1971 lines
46 KiB
Rust
1971 lines
46 KiB
Rust
/*
|
|
Module: vec
|
|
*/
|
|
|
|
import option::{some, none};
|
|
import uint::next_power_of_two;
|
|
import ptr::addr_of;
|
|
|
|
#[abi = "rust-intrinsic"]
|
|
native mod rusti {
|
|
fn vec_len<T>(&&v: [const T]) -> ctypes::size_t;
|
|
}
|
|
|
|
#[abi = "cdecl"]
|
|
native mod rustrt {
|
|
fn vec_reserve_shared<T>(t: *sys::type_desc,
|
|
&v: [const T],
|
|
n: ctypes::size_t);
|
|
fn vec_from_buf_shared<T>(t: *sys::type_desc,
|
|
ptr: *T,
|
|
count: ctypes::size_t) -> [T];
|
|
}
|
|
|
|
/*
|
|
Type: init_op
|
|
|
|
A function used to initialize the elements of a vector.
|
|
*/
|
|
type init_op<T> = fn(uint) -> T;
|
|
|
|
|
|
/*
|
|
Predicate: is_empty
|
|
|
|
Returns true if a vector contains no elements.
|
|
*/
|
|
pure fn is_empty<T>(v: [const T]) -> bool {
|
|
// FIXME: This would be easier if we could just call len
|
|
for t: T in v { ret false; }
|
|
ret true;
|
|
}
|
|
|
|
/*
|
|
Predicate: is_not_empty
|
|
|
|
Returns true if a vector contains some elements.
|
|
*/
|
|
pure fn is_not_empty<T>(v: [const T]) -> bool { ret !is_empty(v); }
|
|
|
|
/*
|
|
Predicate: same_length
|
|
|
|
Returns true if two vectors have the same length
|
|
*/
|
|
pure fn same_length<T, U>(xs: [T], ys: [U]) -> bool {
|
|
vec::len(xs) == vec::len(ys)
|
|
}
|
|
|
|
/*
|
|
Function: reserve
|
|
|
|
Reserves capacity for `n` elements in the given vector.
|
|
|
|
If the capacity for `v` is already equal to or greater than the requested
|
|
capacity, then no action is taken.
|
|
|
|
Parameters:
|
|
|
|
v - A vector
|
|
n - The number of elements to reserve space for
|
|
*/
|
|
fn reserve<T>(&v: [const T], n: uint) {
|
|
rustrt::vec_reserve_shared(sys::get_type_desc::<T>(), v, n);
|
|
}
|
|
|
|
/*
|
|
Function: len
|
|
|
|
Returns the length of a vector
|
|
*/
|
|
pure fn len<T>(v: [const T]) -> uint { unchecked { rusti::vec_len(v) } }
|
|
|
|
/*
|
|
Function: init_fn
|
|
|
|
Creates and initializes an immutable vector.
|
|
|
|
Creates an immutable vector of size `n_elts` and initializes the elements
|
|
to the value returned by the function `op`.
|
|
*/
|
|
fn init_fn<T>(n_elts: uint, op: init_op<T>) -> [T] {
|
|
let v = [];
|
|
reserve(v, n_elts);
|
|
let i: uint = 0u;
|
|
while i < n_elts { v += [op(i)]; i += 1u; }
|
|
ret v;
|
|
}
|
|
|
|
// TODO: Remove me once we have slots.
|
|
/*
|
|
Function: init_fn_mut
|
|
|
|
Creates and initializes a mutable vector.
|
|
|
|
Creates a mutable vector of size `n_elts` and initializes the elements to
|
|
the value returned by the function `op`.
|
|
*/
|
|
fn init_fn_mut<T>(n_elts: uint, op: init_op<T>) -> [mutable T] {
|
|
let v = [mutable];
|
|
reserve(v, n_elts);
|
|
let i: uint = 0u;
|
|
while i < n_elts { v += [mutable op(i)]; i += 1u; }
|
|
ret v;
|
|
}
|
|
|
|
/*
|
|
Function: init_elt
|
|
|
|
Creates and initializes an immutable vector.
|
|
|
|
Creates an immutable vector of size `n_elts` and initializes the elements
|
|
to the value `t`.
|
|
*/
|
|
fn init_elt<T: copy>(n_elts: uint, t: T) -> [T] {
|
|
let v = [];
|
|
reserve(v, n_elts);
|
|
let i: uint = 0u;
|
|
while i < n_elts { v += [t]; i += 1u; }
|
|
ret v;
|
|
}
|
|
|
|
// TODO: Remove me once we have slots.
|
|
/*
|
|
Function: init_elt_mut
|
|
|
|
Creates and initializes a mutable vector.
|
|
|
|
Creates a mutable vector of size `n_elts` and initializes the elements
|
|
to the value `t`.
|
|
*/
|
|
fn init_elt_mut<T: copy>(n_elts: uint, t: T) -> [mutable T] {
|
|
let v = [mutable];
|
|
reserve(v, n_elts);
|
|
let i: uint = 0u;
|
|
while i < n_elts { v += [mutable t]; i += 1u; }
|
|
ret v;
|
|
}
|
|
|
|
// FIXME: Possible typestate postcondition:
|
|
// len(result) == len(v) (needs issue #586)
|
|
/*
|
|
Function: to_mut
|
|
|
|
Produces a mutable vector from an immutable vector.
|
|
*/
|
|
fn to_mut<T>(+v: [T]) -> [mutable T] unsafe {
|
|
let r = ::unsafe::reinterpret_cast(v);
|
|
::unsafe::leak(v);
|
|
r
|
|
}
|
|
|
|
/*
|
|
Function: from_mut
|
|
|
|
Produces an immutable vector from a mutable vector.
|
|
*/
|
|
fn from_mut<T>(+v: [mutable T]) -> [T] unsafe {
|
|
let r = ::unsafe::reinterpret_cast(v);
|
|
::unsafe::leak(v);
|
|
r
|
|
}
|
|
|
|
// Accessors
|
|
|
|
/*
|
|
Function: head
|
|
|
|
Returns the first element of a vector
|
|
|
|
Predicates:
|
|
<is_not_empty> (v)
|
|
*/
|
|
pure fn head<T: copy>(v: [const T]) -> T { v[0] }
|
|
|
|
/*
|
|
Function: tail
|
|
|
|
Returns all but the first element of a vector
|
|
*/
|
|
fn tail<T: copy>(v: [const T]) -> [T] {
|
|
ret slice(v, 1u, len(v));
|
|
}
|
|
|
|
/*
|
|
Function tail_n
|
|
|
|
Returns all but the first N elements of a vector
|
|
*/
|
|
|
|
fn tail_n<T: copy>(v: [const T], n: uint) -> [T] {
|
|
slice(v, n, len(v))
|
|
}
|
|
|
|
// FIXME: This name is sort of confusing next to init_fn, etc
|
|
// but this is the name haskell uses for this function,
|
|
// along with head/tail/last.
|
|
/*
|
|
Function: init
|
|
|
|
Returns all but the last elemnt of a vector
|
|
|
|
Preconditions:
|
|
`v` is not empty
|
|
*/
|
|
fn init<T: copy>(v: [const T]) -> [T] {
|
|
assert len(v) != 0u;
|
|
slice(v, 0u, len(v) - 1u)
|
|
}
|
|
|
|
/*
|
|
Function: last
|
|
|
|
Returns the last element of a vector
|
|
|
|
Returns:
|
|
|
|
An option containing the last element of `v` if `v` is not empty, or
|
|
none if `v` is empty.
|
|
*/
|
|
pure fn last<T: copy>(v: [const T]) -> option<T> {
|
|
if len(v) == 0u { ret none; }
|
|
ret some(v[len(v) - 1u]);
|
|
}
|
|
|
|
/*
|
|
Function: last_total
|
|
|
|
Returns the last element of a non-empty vector `v`
|
|
|
|
Predicates:
|
|
<is_not_empty> (v)
|
|
*/
|
|
pure fn last_total<T: copy>(v: [const T]) -> T { v[len(v) - 1u] }
|
|
|
|
/*
|
|
Function: slice
|
|
|
|
Returns a copy of the elements from [`start`..`end`) from `v`.
|
|
*/
|
|
fn slice<T: copy>(v: [const T], start: uint, end: uint) -> [T] {
|
|
assert (start <= end);
|
|
assert (end <= len(v));
|
|
let result = [];
|
|
reserve(result, end - start);
|
|
let i = start;
|
|
while i < end { result += [v[i]]; i += 1u; }
|
|
ret result;
|
|
}
|
|
|
|
// TODO: Remove me once we have slots.
|
|
/*
|
|
Function: slice_mut
|
|
|
|
Returns a copy of the elements from [`start`..`end`) from `v`.
|
|
*/
|
|
fn slice_mut<T: copy>(v: [const T], start: uint, end: uint) -> [mutable T] {
|
|
assert (start <= end);
|
|
assert (end <= len(v));
|
|
let result = [mutable];
|
|
reserve(result, end - start);
|
|
let i = start;
|
|
while i < end { result += [mutable v[i]]; i += 1u; }
|
|
ret result;
|
|
}
|
|
|
|
/*
|
|
Function: split
|
|
|
|
Split the vector `v` by applying each element against the predicate `f`.
|
|
*/
|
|
fn split<T: copy>(v: [T], f: fn(T) -> bool) -> [[T]] {
|
|
let ln = len(v);
|
|
if (ln == 0u) { ret [] }
|
|
|
|
let start = 0u;
|
|
let result = [];
|
|
while start < ln {
|
|
alt position_from(v, start, ln, f) {
|
|
none { break }
|
|
some(i) {
|
|
push(result, slice(v, start, i));
|
|
start = i + 1u;
|
|
}
|
|
}
|
|
}
|
|
push(result, slice(v, start, ln));
|
|
result
|
|
}
|
|
|
|
/*
|
|
Function: splitn
|
|
|
|
Split the vector `v` by applying each element against the predicate `f` up
|
|
to `n` times.
|
|
*/
|
|
fn splitn<T: copy>(v: [T], n: uint, f: fn(T) -> bool) -> [[T]] {
|
|
let ln = len(v);
|
|
if (ln == 0u) { ret [] }
|
|
|
|
let start = 0u;
|
|
let count = n;
|
|
let result = [];
|
|
while start < ln && count > 0u {
|
|
alt position_from(v, start, ln, f) {
|
|
none { break }
|
|
some(i) {
|
|
push(result, slice(v, start, i));
|
|
// Make sure to skip the separator.
|
|
start = i + 1u;
|
|
count -= 1u;
|
|
}
|
|
}
|
|
}
|
|
push(result, slice(v, start, ln));
|
|
result
|
|
}
|
|
|
|
/*
|
|
Function: rsplit
|
|
|
|
Reverse split the vector `v` by applying each element against the predicate
|
|
`f`.
|
|
*/
|
|
fn rsplit<T: copy>(v: [T], f: fn(T) -> bool) -> [[T]] {
|
|
let ln = len(v);
|
|
if (ln == 0u) { ret [] }
|
|
|
|
let end = ln;
|
|
let result = [];
|
|
while end > 0u {
|
|
alt rposition_from(v, 0u, end, f) {
|
|
none { break }
|
|
some(i) {
|
|
push(result, slice(v, i + 1u, end));
|
|
end = i;
|
|
}
|
|
}
|
|
}
|
|
push(result, slice(v, 0u, end));
|
|
reversed(result)
|
|
}
|
|
|
|
/*
|
|
Function: rsplitn
|
|
|
|
Reverse split the vector `v` by applying each element against the predicate
|
|
`f` up to `n times.
|
|
*/
|
|
fn rsplitn<T: copy>(v: [T], n: uint, f: fn(T) -> bool) -> [[T]] {
|
|
let ln = len(v);
|
|
if (ln == 0u) { ret [] }
|
|
|
|
let end = ln;
|
|
let count = n;
|
|
let result = [];
|
|
while end > 0u && count > 0u {
|
|
alt rposition_from(v, 0u, end, f) {
|
|
none { break }
|
|
some(i) {
|
|
push(result, slice(v, i + 1u, end));
|
|
// Make sure to skip the separator.
|
|
end = i;
|
|
count -= 1u;
|
|
}
|
|
}
|
|
}
|
|
push(result, slice(v, 0u, end));
|
|
reversed(result)
|
|
}
|
|
|
|
// Mutators
|
|
|
|
/*
|
|
Function: shift
|
|
|
|
Removes the first element from a vector and return it
|
|
*/
|
|
fn shift<T: copy>(&v: [const T]) -> T {
|
|
let ln = len::<T>(v);
|
|
assert (ln > 0u);
|
|
let e = v[0];
|
|
v = slice::<T>(v, 1u, ln);
|
|
ret e;
|
|
}
|
|
|
|
/*
|
|
Function: pop
|
|
|
|
Remove the last element from a vector and return it
|
|
*/
|
|
fn pop<T>(&v: [const T]) -> T unsafe {
|
|
let ln = len(v);
|
|
assert ln > 0u;
|
|
let valptr = ptr::mut_addr_of(v[ln - 1u]);
|
|
let val <- *valptr;
|
|
unsafe::set_len(v, ln - 1u);
|
|
val
|
|
}
|
|
|
|
/*
|
|
Function: push
|
|
|
|
Append an element to a vector
|
|
*/
|
|
fn push<T: copy>(&v: [T], initval: T) {
|
|
v += [initval];
|
|
}
|
|
|
|
// TODO: More.
|
|
|
|
|
|
// Appending
|
|
|
|
/*
|
|
Function: grow
|
|
|
|
Expands a vector in place, initializing the new elements to a given value
|
|
|
|
Parameters:
|
|
|
|
v - The vector to grow
|
|
n - The number of elements to add
|
|
initval - The value for the new elements
|
|
*/
|
|
fn grow<T: copy>(&v: [T], n: uint, initval: T) {
|
|
reserve(v, next_power_of_two(len(v) + n));
|
|
let i: uint = 0u;
|
|
while i < n { v += [initval]; i += 1u; }
|
|
}
|
|
|
|
// TODO: Remove me once we have slots.
|
|
// FIXME: Can't grow take a [const T]
|
|
/*
|
|
Function: grow_mut
|
|
|
|
Expands a vector in place, initializing the new elements to a given value
|
|
|
|
Parameters:
|
|
|
|
v - The vector to grow
|
|
n - The number of elements to add
|
|
initval - The value for the new elements
|
|
*/
|
|
fn grow_mut<T: copy>(&v: [mutable T], n: uint, initval: T) {
|
|
reserve(v, next_power_of_two(len(v) + n));
|
|
let i: uint = 0u;
|
|
while i < n { v += [mutable initval]; i += 1u; }
|
|
}
|
|
|
|
/*
|
|
Function: grow_fn
|
|
|
|
Expands a vector in place, initializing the new elements to the result of a
|
|
function
|
|
|
|
Function `init_op` is called `n` times with the values [0..`n`)
|
|
|
|
Parameters:
|
|
|
|
v - The vector to grow
|
|
n - The number of elements to add
|
|
init_op - A function to call to retreive each appended element's value
|
|
*/
|
|
fn grow_fn<T>(&v: [T], n: uint, op: init_op<T>) {
|
|
reserve(v, next_power_of_two(len(v) + n));
|
|
let i: uint = 0u;
|
|
while i < n { v += [op(i)]; i += 1u; }
|
|
}
|
|
|
|
/*
|
|
Function: grow_set
|
|
|
|
Sets the value of a vector element at a given index, growing the vector as
|
|
needed
|
|
|
|
Sets the element at position `index` to `val`. If `index` is past the end
|
|
of the vector, expands the vector by replicating `initval` to fill the
|
|
intervening space.
|
|
*/
|
|
fn grow_set<T: copy>(&v: [mutable T], index: uint, initval: T, val: T) {
|
|
if index >= len(v) { grow_mut(v, index - len(v) + 1u, initval); }
|
|
v[index] = val;
|
|
}
|
|
|
|
|
|
// Functional utilities
|
|
|
|
/*
|
|
Function: map
|
|
|
|
Apply a function to each element of a vector and return the results
|
|
*/
|
|
fn map<T, U>(v: [T], f: fn(T) -> U) -> [U] {
|
|
let result = [];
|
|
reserve(result, len(v));
|
|
for elem: T in v { result += [f(elem)]; }
|
|
ret result;
|
|
}
|
|
|
|
/*
|
|
Function: map_mut
|
|
|
|
Apply a function to each element of a mutable vector and return the results
|
|
*/
|
|
fn map_mut<T: copy, U>(v: [const T], f: fn(T) -> U) -> [U] {
|
|
let result = [];
|
|
reserve(result, len(v));
|
|
for elem: T in v {
|
|
// copy satisfies alias checker
|
|
result += [f(copy elem)];
|
|
}
|
|
ret result;
|
|
}
|
|
|
|
/*
|
|
Function: map2
|
|
|
|
Apply a function to each pair of elements and return the results
|
|
*/
|
|
fn map2<T: copy, U: copy, V>(v0: [T], v1: [U], f: fn(T, U) -> V) -> [V] {
|
|
let v0_len = len(v0);
|
|
if v0_len != len(v1) { fail; }
|
|
let u: [V] = [];
|
|
let i = 0u;
|
|
while i < v0_len { u += [f(copy v0[i], copy v1[i])]; i += 1u; }
|
|
ret u;
|
|
}
|
|
|
|
/*
|
|
Function: filter_map
|
|
|
|
Apply a function to each element of a vector and return the results
|
|
|
|
If function `f` returns `none` then that element is excluded from
|
|
the resulting vector.
|
|
*/
|
|
fn filter_map<T: copy, U: copy>(v: [const T], f: fn(T) -> option<U>)
|
|
-> [U] {
|
|
let result = [];
|
|
for elem: T in v {
|
|
alt f(copy elem) {
|
|
none {/* no-op */ }
|
|
some(result_elem) { result += [result_elem]; }
|
|
}
|
|
}
|
|
ret result;
|
|
}
|
|
|
|
/*
|
|
Function: filter
|
|
|
|
Construct a new vector from the elements of a vector for which some predicate
|
|
holds.
|
|
|
|
Apply function `f` to each element of `v` and return a vector containing
|
|
only those elements for which `f` returned true.
|
|
*/
|
|
fn filter<T: copy>(v: [T], f: fn(T) -> bool) -> [T] {
|
|
let result = [];
|
|
for elem: T in v {
|
|
if f(elem) { result += [elem]; }
|
|
}
|
|
ret result;
|
|
}
|
|
|
|
/*
|
|
Function: concat
|
|
|
|
Concatenate a vector of vectors. Flattens a vector of vectors of T into
|
|
a single vector of T.
|
|
*/
|
|
fn concat<T: copy>(v: [const [const T]]) -> [T] {
|
|
let new: [T] = [];
|
|
for inner: [T] in v { new += inner; }
|
|
ret new;
|
|
}
|
|
|
|
/*
|
|
Function: connect
|
|
|
|
Concatenate a vector of vectors, placing a given separator between each
|
|
*/
|
|
fn connect<T: copy>(v: [const [const T]], sep: T) -> [T] {
|
|
let new: [T] = [];
|
|
let first = true;
|
|
for inner: [T] in v {
|
|
if first { first = false; } else { push(new, sep); }
|
|
new += inner;
|
|
}
|
|
ret new;
|
|
}
|
|
|
|
/*
|
|
Function: foldl
|
|
|
|
Reduce a vector from left to right
|
|
*/
|
|
fn foldl<T: copy, U>(z: T, v: [const U], p: fn(T, U) -> T) -> T {
|
|
let accum = z;
|
|
iter(v) { |elt|
|
|
accum = p(accum, elt);
|
|
}
|
|
ret accum;
|
|
}
|
|
|
|
/*
|
|
Function: foldr
|
|
|
|
Reduce a vector from right to left
|
|
*/
|
|
fn foldr<T, U: copy>(v: [const T], z: U, p: fn(T, U) -> U) -> U {
|
|
let accum = z;
|
|
riter(v) { |elt|
|
|
accum = p(elt, accum);
|
|
}
|
|
ret accum;
|
|
}
|
|
|
|
/*
|
|
Function: any
|
|
|
|
Return true if a predicate matches any elements
|
|
|
|
If the vector contains no elements then false is returned.
|
|
*/
|
|
fn any<T>(v: [T], f: fn(T) -> bool) -> bool {
|
|
for elem: T in v { if f(elem) { ret true; } }
|
|
ret false;
|
|
}
|
|
|
|
/*
|
|
Function: any2
|
|
|
|
Return true if a predicate matches any elements in both vectors.
|
|
|
|
If the vectors contains no elements then false is returned.
|
|
*/
|
|
fn any2<T, U>(v0: [T], v1: [U], f: fn(T, U) -> bool) -> bool {
|
|
let v0_len = len(v0);
|
|
let v1_len = len(v1);
|
|
let i = 0u;
|
|
while i < v0_len && i < v1_len {
|
|
if f(v0[i], v1[i]) { ret true; };
|
|
i += 1u;
|
|
}
|
|
ret false;
|
|
}
|
|
|
|
/*
|
|
Function: all
|
|
|
|
Return true if a predicate matches all elements
|
|
|
|
If the vector contains no elements then true is returned.
|
|
*/
|
|
fn all<T>(v: [T], f: fn(T) -> bool) -> bool {
|
|
for elem: T in v { if !f(elem) { ret false; } }
|
|
ret true;
|
|
}
|
|
|
|
/*
|
|
Function: all2
|
|
|
|
Return true if a predicate matches all elements in both vectors.
|
|
|
|
If the vectors are not the same size then false is returned.
|
|
*/
|
|
fn all2<T, U>(v0: [T], v1: [U], f: fn(T, U) -> bool) -> bool {
|
|
let v0_len = len(v0);
|
|
if v0_len != len(v1) { ret false; }
|
|
let i = 0u;
|
|
while i < v0_len { if !f(v0[i], v1[i]) { ret false; }; i += 1u; }
|
|
ret true;
|
|
}
|
|
|
|
/*
|
|
Function: contains
|
|
|
|
Return true if a vector contains an element with the given value
|
|
*/
|
|
fn contains<T>(v: [T], x: T) -> bool {
|
|
for elt: T in v { if x == elt { ret true; } }
|
|
ret false;
|
|
}
|
|
|
|
/*
|
|
Function: count
|
|
|
|
Returns the number of elements that are equal to a given value
|
|
*/
|
|
fn count<T>(v: [const T], x: T) -> uint {
|
|
let cnt = 0u;
|
|
for elt: T in v { if x == elt { cnt += 1u; } }
|
|
ret cnt;
|
|
}
|
|
|
|
/*
|
|
Function: find
|
|
|
|
Search for the first element that matches a given predicate
|
|
|
|
Apply function `f` to each element of `v`, starting from the first.
|
|
When function `f` returns true then an option containing the element
|
|
is returned. If `f` matches no elements then none is returned.
|
|
*/
|
|
fn find<T: copy>(v: [T], f: fn(T) -> bool) -> option<T> {
|
|
find_from(v, 0u, len(v), f)
|
|
}
|
|
|
|
/*
|
|
Function: find_from
|
|
|
|
Search for the first element that matches a given predicate within a range
|
|
|
|
Apply function `f` to each element of `v` within the range [`start`, `end`).
|
|
When function `f` returns true then an option containing the element
|
|
is returned. If `f` matches no elements then none is returned.
|
|
*/
|
|
fn find_from<T: copy>(v: [T], start: uint, end: uint, f: fn(T) -> bool) ->
|
|
option<T> {
|
|
option::map(position_from(v, start, end, f)) { |i| v[i] }
|
|
}
|
|
|
|
/*
|
|
Function: rfind
|
|
|
|
Search for the last element that matches a given predicate
|
|
|
|
Apply function `f` to each element of `v` in reverse order. When function `f`
|
|
returns true then an option containing the element is returned. If `f`
|
|
matches no elements then none is returned.
|
|
*/
|
|
fn rfind<T: copy>(v: [T], f: fn(T) -> bool) -> option<T> {
|
|
rfind_from(v, 0u, len(v), f)
|
|
}
|
|
|
|
/*
|
|
Function: rfind_from
|
|
|
|
Search for the last element that matches a given predicate within a range
|
|
|
|
Apply function `f` to each element of `v` in reverse order within the range
|
|
[`start`, `end`). When function `f` returns true then an option containing
|
|
the element is returned. If `f` matches no elements then none is returned.
|
|
*/
|
|
fn rfind_from<T: copy>(v: [T], start: uint, end: uint, f: fn(T) -> bool) ->
|
|
option<T> {
|
|
option::map(rposition_from(v, start, end, f)) { |i| v[i] }
|
|
}
|
|
|
|
/*
|
|
Function: position_elt
|
|
|
|
Find the first index containing a matching value
|
|
|
|
Returns:
|
|
|
|
option::some(uint) - The first index containing a matching value
|
|
option::none - No elements matched
|
|
*/
|
|
fn position_elt<T>(v: [T], x: T) -> option<uint> {
|
|
position(v) { |y| x == y }
|
|
}
|
|
|
|
/*
|
|
Function: position
|
|
|
|
Find the first index matching some predicate
|
|
|
|
Apply function `f` to each element of `v`. When function `f` returns true
|
|
then an option containing the index is returned. If `f` matches no elements
|
|
then none is returned.
|
|
*/
|
|
fn position<T>(v: [T], f: fn(T) -> bool) -> option<uint> {
|
|
position_from(v, 0u, len(v), f)
|
|
}
|
|
|
|
/*
|
|
Function: position_from
|
|
|
|
Find the first index matching some predicate within a range
|
|
|
|
Apply function `f` to each element of `v` between the range [`start`, `end`).
|
|
When function `f` returns true then an option containing the index is
|
|
returned. If `f` matches no elements then none is returned.
|
|
*/
|
|
fn position_from<T>(v: [T], start: uint, end: uint, f: fn(T) -> bool) ->
|
|
option<uint> {
|
|
assert start <= end;
|
|
assert end <= len(v);
|
|
let i = start;
|
|
while i < end { if f(v[i]) { ret some::<uint>(i); } i += 1u; }
|
|
ret none;
|
|
}
|
|
|
|
/*
|
|
Function: rposition_elt
|
|
|
|
Find the last index containing a matching value
|
|
|
|
Returns:
|
|
|
|
option::some(uint) - The last index containing a matching value
|
|
option::none - No elements matched
|
|
*/
|
|
fn rposition_elt<T>(v: [T], x: T) -> option<uint> {
|
|
rposition(v) { |y| x == y }
|
|
}
|
|
|
|
/*
|
|
Function: rposition
|
|
|
|
Find the last index matching some predicate
|
|
|
|
Apply function `f` to each element of `v` in reverse order. When function
|
|
`f` returns true then an option containing the index is returned. If `f`
|
|
matches no elements then none is returned.
|
|
*/
|
|
fn rposition<T>(v: [T], f: fn(T) -> bool) -> option<uint> {
|
|
rposition_from(v, 0u, len(v), f)
|
|
}
|
|
|
|
/*
|
|
Function: rposition_from
|
|
|
|
Find the last index matching some predicate within a range
|
|
|
|
Apply function `f` to each element of `v` in reverse order between the range
|
|
[`start`, `end`). When function `f` returns true then an option containing
|
|
the index is returned. If `f` matches no elements then none is returned.
|
|
*/
|
|
fn rposition_from<T>(v: [T], start: uint, end: uint, f: fn(T) -> bool) ->
|
|
option<uint> {
|
|
assert start <= end;
|
|
assert end <= len(v);
|
|
let i = end;
|
|
while i > start {
|
|
if f(v[i - 1u]) { ret some::<uint>(i - 1u); }
|
|
i -= 1u;
|
|
}
|
|
ret none;
|
|
}
|
|
|
|
// FIXME: if issue #586 gets implemented, could have a postcondition
|
|
// saying the two result lists have the same length -- or, could
|
|
// return a nominal record with a constraint saying that, instead of
|
|
// returning a tuple (contingent on issue #869)
|
|
/*
|
|
Function: unzip
|
|
|
|
Convert a vector of pairs into a pair of vectors
|
|
|
|
Returns a tuple containing two vectors where the i-th element of the first
|
|
vector contains the first element of the i-th tuple of the input vector,
|
|
and the i-th element of the second vector contains the second element
|
|
of the i-th tuple of the input vector.
|
|
*/
|
|
fn unzip<T: copy, U: copy>(v: [(T, U)]) -> ([T], [U]) {
|
|
let as = [], bs = [];
|
|
for (a, b) in v { as += [a]; bs += [b]; }
|
|
ret (as, bs);
|
|
}
|
|
|
|
/*
|
|
Function: zip
|
|
|
|
Convert two vectors to a vector of pairs
|
|
|
|
Returns a vector of tuples, where the i-th tuple contains contains the
|
|
i-th elements from each of the input vectors.
|
|
|
|
Preconditions:
|
|
|
|
<same_length> (v, u)
|
|
*/
|
|
fn zip<T: copy, U: copy>(v: [T], u: [U]) -> [(T, U)] {
|
|
let zipped = [];
|
|
let sz = len(v), i = 0u;
|
|
assert sz == len(u);
|
|
while i < sz { zipped += [(v[i], u[i])]; i += 1u; }
|
|
ret zipped;
|
|
}
|
|
|
|
/*
|
|
Function: swap
|
|
|
|
Swaps two elements in a vector
|
|
|
|
Parameters:
|
|
v - The input vector
|
|
a - The index of the first element
|
|
b - The index of the second element
|
|
*/
|
|
fn swap<T>(v: [mutable T], a: uint, b: uint) {
|
|
v[a] <-> v[b];
|
|
}
|
|
|
|
/*
|
|
Function: reverse
|
|
|
|
Reverse the order of elements in a vector, in place
|
|
*/
|
|
fn reverse<T>(v: [mutable T]) {
|
|
let i: uint = 0u;
|
|
let ln = len::<T>(v);
|
|
while i < ln / 2u { v[i] <-> v[ln - i - 1u]; i += 1u; }
|
|
}
|
|
|
|
|
|
/*
|
|
Function: reversed
|
|
|
|
Returns a vector with the order of elements reversed
|
|
*/
|
|
fn reversed<T: copy>(v: [const T]) -> [T] {
|
|
let rs: [T] = [];
|
|
let i = len::<T>(v);
|
|
if i == 0u { ret rs; } else { i -= 1u; }
|
|
while i != 0u { rs += [v[i]]; i -= 1u; }
|
|
rs += [v[0]];
|
|
ret rs;
|
|
}
|
|
|
|
// FIXME: Seems like this should take char params. Maybe belongs in char
|
|
/*
|
|
Function: enum_chars
|
|
|
|
Returns a vector containing a range of chars
|
|
*/
|
|
fn enum_chars(start: u8, end: u8) -> [char] {
|
|
assert start < end;
|
|
let i = start;
|
|
let r = [];
|
|
while i <= end { r += [i as char]; i += 1u as u8; }
|
|
ret r;
|
|
}
|
|
|
|
// FIXME: Probably belongs in uint. Compare to uint::range
|
|
/*
|
|
Function: enum_uints
|
|
|
|
Returns a vector containing a range of uints
|
|
*/
|
|
fn enum_uints(start: uint, end: uint) -> [uint] {
|
|
assert start < end;
|
|
let i = start;
|
|
let r = [];
|
|
while i <= end { r += [i]; i += 1u; }
|
|
ret r;
|
|
}
|
|
|
|
/*
|
|
Function: iter
|
|
|
|
Iterates over a vector
|
|
|
|
Iterates over vector `v` and, for each element, calls function `f` with the
|
|
element's value.
|
|
|
|
*/
|
|
fn iter<T>(v: [const T], f: fn(T)) {
|
|
iteri(v) { |_i, v| f(v) }
|
|
}
|
|
|
|
/*
|
|
Function: iter2
|
|
|
|
Iterates over two vectors in parallel
|
|
|
|
*/
|
|
fn iter2<U, T>(v: [U], v2: [T], f: fn(U, T)) {
|
|
let i = 0;
|
|
for elt in v { f(elt, v2[i]); i += 1; }
|
|
}
|
|
|
|
/*
|
|
Function: iteri
|
|
|
|
Iterates over a vector's elements and indexes
|
|
|
|
Iterates over vector `v` and, for each element, calls function `f` with the
|
|
element's value and index.
|
|
*/
|
|
fn iteri<T>(v: [const T], f: fn(uint, T)) {
|
|
let i = 0u, l = len(v);
|
|
while i < l { f(i, v[i]); i += 1u; }
|
|
}
|
|
|
|
/*
|
|
Function: riter
|
|
|
|
Iterates over a vector in reverse
|
|
|
|
Iterates over vector `v` and, for each element, calls function `f` with the
|
|
element's value.
|
|
|
|
*/
|
|
fn riter<T>(v: [const T], f: fn(T)) {
|
|
riteri(v) { |_i, v| f(v) }
|
|
}
|
|
|
|
/*
|
|
Function: riteri
|
|
|
|
Iterates over a vector's elements and indexes in reverse
|
|
|
|
Iterates over vector `v` and, for each element, calls function `f` with the
|
|
element's value and index.
|
|
*/
|
|
fn riteri<T>(v: [const T], f: fn(uint, T)) {
|
|
let i = len(v);
|
|
while 0u < i {
|
|
i -= 1u;
|
|
f(i, v[i]);
|
|
};
|
|
}
|
|
|
|
/*
|
|
Function: permute
|
|
|
|
Iterate over all permutations of vector `v`. Permutations are produced in
|
|
lexicographic order with respect to the order of elements in `v` (so if `v`
|
|
is sorted then the permutations are lexicographically sorted).
|
|
|
|
The total number of permutations produced is `len(v)!`. If `v` contains
|
|
repeated elements, then some permutations are repeated.
|
|
*/
|
|
fn permute<T: copy>(v: [const T], put: fn([T])) {
|
|
let ln = len(v);
|
|
if ln == 0u {
|
|
put([]);
|
|
} else {
|
|
let i = 0u;
|
|
while i < ln {
|
|
let elt = v[i];
|
|
let rest = slice(v, 0u, i) + slice(v, i+1u, ln);
|
|
permute(rest) {|permutation| put([elt] + permutation)}
|
|
i += 1u;
|
|
}
|
|
}
|
|
}
|
|
|
|
fn windowed <TT: copy> (nn: uint, xx: [TT]) -> [[TT]] {
|
|
let ww = [];
|
|
|
|
assert 1u <= nn;
|
|
|
|
vec::iteri (xx, {|ii, _x|
|
|
let len = vec::len(xx);
|
|
|
|
if ii+nn <= len {
|
|
let w = vec::slice ( xx, ii, ii+nn );
|
|
vec::push (ww, w);
|
|
}
|
|
});
|
|
|
|
ret ww;
|
|
}
|
|
|
|
/*
|
|
Function: to_ptr
|
|
|
|
FIXME: We don't need this wrapper
|
|
*/
|
|
unsafe fn to_ptr<T>(v: [T]) -> *T { ret unsafe::to_ptr(v); }
|
|
|
|
/*
|
|
Function: as_buf
|
|
|
|
Work with the buffer of a vector. Allows for unsafe manipulation
|
|
of vector contents, which is useful for native interop.
|
|
|
|
*/
|
|
fn as_buf<E,T>(v: [const E], f: fn(*E) -> T) -> T unsafe {
|
|
let buf = unsafe::to_ptr(v); f(buf)
|
|
}
|
|
|
|
impl vec_len<T> for [T] {
|
|
fn len() -> uint { len(self) }
|
|
}
|
|
|
|
/*
|
|
Module: unsafe
|
|
*/
|
|
mod unsafe {
|
|
type vec_repr = {mutable fill: uint, mutable alloc: uint, data: u8};
|
|
|
|
/*
|
|
Function: from_buf
|
|
|
|
Constructs a vector from an unsafe pointer to a buffer
|
|
|
|
Parameters:
|
|
|
|
ptr - An unsafe pointer to a buffer of `T`
|
|
elts - The number of elements in the buffer
|
|
*/
|
|
unsafe fn from_buf<T>(ptr: *T, elts: uint) -> [T] {
|
|
ret rustrt::vec_from_buf_shared(sys::get_type_desc::<T>(),
|
|
ptr, elts);
|
|
}
|
|
|
|
/*
|
|
Function: set_len
|
|
|
|
Sets the length of a vector
|
|
|
|
This well explicitly set the size of the vector, without actually
|
|
modifing its buffers, so it is up to the caller to ensure that
|
|
the vector is actually the specified size.
|
|
*/
|
|
unsafe fn set_len<T>(&v: [const T], new_len: uint) {
|
|
let repr: **vec_repr = ::unsafe::reinterpret_cast(addr_of(v));
|
|
(**repr).fill = new_len * sys::size_of::<T>();
|
|
}
|
|
|
|
/*
|
|
Function: to_ptr
|
|
|
|
Returns an unsafe pointer to the vector's buffer
|
|
|
|
The caller must ensure that the vector outlives the pointer this
|
|
function returns, or else it will end up pointing to garbage.
|
|
|
|
Modifying the vector may cause its buffer to be reallocated, which
|
|
would also make any pointers to it invalid.
|
|
*/
|
|
unsafe fn to_ptr<T>(v: [const T]) -> *T {
|
|
let repr: **vec_repr = ::unsafe::reinterpret_cast(addr_of(v));
|
|
ret ::unsafe::reinterpret_cast(addr_of((**repr).data));
|
|
}
|
|
}
|
|
|
|
/*
|
|
Module: u8
|
|
*/
|
|
mod u8 {
|
|
export cmp;
|
|
export lt, le, eq, ne, ge, gt;
|
|
export hash;
|
|
|
|
#[nolink]
|
|
#[abi = "cdecl"]
|
|
native mod libc {
|
|
fn memcmp(s1: *u8, s2: *u8, n: ctypes::size_t) -> ctypes::c_int;
|
|
}
|
|
|
|
/*
|
|
Function cmp
|
|
|
|
Bytewise string comparison
|
|
*/
|
|
pure fn cmp(&&a: [u8], &&b: [u8]) -> int unsafe {
|
|
let a_len = len(a);
|
|
let b_len = len(b);
|
|
let n = math::min(a_len, b_len) as ctypes::size_t;
|
|
let r = libc::memcmp(to_ptr(a), to_ptr(b), n) as int;
|
|
|
|
if r != 0 { r } else {
|
|
if a_len == b_len {
|
|
0
|
|
} else if a_len < b_len {
|
|
-1
|
|
} else {
|
|
1
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
Function: lt
|
|
|
|
Bytewise less than or equal
|
|
*/
|
|
pure fn lt(&&a: [u8], &&b: [u8]) -> bool { cmp(a, b) < 0 }
|
|
|
|
/*
|
|
Function: le
|
|
|
|
Bytewise less than or equal
|
|
*/
|
|
pure fn le(&&a: [u8], &&b: [u8]) -> bool { cmp(a, b) <= 0 }
|
|
|
|
/*
|
|
Function: eq
|
|
|
|
Bytewise equality
|
|
*/
|
|
pure fn eq(&&a: [u8], &&b: [u8]) -> bool unsafe { cmp(a, b) == 0 }
|
|
|
|
/*
|
|
Function: ne
|
|
|
|
Bytewise inequality
|
|
*/
|
|
pure fn ne(&&a: [u8], &&b: [u8]) -> bool unsafe { cmp(a, b) != 0 }
|
|
|
|
/*
|
|
Function: ge
|
|
|
|
Bytewise greater than or equal
|
|
*/
|
|
pure fn ge(&&a: [u8], &&b: [u8]) -> bool { cmp(a, b) >= 0 }
|
|
|
|
/*
|
|
Function: gt
|
|
|
|
Bytewise greater than
|
|
*/
|
|
pure fn gt(&&a: [u8], &&b: [u8]) -> bool { cmp(a, b) > 0 }
|
|
|
|
/*
|
|
Function: hash
|
|
|
|
String hash function
|
|
*/
|
|
fn hash(&&s: [u8]) -> uint {
|
|
// djb hash.
|
|
// FIXME: replace with murmur.
|
|
|
|
let u: uint = 5381u;
|
|
vec::iter(s, { |c| u *= 33u; u += c as uint; });
|
|
ret u;
|
|
}
|
|
}
|
|
|
|
#[cfg(test)]
|
|
mod tests {
|
|
|
|
fn square(n: uint) -> uint { ret n * n; }
|
|
|
|
fn square_ref(&&n: uint) -> uint { ret n * n; }
|
|
|
|
pure fn is_three(&&n: uint) -> bool { ret n == 3u; }
|
|
|
|
pure fn is_odd(&&n: uint) -> bool { ret n % 2u == 1u; }
|
|
|
|
pure fn is_equal(&&x: uint, &&y:uint) -> bool { ret x == y; }
|
|
|
|
fn square_if_odd(&&n: uint) -> option<uint> {
|
|
ret if n % 2u == 1u { some(n * n) } else { none };
|
|
}
|
|
|
|
fn add(&&x: uint, &&y: uint) -> uint { ret x + y; }
|
|
|
|
#[test]
|
|
fn test_unsafe_ptrs() unsafe {
|
|
// Test on-stack copy-from-buf.
|
|
let a = [1, 2, 3];
|
|
let ptr = to_ptr(a);
|
|
let b = unsafe::from_buf(ptr, 3u);
|
|
assert (len(b) == 3u);
|
|
assert (b[0] == 1);
|
|
assert (b[1] == 2);
|
|
assert (b[2] == 3);
|
|
|
|
// Test on-heap copy-from-buf.
|
|
let c = [1, 2, 3, 4, 5];
|
|
ptr = to_ptr(c);
|
|
let d = unsafe::from_buf(ptr, 5u);
|
|
assert (len(d) == 5u);
|
|
assert (d[0] == 1);
|
|
assert (d[1] == 2);
|
|
assert (d[2] == 3);
|
|
assert (d[3] == 4);
|
|
assert (d[4] == 5);
|
|
}
|
|
|
|
#[test]
|
|
fn test_init_fn() {
|
|
// Test on-stack init_fn.
|
|
let v = init_fn(3u, square);
|
|
assert (len(v) == 3u);
|
|
assert (v[0] == 0u);
|
|
assert (v[1] == 1u);
|
|
assert (v[2] == 4u);
|
|
|
|
// Test on-heap init_fn.
|
|
v = init_fn(5u, square);
|
|
assert (len(v) == 5u);
|
|
assert (v[0] == 0u);
|
|
assert (v[1] == 1u);
|
|
assert (v[2] == 4u);
|
|
assert (v[3] == 9u);
|
|
assert (v[4] == 16u);
|
|
}
|
|
|
|
#[test]
|
|
fn test_init_elt() {
|
|
// Test on-stack init_elt.
|
|
let v = init_elt(2u, 10u);
|
|
assert (len(v) == 2u);
|
|
assert (v[0] == 10u);
|
|
assert (v[1] == 10u);
|
|
|
|
// Test on-heap init_elt.
|
|
v = init_elt(6u, 20u);
|
|
assert (v[0] == 20u);
|
|
assert (v[1] == 20u);
|
|
assert (v[2] == 20u);
|
|
assert (v[3] == 20u);
|
|
assert (v[4] == 20u);
|
|
assert (v[5] == 20u);
|
|
}
|
|
|
|
#[test]
|
|
fn test_is_empty() {
|
|
assert (is_empty::<int>([]));
|
|
assert (!is_empty([0]));
|
|
}
|
|
|
|
#[test]
|
|
fn test_is_not_empty() {
|
|
assert (is_not_empty([0]));
|
|
assert (!is_not_empty::<int>([]));
|
|
}
|
|
|
|
#[test]
|
|
fn test_head() {
|
|
let a = [11, 12];
|
|
assert (head(a) == 11);
|
|
}
|
|
|
|
#[test]
|
|
fn test_tail() {
|
|
let a = [11];
|
|
assert (tail(a) == []);
|
|
|
|
a = [11, 12];
|
|
assert (tail(a) == [12]);
|
|
}
|
|
|
|
#[test]
|
|
fn test_last() {
|
|
let n = last([]);
|
|
assert (n == none);
|
|
n = last([1, 2, 3]);
|
|
assert (n == some(3));
|
|
n = last([1, 2, 3, 4, 5]);
|
|
assert (n == some(5));
|
|
}
|
|
|
|
#[test]
|
|
fn test_slice() {
|
|
// Test on-stack -> on-stack slice.
|
|
let v = slice([1, 2, 3], 1u, 3u);
|
|
assert (len(v) == 2u);
|
|
assert (v[0] == 2);
|
|
assert (v[1] == 3);
|
|
|
|
// Test on-heap -> on-stack slice.
|
|
v = slice([1, 2, 3, 4, 5], 0u, 3u);
|
|
assert (len(v) == 3u);
|
|
assert (v[0] == 1);
|
|
assert (v[1] == 2);
|
|
assert (v[2] == 3);
|
|
|
|
// Test on-heap -> on-heap slice.
|
|
v = slice([1, 2, 3, 4, 5, 6], 1u, 6u);
|
|
assert (len(v) == 5u);
|
|
assert (v[0] == 2);
|
|
assert (v[1] == 3);
|
|
assert (v[2] == 4);
|
|
assert (v[3] == 5);
|
|
assert (v[4] == 6);
|
|
}
|
|
|
|
#[test]
|
|
fn test_pop() {
|
|
// Test on-stack pop.
|
|
let v = [1, 2, 3];
|
|
let e = pop(v);
|
|
assert (len(v) == 2u);
|
|
assert (v[0] == 1);
|
|
assert (v[1] == 2);
|
|
assert (e == 3);
|
|
|
|
// Test on-heap pop.
|
|
v = [1, 2, 3, 4, 5];
|
|
e = pop(v);
|
|
assert (len(v) == 4u);
|
|
assert (v[0] == 1);
|
|
assert (v[1] == 2);
|
|
assert (v[2] == 3);
|
|
assert (v[3] == 4);
|
|
assert (e == 5);
|
|
}
|
|
|
|
#[test]
|
|
fn test_push() {
|
|
// Test on-stack push().
|
|
let v = [];
|
|
push(v, 1);
|
|
assert (len(v) == 1u);
|
|
assert (v[0] == 1);
|
|
|
|
// Test on-heap push().
|
|
push(v, 2);
|
|
assert (len(v) == 2u);
|
|
assert (v[0] == 1);
|
|
assert (v[1] == 2);
|
|
}
|
|
|
|
#[test]
|
|
fn test_grow() {
|
|
// Test on-stack grow().
|
|
let v = [];
|
|
grow(v, 2u, 1);
|
|
assert (len(v) == 2u);
|
|
assert (v[0] == 1);
|
|
assert (v[1] == 1);
|
|
|
|
// Test on-heap grow().
|
|
grow(v, 3u, 2);
|
|
assert (len(v) == 5u);
|
|
assert (v[0] == 1);
|
|
assert (v[1] == 1);
|
|
assert (v[2] == 2);
|
|
assert (v[3] == 2);
|
|
assert (v[4] == 2);
|
|
}
|
|
|
|
#[test]
|
|
fn test_grow_fn() {
|
|
let v = [];
|
|
grow_fn(v, 3u, square);
|
|
assert (len(v) == 3u);
|
|
assert (v[0] == 0u);
|
|
assert (v[1] == 1u);
|
|
assert (v[2] == 4u);
|
|
}
|
|
|
|
#[test]
|
|
fn test_grow_set() {
|
|
let v = [mutable 1, 2, 3];
|
|
grow_set(v, 4u, 4, 5);
|
|
assert (len(v) == 5u);
|
|
assert (v[0] == 1);
|
|
assert (v[1] == 2);
|
|
assert (v[2] == 3);
|
|
assert (v[3] == 4);
|
|
assert (v[4] == 5);
|
|
}
|
|
|
|
#[test]
|
|
fn test_map() {
|
|
// Test on-stack map.
|
|
let v = [1u, 2u, 3u];
|
|
let w = map(v, square_ref);
|
|
assert (len(w) == 3u);
|
|
assert (w[0] == 1u);
|
|
assert (w[1] == 4u);
|
|
assert (w[2] == 9u);
|
|
|
|
// Test on-heap map.
|
|
v = [1u, 2u, 3u, 4u, 5u];
|
|
w = map(v, square_ref);
|
|
assert (len(w) == 5u);
|
|
assert (w[0] == 1u);
|
|
assert (w[1] == 4u);
|
|
assert (w[2] == 9u);
|
|
assert (w[3] == 16u);
|
|
assert (w[4] == 25u);
|
|
}
|
|
|
|
#[test]
|
|
fn test_map2() {
|
|
fn times(&&x: int, &&y: int) -> int { ret x * y; }
|
|
let f = times;
|
|
let v0 = [1, 2, 3, 4, 5];
|
|
let v1 = [5, 4, 3, 2, 1];
|
|
let u = map2::<int, int, int>(v0, v1, f);
|
|
let i = 0;
|
|
while i < 5 { assert (v0[i] * v1[i] == u[i]); i += 1; }
|
|
}
|
|
|
|
#[test]
|
|
fn test_filter_map() {
|
|
// Test on-stack filter-map.
|
|
let v = [1u, 2u, 3u];
|
|
let w = filter_map(v, square_if_odd);
|
|
assert (len(w) == 2u);
|
|
assert (w[0] == 1u);
|
|
assert (w[1] == 9u);
|
|
|
|
// Test on-heap filter-map.
|
|
v = [1u, 2u, 3u, 4u, 5u];
|
|
w = filter_map(v, square_if_odd);
|
|
assert (len(w) == 3u);
|
|
assert (w[0] == 1u);
|
|
assert (w[1] == 9u);
|
|
assert (w[2] == 25u);
|
|
|
|
fn halve(&&i: int) -> option<int> {
|
|
if i % 2 == 0 {
|
|
ret option::some::<int>(i / 2);
|
|
} else { ret option::none::<int>; }
|
|
}
|
|
fn halve_for_sure(&&i: int) -> int { ret i / 2; }
|
|
let all_even: [int] = [0, 2, 8, 6];
|
|
let all_odd1: [int] = [1, 7, 3];
|
|
let all_odd2: [int] = [];
|
|
let mix: [int] = [9, 2, 6, 7, 1, 0, 0, 3];
|
|
let mix_dest: [int] = [1, 3, 0, 0];
|
|
assert (filter_map(all_even, halve) == map(all_even, halve_for_sure));
|
|
assert (filter_map(all_odd1, halve) == []);
|
|
assert (filter_map(all_odd2, halve) == []);
|
|
assert (filter_map(mix, halve) == mix_dest);
|
|
}
|
|
|
|
#[test]
|
|
fn test_filter() {
|
|
assert filter([1u, 2u, 3u], is_odd) == [1u, 3u];
|
|
assert filter([1u, 2u, 4u, 8u, 16u], is_three) == [];
|
|
}
|
|
|
|
#[test]
|
|
fn test_foldl() {
|
|
// Test on-stack fold.
|
|
let v = [1u, 2u, 3u];
|
|
let sum = foldl(0u, v, add);
|
|
assert (sum == 6u);
|
|
|
|
// Test on-heap fold.
|
|
v = [1u, 2u, 3u, 4u, 5u];
|
|
sum = foldl(0u, v, add);
|
|
assert (sum == 15u);
|
|
}
|
|
|
|
#[test]
|
|
fn test_foldl2() {
|
|
fn sub(&&a: int, &&b: int) -> int {
|
|
a - b
|
|
}
|
|
let v = [1, 2, 3, 4];
|
|
let sum = foldl(0, v, sub);
|
|
assert sum == -10;
|
|
}
|
|
|
|
#[test]
|
|
fn test_foldr() {
|
|
fn sub(&&a: int, &&b: int) -> int {
|
|
a - b
|
|
}
|
|
let v = [1, 2, 3, 4];
|
|
let sum = foldr(v, 0, sub);
|
|
assert sum == -2;
|
|
}
|
|
|
|
#[test]
|
|
fn test_iter_empty() {
|
|
let i = 0;
|
|
iter::<int>([], { |_v| i += 1 });
|
|
assert i == 0;
|
|
}
|
|
|
|
#[test]
|
|
fn test_iter_nonempty() {
|
|
let i = 0;
|
|
iter([1, 2, 3], { |v| i += v });
|
|
assert i == 6;
|
|
}
|
|
|
|
#[test]
|
|
fn test_iteri() {
|
|
let i = 0;
|
|
iteri([1, 2, 3], { |j, v|
|
|
if i == 0 { assert v == 1; }
|
|
assert j + 1u == v as uint;
|
|
i += v;
|
|
});
|
|
assert i == 6;
|
|
}
|
|
|
|
#[test]
|
|
fn test_riter_empty() {
|
|
let i = 0;
|
|
riter::<int>([], { |_v| i += 1 });
|
|
assert i == 0;
|
|
}
|
|
|
|
#[test]
|
|
fn test_riter_nonempty() {
|
|
let i = 0;
|
|
riter([1, 2, 3], { |v|
|
|
if i == 0 { assert v == 3; }
|
|
i += v
|
|
});
|
|
assert i == 6;
|
|
}
|
|
|
|
#[test]
|
|
fn test_riteri() {
|
|
let i = 0;
|
|
riteri([0, 1, 2], { |j, v|
|
|
if i == 0 { assert v == 2; }
|
|
assert j == v as uint;
|
|
i += v;
|
|
});
|
|
assert i == 3;
|
|
}
|
|
|
|
#[test]
|
|
fn test_permute() {
|
|
let results: [[int]];
|
|
|
|
results = [];
|
|
permute([]) {|v| results += [v]; }
|
|
assert results == [[]];
|
|
|
|
results = [];
|
|
permute([7]) {|v| results += [v]; }
|
|
assert results == [[7]];
|
|
|
|
results = [];
|
|
permute([1,1]) {|v| results += [v]; }
|
|
assert results == [[1,1],[1,1]];
|
|
|
|
results = [];
|
|
permute([5,2,0]) {|v| results += [v]; }
|
|
assert results == [[5,2,0],[5,0,2],[2,5,0],[2,0,5],[0,5,2],[0,2,5]];
|
|
}
|
|
|
|
#[test]
|
|
fn test_any_and_all() {
|
|
assert (any([1u, 2u, 3u], is_three));
|
|
assert (!any([0u, 1u, 2u], is_three));
|
|
assert (any([1u, 2u, 3u, 4u, 5u], is_three));
|
|
assert (!any([1u, 2u, 4u, 5u, 6u], is_three));
|
|
|
|
assert (all([3u, 3u, 3u], is_three));
|
|
assert (!all([3u, 3u, 2u], is_three));
|
|
assert (all([3u, 3u, 3u, 3u, 3u], is_three));
|
|
assert (!all([3u, 3u, 0u, 1u, 2u], is_three));
|
|
}
|
|
|
|
#[test]
|
|
fn test_any2_and_all2() {
|
|
|
|
assert (any2([2u, 4u, 6u], [2u, 4u, 6u], is_equal));
|
|
assert (any2([1u, 2u, 3u], [4u, 5u, 3u], is_equal));
|
|
assert (!any2([1u, 2u, 3u], [4u, 5u, 6u], is_equal));
|
|
assert (any2([2u, 4u, 6u], [2u, 4u], is_equal));
|
|
|
|
assert (all2([2u, 4u, 6u], [2u, 4u, 6u], is_equal));
|
|
assert (!all2([1u, 2u, 3u], [4u, 5u, 3u], is_equal));
|
|
assert (!all2([1u, 2u, 3u], [4u, 5u, 6u], is_equal));
|
|
assert (!all2([2u, 4u, 6u], [2u, 4u], is_equal));
|
|
}
|
|
|
|
#[test]
|
|
fn test_zip_unzip() {
|
|
let v1 = [1, 2, 3];
|
|
let v2 = [4, 5, 6];
|
|
|
|
let z1 = zip(v1, v2);
|
|
|
|
assert ((1, 4) == z1[0]);
|
|
assert ((2, 5) == z1[1]);
|
|
assert ((3, 6) == z1[2]);
|
|
|
|
let (left, right) = unzip(z1);
|
|
|
|
assert ((1, 4) == (left[0], right[0]));
|
|
assert ((2, 5) == (left[1], right[1]));
|
|
assert ((3, 6) == (left[2], right[2]));
|
|
}
|
|
|
|
#[test]
|
|
fn test_position_elt() {
|
|
assert position_elt([], 1) == none;
|
|
|
|
let v1 = [1, 2, 3, 3, 2, 5];
|
|
assert position_elt(v1, 1) == some(0u);
|
|
assert position_elt(v1, 2) == some(1u);
|
|
assert position_elt(v1, 5) == some(5u);
|
|
assert position_elt(v1, 4) == none;
|
|
}
|
|
|
|
#[test]
|
|
fn test_position() {
|
|
fn less_than_three(&&i: int) -> bool { ret i < 3; }
|
|
fn is_eighteen(&&i: int) -> bool { ret i == 18; }
|
|
|
|
assert position([], less_than_three) == none;
|
|
|
|
let v1 = [5, 4, 3, 2, 1];
|
|
assert position(v1, less_than_three) == some(3u);
|
|
assert position(v1, is_eighteen) == none;
|
|
}
|
|
|
|
#[test]
|
|
fn test_position_from() {
|
|
assert position_from([], 0u, 0u, f) == none;
|
|
|
|
fn f(xy: (int, char)) -> bool { let (_x, y) = xy; y == 'b' }
|
|
let v = [(0, 'a'), (1, 'b'), (2, 'c'), (3, 'b')];
|
|
|
|
assert position_from(v, 0u, 0u, f) == none;
|
|
assert position_from(v, 0u, 1u, f) == none;
|
|
assert position_from(v, 0u, 2u, f) == some(1u);
|
|
assert position_from(v, 0u, 3u, f) == some(1u);
|
|
assert position_from(v, 0u, 4u, f) == some(1u);
|
|
|
|
assert position_from(v, 1u, 1u, f) == none;
|
|
assert position_from(v, 1u, 2u, f) == some(1u);
|
|
assert position_from(v, 1u, 3u, f) == some(1u);
|
|
assert position_from(v, 1u, 4u, f) == some(1u);
|
|
|
|
assert position_from(v, 2u, 2u, f) == none;
|
|
assert position_from(v, 2u, 3u, f) == none;
|
|
assert position_from(v, 2u, 4u, f) == some(3u);
|
|
|
|
assert position_from(v, 3u, 3u, f) == none;
|
|
assert position_from(v, 3u, 4u, f) == some(3u);
|
|
|
|
assert position_from(v, 4u, 4u, f) == none;
|
|
}
|
|
|
|
#[test]
|
|
fn test_find() {
|
|
assert find([], f) == none;
|
|
|
|
fn f(xy: (int, char)) -> bool { let (_x, y) = xy; y == 'b' }
|
|
fn g(xy: (int, char)) -> bool { let (_x, y) = xy; y == 'd' }
|
|
let v = [(0, 'a'), (1, 'b'), (2, 'c'), (3, 'b')];
|
|
|
|
assert find(v, f) == some((1, 'b'));
|
|
assert find(v, g) == none;
|
|
}
|
|
|
|
#[test]
|
|
fn test_find_from() {
|
|
assert find_from([], 0u, 0u, f) == none;
|
|
|
|
fn f(xy: (int, char)) -> bool { let (_x, y) = xy; y == 'b' }
|
|
let v = [(0, 'a'), (1, 'b'), (2, 'c'), (3, 'b')];
|
|
|
|
assert find_from(v, 0u, 0u, f) == none;
|
|
assert find_from(v, 0u, 1u, f) == none;
|
|
assert find_from(v, 0u, 2u, f) == some((1, 'b'));
|
|
assert find_from(v, 0u, 3u, f) == some((1, 'b'));
|
|
assert find_from(v, 0u, 4u, f) == some((1, 'b'));
|
|
|
|
assert find_from(v, 1u, 1u, f) == none;
|
|
assert find_from(v, 1u, 2u, f) == some((1, 'b'));
|
|
assert find_from(v, 1u, 3u, f) == some((1, 'b'));
|
|
assert find_from(v, 1u, 4u, f) == some((1, 'b'));
|
|
|
|
assert find_from(v, 2u, 2u, f) == none;
|
|
assert find_from(v, 2u, 3u, f) == none;
|
|
assert find_from(v, 2u, 4u, f) == some((3, 'b'));
|
|
|
|
assert find_from(v, 3u, 3u, f) == none;
|
|
assert find_from(v, 3u, 4u, f) == some((3, 'b'));
|
|
|
|
assert find_from(v, 4u, 4u, f) == none;
|
|
}
|
|
|
|
#[test]
|
|
fn test_rposition() {
|
|
assert find([], f) == none;
|
|
|
|
fn f(xy: (int, char)) -> bool { let (_x, y) = xy; y == 'b' }
|
|
fn g(xy: (int, char)) -> bool { let (_x, y) = xy; y == 'd' }
|
|
let v = [(0, 'a'), (1, 'b'), (2, 'c'), (3, 'b')];
|
|
|
|
assert position(v, f) == some(1u);
|
|
assert position(v, g) == none;
|
|
}
|
|
|
|
#[test]
|
|
fn test_rposition_from() {
|
|
assert rposition_from([], 0u, 0u, f) == none;
|
|
|
|
fn f(xy: (int, char)) -> bool { let (_x, y) = xy; y == 'b' }
|
|
let v = [(0, 'a'), (1, 'b'), (2, 'c'), (3, 'b')];
|
|
|
|
assert rposition_from(v, 0u, 0u, f) == none;
|
|
assert rposition_from(v, 0u, 1u, f) == none;
|
|
assert rposition_from(v, 0u, 2u, f) == some(1u);
|
|
assert rposition_from(v, 0u, 3u, f) == some(1u);
|
|
assert rposition_from(v, 0u, 4u, f) == some(3u);
|
|
|
|
assert rposition_from(v, 1u, 1u, f) == none;
|
|
assert rposition_from(v, 1u, 2u, f) == some(1u);
|
|
assert rposition_from(v, 1u, 3u, f) == some(1u);
|
|
assert rposition_from(v, 1u, 4u, f) == some(3u);
|
|
|
|
assert rposition_from(v, 2u, 2u, f) == none;
|
|
assert rposition_from(v, 2u, 3u, f) == none;
|
|
assert rposition_from(v, 2u, 4u, f) == some(3u);
|
|
|
|
assert rposition_from(v, 3u, 3u, f) == none;
|
|
assert rposition_from(v, 3u, 4u, f) == some(3u);
|
|
|
|
assert rposition_from(v, 4u, 4u, f) == none;
|
|
}
|
|
|
|
#[test]
|
|
fn test_rfind() {
|
|
assert rfind([], f) == none;
|
|
|
|
fn f(xy: (int, char)) -> bool { let (_x, y) = xy; y == 'b' }
|
|
fn g(xy: (int, char)) -> bool { let (_x, y) = xy; y == 'd' }
|
|
let v = [(0, 'a'), (1, 'b'), (2, 'c'), (3, 'b')];
|
|
|
|
assert rfind(v, f) == some((3, 'b'));
|
|
assert rfind(v, g) == none;
|
|
}
|
|
|
|
#[test]
|
|
fn test_rfind_from() {
|
|
assert rfind_from([], 0u, 0u, f) == none;
|
|
|
|
fn f(xy: (int, char)) -> bool { let (_x, y) = xy; y == 'b' }
|
|
let v = [(0, 'a'), (1, 'b'), (2, 'c'), (3, 'b')];
|
|
|
|
assert rfind_from(v, 0u, 0u, f) == none;
|
|
assert rfind_from(v, 0u, 1u, f) == none;
|
|
assert rfind_from(v, 0u, 2u, f) == some((1, 'b'));
|
|
assert rfind_from(v, 0u, 3u, f) == some((1, 'b'));
|
|
assert rfind_from(v, 0u, 4u, f) == some((3, 'b'));
|
|
|
|
assert rfind_from(v, 1u, 1u, f) == none;
|
|
assert rfind_from(v, 1u, 2u, f) == some((1, 'b'));
|
|
assert rfind_from(v, 1u, 3u, f) == some((1, 'b'));
|
|
assert rfind_from(v, 1u, 4u, f) == some((3, 'b'));
|
|
|
|
assert rfind_from(v, 2u, 2u, f) == none;
|
|
assert rfind_from(v, 2u, 3u, f) == none;
|
|
assert rfind_from(v, 2u, 4u, f) == some((3, 'b'));
|
|
|
|
assert rfind_from(v, 3u, 3u, f) == none;
|
|
assert rfind_from(v, 3u, 4u, f) == some((3, 'b'));
|
|
|
|
assert rfind_from(v, 4u, 4u, f) == none;
|
|
}
|
|
|
|
#[test]
|
|
fn reverse_and_reversed() {
|
|
let v: [mutable int] = [mutable 10, 20];
|
|
assert (v[0] == 10);
|
|
assert (v[1] == 20);
|
|
reverse(v);
|
|
assert (v[0] == 20);
|
|
assert (v[1] == 10);
|
|
let v2 = reversed::<int>([10, 20]);
|
|
assert (v2[0] == 20);
|
|
assert (v2[1] == 10);
|
|
v[0] = 30;
|
|
assert (v2[0] == 20);
|
|
// Make sure they work with 0-length vectors too.
|
|
|
|
let v4 = reversed::<int>([]);
|
|
assert (v4 == []);
|
|
let v3: [mutable int] = [mutable];
|
|
reverse::<int>(v3);
|
|
}
|
|
|
|
#[test]
|
|
fn reversed_mut() {
|
|
let v2 = reversed::<int>([mutable 10, 20]);
|
|
assert (v2[0] == 20);
|
|
assert (v2[1] == 10);
|
|
}
|
|
|
|
#[test]
|
|
fn test_init() {
|
|
let v = init([1, 2, 3]);
|
|
assert v == [1, 2];
|
|
}
|
|
|
|
#[test]
|
|
fn test_split() {
|
|
fn f(&&x: int) -> bool { x == 3 }
|
|
|
|
assert split([], f) == [];
|
|
assert split([1, 2], f) == [[1, 2]];
|
|
assert split([3, 1, 2], f) == [[], [1, 2]];
|
|
assert split([1, 2, 3], f) == [[1, 2], []];
|
|
assert split([1, 2, 3, 4, 3, 5], f) == [[1, 2], [4], [5]];
|
|
}
|
|
|
|
#[test]
|
|
fn test_splitn() {
|
|
fn f(&&x: int) -> bool { x == 3 }
|
|
|
|
assert splitn([], 1u, f) == [];
|
|
assert splitn([1, 2], 1u, f) == [[1, 2]];
|
|
assert splitn([3, 1, 2], 1u, f) == [[], [1, 2]];
|
|
assert splitn([1, 2, 3], 1u, f) == [[1, 2], []];
|
|
assert splitn([1, 2, 3, 4, 3, 5], 1u, f) == [[1, 2], [4, 3, 5]];
|
|
}
|
|
|
|
#[test]
|
|
fn test_rsplit() {
|
|
fn f(&&x: int) -> bool { x == 3 }
|
|
|
|
assert rsplit([], f) == [];
|
|
assert rsplit([1, 2], f) == [[1, 2]];
|
|
assert rsplit([1, 2, 3], f) == [[1, 2], []];
|
|
assert rsplit([1, 2, 3, 4, 3, 5], f) == [[1, 2], [4], [5]];
|
|
}
|
|
|
|
#[test]
|
|
fn test_rsplitn() {
|
|
fn f(&&x: int) -> bool { x == 3 }
|
|
|
|
assert rsplitn([], 1u, f) == [];
|
|
assert rsplitn([1, 2], 1u, f) == [[1, 2]];
|
|
assert rsplitn([1, 2, 3], 1u, f) == [[1, 2], []];
|
|
assert rsplitn([1, 2, 3, 4, 3, 5], 1u, f) == [[1, 2, 3, 4], [5]];
|
|
}
|
|
|
|
#[test]
|
|
#[should_fail]
|
|
#[ignore(cfg(target_os = "win32"))]
|
|
fn test_init_empty() {
|
|
init::<int>([]);
|
|
}
|
|
|
|
#[test]
|
|
fn test_concat() {
|
|
assert concat([[1], [2,3]]) == [1, 2, 3];
|
|
}
|
|
|
|
#[test]
|
|
fn test_connect() {
|
|
assert connect([], 0) == [];
|
|
assert connect([[1], [2, 3]], 0) == [1, 0, 2, 3];
|
|
assert connect([[1], [2], [3]], 0) == [1, 0, 2, 0, 3];
|
|
}
|
|
|
|
#[test]
|
|
fn test_windowed () {
|
|
assert [[1u,2u,3u],[2u,3u,4u],[3u,4u,5u],[4u,5u,6u]]
|
|
== windowed (3u, [1u,2u,3u,4u,5u,6u]);
|
|
|
|
assert [[1u,2u,3u,4u],[2u,3u,4u,5u],[3u,4u,5u,6u]]
|
|
== windowed (4u, [1u,2u,3u,4u,5u,6u]);
|
|
|
|
assert [] == windowed (7u, [1u,2u,3u,4u,5u,6u]);
|
|
}
|
|
|
|
#[test]
|
|
#[should_fail]
|
|
#[ignore(cfg(target_os = "win32"))]
|
|
fn test_windowed_() {
|
|
let _x = windowed (0u, [1u,2u,3u,4u,5u,6u]);
|
|
}
|
|
}
|
|
|
|
// Local Variables:
|
|
// mode: rust;
|
|
// fill-column: 78;
|
|
// indent-tabs-mode: nil
|
|
// c-basic-offset: 4
|
|
// buffer-file-coding-system: utf-8-unix
|
|
// End:
|