int*/
|
|
/*float*/
|
|
/*str*/
|
|
/*vec*/
|
|
/*bot*/
|
|
let tbl =
|
|
[[f, f, f, f, t, t, f, f], [f, f, f, f, t, t, t, t],
|
|
[t, t, t, t, t, t, t, f], [t, t, t, f, t, t, f, f],
|
|
[t, f, f, f, t, t, f, f], [t, f, f, f, t, t, f, f],
|
|
[f, f, f, f, t, t, f, f], [t, t, t, t, t, t, t, t]]; /*struct*/
|
|
|
|
ret tbl[tycat(cx, ty)][opcat(op)];
|
|
}
|
|
|
|
fn ast_constr_to_constr<T>(tcx: ty::ctxt, c: @ast::constr_general<T>) ->
|
|
@ty::constr_general<T> {
|
|
alt tcx.def_map.find(c.node.id) {
|
|
some(ast::def_fn(pred_id, ast::pure_fn.)) {
|
|
ret @ast_util::respan(c.span,
|
|
{path: c.node.path,
|
|
args: c.node.args,
|
|
id: pred_id});
|
|
}
|
|
_ {
|
|
tcx.sess.span_fatal(c.span,
|
|
"Predicate " + path_to_str(c.node.path) +
|
|
" is unbound or bound to a non-function or an \
|
|
impure function");
|
|
}
|
|
}
|
|
}
|
|
|
|
// Local Variables:
|
|
// mode: rust
|
|
// fill-column: 78;
|
|
// indent-tabs-mode: nil
|
|
// c-basic-offset: 4
|
|
// buffer-file-coding-system: utf-8-unix
|
|
// End:
|