Steve Klabnik f38e4e6d97 /** -> ///
This is considered good convention.
2014-11-25 21:24:16 -05:00

6084 lines
208 KiB
Rust

// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
#![allow(non_camel_case_types)]
pub use self::terr_vstore_kind::*;
pub use self::type_err::*;
pub use self::BuiltinBound::*;
pub use self::InferTy::*;
pub use self::InferRegion::*;
pub use self::ImplOrTraitItemId::*;
pub use self::UnboxedClosureKind::*;
pub use self::TraitStore::*;
pub use self::ast_ty_to_ty_cache_entry::*;
pub use self::Variance::*;
pub use self::AutoAdjustment::*;
pub use self::Representability::*;
pub use self::UnsizeKind::*;
pub use self::AutoRef::*;
pub use self::ExprKind::*;
pub use self::DtorKind::*;
pub use self::ExplicitSelfCategory::*;
pub use self::FnOutput::*;
pub use self::Region::*;
pub use self::ImplOrTraitItemContainer::*;
pub use self::BorrowKind::*;
pub use self::ImplOrTraitItem::*;
pub use self::BoundRegion::*;
pub use self::sty::*;
pub use self::IntVarValue::*;
use back::svh::Svh;
use session::Session;
use lint;
use metadata::csearch;
use middle::const_eval;
use middle::def;
use middle::dependency_format;
use middle::lang_items::{FnTraitLangItem, FnMutTraitLangItem};
use middle::lang_items::{FnOnceTraitLangItem, TyDescStructLangItem};
use middle::mem_categorization as mc;
use middle::region;
use middle::resolve;
use middle::resolve_lifetime;
use middle::stability;
use middle::subst::{mod, Subst, Substs, VecPerParamSpace};
use middle::traits;
use middle::ty;
use middle::typeck;
use middle::ty_fold::{mod, TypeFoldable, TypeFolder, HigherRankedFoldable};
use middle;
use util::ppaux::{note_and_explain_region, bound_region_ptr_to_string};
use util::ppaux::{trait_store_to_string, ty_to_string};
use util::ppaux::{Repr, UserString};
use util::common::{indenter, memoized};
use util::nodemap::{NodeMap, NodeSet, DefIdMap, DefIdSet};
use util::nodemap::{FnvHashMap, FnvHashSet};
use std::borrow::BorrowFrom;
use std::cell::{Cell, RefCell};
use std::cmp;
use std::fmt::{mod, Show};
use std::hash::{Hash, sip, Writer};
use std::mem;
use std::ops;
use std::rc::Rc;
use std::collections::hash_map::{Occupied, Vacant};
use arena::TypedArena;
use syntax::abi;
use syntax::ast::{CrateNum, DefId, FnStyle, Ident, ItemTrait, LOCAL_CRATE};
use syntax::ast::{MutImmutable, MutMutable, Name, NamedField, NodeId};
use syntax::ast::{Onceness, StmtExpr, StmtSemi, StructField, UnnamedField};
use syntax::ast::{Visibility};
use syntax::ast_util::{mod, is_local, lit_is_str, local_def, PostExpansionMethod};
use syntax::attr::{mod, AttrMetaMethods};
use syntax::codemap::Span;
use syntax::parse::token::{mod, InternedString};
use syntax::{ast, ast_map};
use std::collections::enum_set::{EnumSet, CLike};
pub type Disr = u64;
pub const INITIAL_DISCRIMINANT_VALUE: Disr = 0;
// Data types
#[deriving(PartialEq, Eq, Hash)]
pub struct field<'tcx> {
pub name: ast::Name,
pub mt: mt<'tcx>
}
#[deriving(Clone, Show)]
pub enum ImplOrTraitItemContainer {
TraitContainer(ast::DefId),
ImplContainer(ast::DefId),
}
impl ImplOrTraitItemContainer {
pub fn id(&self) -> ast::DefId {
match *self {
TraitContainer(id) => id,
ImplContainer(id) => id,
}
}
}
#[deriving(Clone)]
pub enum ImplOrTraitItem<'tcx> {
MethodTraitItem(Rc<Method<'tcx>>),
TypeTraitItem(Rc<AssociatedType>),
}
impl<'tcx> ImplOrTraitItem<'tcx> {
fn id(&self) -> ImplOrTraitItemId {
match *self {
MethodTraitItem(ref method) => MethodTraitItemId(method.def_id),
TypeTraitItem(ref associated_type) => {
TypeTraitItemId(associated_type.def_id)
}
}
}
pub fn def_id(&self) -> ast::DefId {
match *self {
MethodTraitItem(ref method) => method.def_id,
TypeTraitItem(ref associated_type) => associated_type.def_id,
}
}
pub fn name(&self) -> ast::Name {
match *self {
MethodTraitItem(ref method) => method.name,
TypeTraitItem(ref associated_type) => associated_type.name,
}
}
pub fn container(&self) -> ImplOrTraitItemContainer {
match *self {
MethodTraitItem(ref method) => method.container,
TypeTraitItem(ref associated_type) => associated_type.container,
}
}
pub fn as_opt_method(&self) -> Option<Rc<Method<'tcx>>> {
match *self {
MethodTraitItem(ref m) => Some((*m).clone()),
TypeTraitItem(_) => None
}
}
}
#[deriving(Clone)]
pub enum ImplOrTraitItemId {
MethodTraitItemId(ast::DefId),
TypeTraitItemId(ast::DefId),
}
impl ImplOrTraitItemId {
pub fn def_id(&self) -> ast::DefId {
match *self {
MethodTraitItemId(def_id) => def_id,
TypeTraitItemId(def_id) => def_id,
}
}
}
#[deriving(Clone, Show)]
pub struct Method<'tcx> {
pub name: ast::Name,
pub generics: ty::Generics<'tcx>,
pub fty: BareFnTy<'tcx>,
pub explicit_self: ExplicitSelfCategory,
pub vis: ast::Visibility,
pub def_id: ast::DefId,
pub container: ImplOrTraitItemContainer,
// If this method is provided, we need to know where it came from
pub provided_source: Option<ast::DefId>
}
impl<'tcx> Method<'tcx> {
pub fn new(name: ast::Name,
generics: ty::Generics<'tcx>,
fty: BareFnTy<'tcx>,
explicit_self: ExplicitSelfCategory,
vis: ast::Visibility,
def_id: ast::DefId,
container: ImplOrTraitItemContainer,
provided_source: Option<ast::DefId>)
-> Method<'tcx> {
Method {
name: name,
generics: generics,
fty: fty,
explicit_self: explicit_self,
vis: vis,
def_id: def_id,
container: container,
provided_source: provided_source
}
}
pub fn container_id(&self) -> ast::DefId {
match self.container {
TraitContainer(id) => id,
ImplContainer(id) => id,
}
}
}
#[deriving(Clone)]
pub struct AssociatedType {
pub name: ast::Name,
pub vis: ast::Visibility,
pub def_id: ast::DefId,
pub container: ImplOrTraitItemContainer,
}
#[deriving(Clone, PartialEq, Eq, Hash, Show)]
pub struct mt<'tcx> {
pub ty: Ty<'tcx>,
pub mutbl: ast::Mutability,
}
#[deriving(Clone, PartialEq, Eq, Hash, Encodable, Decodable, Show)]
pub enum TraitStore {
/// Box<Trait>
UniqTraitStore,
/// &Trait and &mut Trait
RegionTraitStore(Region, ast::Mutability),
}
#[deriving(Clone, Show)]
pub struct field_ty {
pub name: Name,
pub id: DefId,
pub vis: ast::Visibility,
pub origin: ast::DefId, // The DefId of the struct in which the field is declared.
}
// Contains information needed to resolve types and (in the future) look up
// the types of AST nodes.
#[deriving(PartialEq, Eq, Hash)]
pub struct creader_cache_key {
pub cnum: CrateNum,
pub pos: uint,
pub len: uint
}
pub enum ast_ty_to_ty_cache_entry<'tcx> {
atttce_unresolved, /* not resolved yet */
atttce_resolved(Ty<'tcx>) /* resolved to a type, irrespective of region */
}
#[deriving(Clone, PartialEq, Decodable, Encodable)]
pub struct ItemVariances {
pub types: VecPerParamSpace<Variance>,
pub regions: VecPerParamSpace<Variance>,
}
#[deriving(Clone, PartialEq, Decodable, Encodable, Show)]
pub enum Variance {
Covariant, // T<A> <: T<B> iff A <: B -- e.g., function return type
Invariant, // T<A> <: T<B> iff B == A -- e.g., type of mutable cell
Contravariant, // T<A> <: T<B> iff B <: A -- e.g., function param type
Bivariant, // T<A> <: T<B> -- e.g., unused type parameter
}
#[deriving(Clone, Show)]
pub enum AutoAdjustment<'tcx> {
AdjustAddEnv(ty::TraitStore),
AdjustDerefRef(AutoDerefRef<'tcx>)
}
#[deriving(Clone, PartialEq, Show)]
pub enum UnsizeKind<'tcx> {
// [T, ..n] -> [T], the uint field is n.
UnsizeLength(uint),
// An unsize coercion applied to the tail field of a struct.
// The uint is the index of the type parameter which is unsized.
UnsizeStruct(Box<UnsizeKind<'tcx>>, uint),
UnsizeVtable(TyTrait<'tcx>, /* the self type of the trait */ Ty<'tcx>)
}
#[deriving(Clone, Show)]
pub struct AutoDerefRef<'tcx> {
pub autoderefs: uint,
pub autoref: Option<AutoRef<'tcx>>
}
#[deriving(Clone, PartialEq, Show)]
pub enum AutoRef<'tcx> {
/// Convert from T to &T
/// The third field allows us to wrap other AutoRef adjustments.
AutoPtr(Region, ast::Mutability, Option<Box<AutoRef<'tcx>>>),
/// Convert [T, ..n] to [T] (or similar, depending on the kind)
AutoUnsize(UnsizeKind<'tcx>),
/// Convert Box<[T, ..n]> to Box<[T]> or something similar in a Box.
/// With DST and Box a library type, this should be replaced by UnsizeStruct.
AutoUnsizeUniq(UnsizeKind<'tcx>),
/// Convert from T to *T
/// Value to thin pointer
/// The second field allows us to wrap other AutoRef adjustments.
AutoUnsafe(ast::Mutability, Option<Box<AutoRef<'tcx>>>),
}
// Ugly little helper function. The first bool in the returned tuple is true if
// there is an 'unsize to trait object' adjustment at the bottom of the
// adjustment. If that is surrounded by an AutoPtr, then we also return the
// region of the AutoPtr (in the third argument). The second bool is true if the
// adjustment is unique.
fn autoref_object_region(autoref: &AutoRef) -> (bool, bool, Option<Region>) {
fn unsize_kind_is_object(k: &UnsizeKind) -> bool {
match k {
&UnsizeVtable(..) => true,
&UnsizeStruct(box ref k, _) => unsize_kind_is_object(k),
_ => false
}
}
match autoref {
&AutoUnsize(ref k) => (unsize_kind_is_object(k), false, None),
&AutoUnsizeUniq(ref k) => (unsize_kind_is_object(k), true, None),
&AutoPtr(adj_r, _, Some(box ref autoref)) => {
let (b, u, r) = autoref_object_region(autoref);
if r.is_some() || u {
(b, u, r)
} else {
(b, u, Some(adj_r))
}
}
&AutoUnsafe(_, Some(box ref autoref)) => autoref_object_region(autoref),
_ => (false, false, None)
}
}
// If the adjustment introduces a borrowed reference to a trait object, then
// returns the region of the borrowed reference.
pub fn adjusted_object_region(adj: &AutoAdjustment) -> Option<Region> {
match adj {
&AdjustDerefRef(AutoDerefRef{autoref: Some(ref autoref), ..}) => {
let (b, _, r) = autoref_object_region(autoref);
if b {
r
} else {
None
}
}
_ => None
}
}
// Returns true if there is a trait cast at the bottom of the adjustment.
pub fn adjust_is_object(adj: &AutoAdjustment) -> bool {
match adj {
&AdjustDerefRef(AutoDerefRef{autoref: Some(ref autoref), ..}) => {
let (b, _, _) = autoref_object_region(autoref);
b
}
_ => false
}
}
// If possible, returns the type expected from the given adjustment. This is not
// possible if the adjustment depends on the type of the adjusted expression.
pub fn type_of_adjust<'tcx>(cx: &ctxt<'tcx>, adj: &AutoAdjustment<'tcx>) -> Option<Ty<'tcx>> {
fn type_of_autoref<'tcx>(cx: &ctxt<'tcx>, autoref: &AutoRef<'tcx>) -> Option<Ty<'tcx>> {
match autoref {
&AutoUnsize(ref k) => match k {
&UnsizeVtable(TyTrait { ref principal, bounds }, _) => {
Some(mk_trait(cx, (*principal).clone(), bounds))
}
_ => None
},
&AutoUnsizeUniq(ref k) => match k {
&UnsizeVtable(TyTrait { ref principal, bounds }, _) => {
Some(mk_uniq(cx, mk_trait(cx, (*principal).clone(), bounds)))
}
_ => None
},
&AutoPtr(r, m, Some(box ref autoref)) => {
match type_of_autoref(cx, autoref) {
Some(ty) => Some(mk_rptr(cx, r, mt {mutbl: m, ty: ty})),
None => None
}
}
&AutoUnsafe(m, Some(box ref autoref)) => {
match type_of_autoref(cx, autoref) {
Some(ty) => Some(mk_ptr(cx, mt {mutbl: m, ty: ty})),
None => None
}
}
_ => None
}
}
match adj {
&AdjustDerefRef(AutoDerefRef{autoref: Some(ref autoref), ..}) => {
type_of_autoref(cx, autoref)
}
_ => None
}
}
/// A restriction that certain types must be the same size. The use of
/// `transmute` gives rise to these restrictions.
pub struct TransmuteRestriction<'tcx> {
/// The span from whence the restriction comes.
pub span: Span,
/// The type being transmuted from.
pub from: Ty<'tcx>,
/// The type being transmuted to.
pub to: Ty<'tcx>,
/// NodeIf of the transmute intrinsic.
pub id: ast::NodeId,
}
/// The data structure to keep track of all the information that typechecker
/// generates so that so that it can be reused and doesn't have to be redone
/// later on.
pub struct ctxt<'tcx> {
/// The arena that types are allocated from.
type_arena: &'tcx TypedArena<TyS<'tcx>>,
/// Specifically use a speedy hash algorithm for this hash map, it's used
/// quite often.
// FIXME(eddyb) use a FnvHashSet<InternedTy<'tcx>> when equivalent keys can
// queried from a HashSet.
interner: RefCell<FnvHashMap<InternedTy<'tcx>, Ty<'tcx>>>,
pub sess: Session,
pub def_map: resolve::DefMap,
pub named_region_map: resolve_lifetime::NamedRegionMap,
pub region_maps: middle::region::RegionMaps,
/// Stores the types for various nodes in the AST. Note that this table
/// is not guaranteed to be populated until after typeck. See
/// typeck::check::fn_ctxt for details.
pub node_types: RefCell<NodeMap<Ty<'tcx>>>,
/// Stores the type parameters which were substituted to obtain the type
/// of this node. This only applies to nodes that refer to entities
/// parameterized by type parameters, such as generic fns, types, or
/// other items.
pub item_substs: RefCell<NodeMap<ItemSubsts<'tcx>>>,
/// Maps from a trait item to the trait item "descriptor"
pub impl_or_trait_items: RefCell<DefIdMap<ImplOrTraitItem<'tcx>>>,
/// Maps from a trait def-id to a list of the def-ids of its trait items
pub trait_item_def_ids: RefCell<DefIdMap<Rc<Vec<ImplOrTraitItemId>>>>,
/// A cache for the trait_items() routine
pub trait_items_cache: RefCell<DefIdMap<Rc<Vec<ImplOrTraitItem<'tcx>>>>>,
pub impl_trait_cache: RefCell<DefIdMap<Option<Rc<ty::TraitRef<'tcx>>>>>,
pub trait_refs: RefCell<NodeMap<Rc<TraitRef<'tcx>>>>,
pub trait_defs: RefCell<DefIdMap<Rc<TraitDef<'tcx>>>>,
/// Maps from node-id of a trait object cast (like `foo as
/// Box<Trait>`) to the trait reference.
pub object_cast_map: typeck::ObjectCastMap<'tcx>,
pub map: ast_map::Map<'tcx>,
pub intrinsic_defs: RefCell<DefIdMap<Ty<'tcx>>>,
pub freevars: RefCell<FreevarMap>,
pub tcache: RefCell<DefIdMap<Polytype<'tcx>>>,
pub rcache: RefCell<FnvHashMap<creader_cache_key, Ty<'tcx>>>,
pub short_names_cache: RefCell<FnvHashMap<Ty<'tcx>, String>>,
pub needs_unwind_cleanup_cache: RefCell<FnvHashMap<Ty<'tcx>, bool>>,
pub tc_cache: RefCell<FnvHashMap<Ty<'tcx>, TypeContents>>,
pub ast_ty_to_ty_cache: RefCell<NodeMap<ast_ty_to_ty_cache_entry<'tcx>>>,
pub enum_var_cache: RefCell<DefIdMap<Rc<Vec<Rc<VariantInfo<'tcx>>>>>>,
pub ty_param_defs: RefCell<NodeMap<TypeParameterDef<'tcx>>>,
pub adjustments: RefCell<NodeMap<AutoAdjustment<'tcx>>>,
pub normalized_cache: RefCell<FnvHashMap<Ty<'tcx>, Ty<'tcx>>>,
pub lang_items: middle::lang_items::LanguageItems,
/// A mapping of fake provided method def_ids to the default implementation
pub provided_method_sources: RefCell<DefIdMap<ast::DefId>>,
pub struct_fields: RefCell<DefIdMap<Rc<Vec<field_ty>>>>,
/// Maps from def-id of a type or region parameter to its
/// (inferred) variance.
pub item_variance_map: RefCell<DefIdMap<Rc<ItemVariances>>>,
/// True if the variance has been computed yet; false otherwise.
pub variance_computed: Cell<bool>,
/// A mapping from the def ID of an enum or struct type to the def ID
/// of the method that implements its destructor. If the type is not
/// present in this map, it does not have a destructor. This map is
/// populated during the coherence phase of typechecking.
pub destructor_for_type: RefCell<DefIdMap<ast::DefId>>,
/// A method will be in this list if and only if it is a destructor.
pub destructors: RefCell<DefIdSet>,
/// Maps a trait onto a list of impls of that trait.
pub trait_impls: RefCell<DefIdMap<Rc<RefCell<Vec<ast::DefId>>>>>,
/// Maps a DefId of a type to a list of its inherent impls.
/// Contains implementations of methods that are inherent to a type.
/// Methods in these implementations don't need to be exported.
pub inherent_impls: RefCell<DefIdMap<Rc<Vec<ast::DefId>>>>,
/// Maps a DefId of an impl to a list of its items.
/// Note that this contains all of the impls that we know about,
/// including ones in other crates. It's not clear that this is the best
/// way to do it.
pub impl_items: RefCell<DefIdMap<Vec<ImplOrTraitItemId>>>,
/// Set of used unsafe nodes (functions or blocks). Unsafe nodes not
/// present in this set can be warned about.
pub used_unsafe: RefCell<NodeSet>,
/// Set of nodes which mark locals as mutable which end up getting used at
/// some point. Local variable definitions not in this set can be warned
/// about.
pub used_mut_nodes: RefCell<NodeSet>,
/// The set of external nominal types whose implementations have been read.
/// This is used for lazy resolution of methods.
pub populated_external_types: RefCell<DefIdSet>,
/// The set of external traits whose implementations have been read. This
/// is used for lazy resolution of traits.
pub populated_external_traits: RefCell<DefIdSet>,
/// Borrows
pub upvar_borrow_map: RefCell<UpvarBorrowMap>,
/// These two caches are used by const_eval when decoding external statics
/// and variants that are found.
pub extern_const_statics: RefCell<DefIdMap<ast::NodeId>>,
pub extern_const_variants: RefCell<DefIdMap<ast::NodeId>>,
pub method_map: typeck::MethodMap<'tcx>,
pub dependency_formats: RefCell<dependency_format::Dependencies>,
/// Records the type of each unboxed closure. The def ID is the ID of the
/// expression defining the unboxed closure.
pub unboxed_closures: RefCell<DefIdMap<UnboxedClosure<'tcx>>>,
pub node_lint_levels: RefCell<FnvHashMap<(ast::NodeId, lint::LintId),
lint::LevelSource>>,
/// The types that must be asserted to be the same size for `transmute`
/// to be valid. We gather up these restrictions in the intrinsicck pass
/// and check them in trans.
pub transmute_restrictions: RefCell<Vec<TransmuteRestriction<'tcx>>>,
/// Maps any item's def-id to its stability index.
pub stability: RefCell<stability::Index>,
/// Maps closures to their capture clauses.
pub capture_modes: RefCell<CaptureModeMap>,
/// Maps def IDs to true if and only if they're associated types.
pub associated_types: RefCell<DefIdMap<bool>>,
/// Caches the results of trait selection. This cache is used
/// for things that do not have to do with the parameters in scope.
pub selection_cache: traits::SelectionCache<'tcx>,
/// Caches the representation hints for struct definitions.
pub repr_hint_cache: RefCell<DefIdMap<Rc<Vec<attr::ReprAttr>>>>,
}
// Flags that we track on types. These flags are propagated upwards
// through the type during type construction, so that we can quickly
// check whether the type has various kinds of types in it without
// recursing over the type itself.
bitflags! {
flags TypeFlags: u32 {
const NO_TYPE_FLAGS = 0b0,
const HAS_PARAMS = 0b1,
const HAS_SELF = 0b10,
const HAS_TY_INFER = 0b100,
const HAS_RE_INFER = 0b1000,
const HAS_RE_LATE_BOUND = 0b10000,
const HAS_REGIONS = 0b100000,
const HAS_TY_ERR = 0b1000000,
const NEEDS_SUBST = HAS_PARAMS.bits | HAS_SELF.bits | HAS_REGIONS.bits,
}
}
#[deriving(Show)]
pub struct TyS<'tcx> {
pub sty: sty<'tcx>,
pub flags: TypeFlags,
// the maximal depth of any bound regions appearing in this type.
region_depth: uint,
}
impl fmt::Show for TypeFlags {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "{}", self.bits)
}
}
impl<'tcx> PartialEq for TyS<'tcx> {
fn eq(&self, other: &TyS<'tcx>) -> bool {
(self as *const _) == (other as *const _)
}
}
impl<'tcx> Eq for TyS<'tcx> {}
impl<'tcx, S: Writer> Hash<S> for TyS<'tcx> {
fn hash(&self, s: &mut S) {
(self as *const _).hash(s)
}
}
pub type Ty<'tcx> = &'tcx TyS<'tcx>;
/// An entry in the type interner.
pub struct InternedTy<'tcx> {
ty: Ty<'tcx>
}
// NB: An InternedTy compares and hashes as a sty.
impl<'tcx> PartialEq for InternedTy<'tcx> {
fn eq(&self, other: &InternedTy<'tcx>) -> bool {
self.ty.sty == other.ty.sty
}
}
impl<'tcx> Eq for InternedTy<'tcx> {}
impl<'tcx, S: Writer> Hash<S> for InternedTy<'tcx> {
fn hash(&self, s: &mut S) {
self.ty.sty.hash(s)
}
}
impl<'tcx> BorrowFrom<InternedTy<'tcx>> for sty<'tcx> {
fn borrow_from<'a>(ty: &'a InternedTy<'tcx>) -> &'a sty<'tcx> {
&ty.ty.sty
}
}
pub fn type_has_params(ty: Ty) -> bool {
ty.flags.intersects(HAS_PARAMS)
}
pub fn type_has_self(ty: Ty) -> bool {
ty.flags.intersects(HAS_SELF)
}
pub fn type_has_ty_infer(ty: Ty) -> bool {
ty.flags.intersects(HAS_TY_INFER)
}
pub fn type_needs_infer(ty: Ty) -> bool {
ty.flags.intersects(HAS_TY_INFER | HAS_RE_INFER)
}
pub fn type_has_late_bound_regions(ty: Ty) -> bool {
ty.flags.intersects(HAS_RE_LATE_BOUND)
}
pub fn type_has_escaping_regions(ty: Ty) -> bool {
/*!
* An "escaping region" is a bound region whose binder is not part of `t`.
*
* So, for example, consider a type like the following, which has two
* binders:
*
* for<'a> fn(x: for<'b> fn(&'a int, &'b int))
* ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ outer scope
* ^~~~~~~~~~~~~~~~~~~~~~~~~~~~ inner scope
*
* This type has *bound regions* (`'a`, `'b`), but it does not
* have escaping regions, because the binders of both `'a` and
* `'b` are part of the type itself. However, if we consider the
* *inner fn type*, that type has an escaping region: `'a`.
*
* Note that what I'm calling an "escaping region" is often just
* called a "free region". However, we already use the term "free
* region". It refers to the regions that we use to represent
* bound regions on a fn definition while we are typechecking its
* body.
*
* To clarify, conceptually there is no particular difference
* between an "escaping" region and a "free" region. However,
* there is a big difference in practice. Basically, when
* "entering" a binding level, one is generally required to do
* some sort of processing to a bound region, such as replacing it
* with a fresh/skolemized region, or making an entry in the
* environment to represent the scope to which it is attached,
* etc. An escaping region represents a bound region for which
* this processing has not yet been done.
*/
type_escapes_depth(ty, 0)
}
pub fn type_escapes_depth(ty: Ty, depth: uint) -> bool {
ty.region_depth > depth
}
#[deriving(Clone, PartialEq, Eq, Hash, Show)]
pub struct BareFnTy<'tcx> {
pub fn_style: ast::FnStyle,
pub abi: abi::Abi,
pub sig: FnSig<'tcx>,
}
#[deriving(Clone, PartialEq, Eq, Hash, Show)]
pub struct ClosureTy<'tcx> {
pub fn_style: ast::FnStyle,
pub onceness: ast::Onceness,
pub store: TraitStore,
pub bounds: ExistentialBounds,
pub sig: FnSig<'tcx>,
pub abi: abi::Abi,
}
#[deriving(Clone, PartialEq, Eq, Hash)]
pub enum FnOutput<'tcx> {
FnConverging(Ty<'tcx>),
FnDiverging
}
impl<'tcx> FnOutput<'tcx> {
pub fn unwrap(self) -> Ty<'tcx> {
match self {
ty::FnConverging(t) => t,
ty::FnDiverging => unreachable!()
}
}
}
/// Signature of a function type, which I have arbitrarily
/// decided to use to refer to the input/output types.
///
/// - `inputs` is the list of arguments and their modes.
/// - `output` is the return type.
/// - `variadic` indicates whether this is a varidic function. (only true for foreign fns)
///
/// Note that a `FnSig` introduces a level of region binding, to
/// account for late-bound parameters that appear in the types of the
/// fn's arguments or the fn's return type.
#[deriving(Clone, PartialEq, Eq, Hash)]
pub struct FnSig<'tcx> {
pub inputs: Vec<Ty<'tcx>>,
pub output: FnOutput<'tcx>,
pub variadic: bool
}
#[deriving(Clone, PartialEq, Eq, Hash, Show)]
pub struct ParamTy {
pub space: subst::ParamSpace,
pub idx: uint,
pub def_id: DefId
}
/// A [De Bruijn index][dbi] is a standard means of representing
/// regions (and perhaps later types) in a higher-ranked setting. In
/// particular, imagine a type like this:
///
/// for<'a> fn(for<'b> fn(&'b int, &'a int), &'a char)
/// ^ ^ | | |
/// | | | | |
/// | +------------+ 1 | |
/// | | |
/// +--------------------------------+ 2 |
/// | |
/// +------------------------------------------+ 1
///
/// In this type, there are two binders (the outer fn and the inner
/// fn). We need to be able to determine, for any given region, which
/// fn type it is bound by, the inner or the outer one. There are
/// various ways you can do this, but a De Bruijn index is one of the
/// more convenient and has some nice properties. The basic idea is to
/// count the number of binders, inside out. Some examples should help
/// clarify what I mean.
///
/// Let's start with the reference type `&'b int` that is the first
/// argument to the inner function. This region `'b` is assigned a De
/// Bruijn index of 1, meaning "the innermost binder" (in this case, a
/// fn). The region `'a` that appears in the second argument type (`&'a
/// int`) would then be assigned a De Bruijn index of 2, meaning "the
/// second-innermost binder". (These indices are written on the arrays
/// in the diagram).
///
/// What is interesting is that De Bruijn index attached to a particular
/// variable will vary depending on where it appears. For example,
/// the final type `&'a char` also refers to the region `'a` declared on
/// the outermost fn. But this time, this reference is not nested within
/// any other binders (i.e., it is not an argument to the inner fn, but
/// rather the outer one). Therefore, in this case, it is assigned a
/// De Bruijn index of 1, because the innermost binder in that location
/// is the outer fn.
///
/// [dbi]: http://en.wikipedia.org/wiki/De_Bruijn_index
#[deriving(Clone, PartialEq, Eq, Hash, Encodable, Decodable, Show)]
pub struct DebruijnIndex {
// We maintain the invariant that this is never 0. So 1 indicates
// the innermost binder. To ensure this, create with `DebruijnIndex::new`.
pub depth: uint,
}
/// Representation of regions:
#[deriving(Clone, PartialEq, Eq, Hash, Encodable, Decodable, Show)]
pub enum Region {
// Region bound in a type or fn declaration which will be
// substituted 'early' -- that is, at the same time when type
// parameters are substituted.
ReEarlyBound(/* param id */ ast::NodeId,
subst::ParamSpace,
/*index*/ uint,
ast::Name),
// Region bound in a function scope, which will be substituted when the
// function is called.
ReLateBound(DebruijnIndex, BoundRegion),
/// When checking a function body, the types of all arguments and so forth
/// that refer to bound region parameters are modified to refer to free
/// region parameters.
ReFree(FreeRegion),
/// A concrete region naming some expression within the current function.
ReScope(region::CodeExtent),
/// Static data that has an "infinite" lifetime. Top in the region lattice.
ReStatic,
/// A region variable. Should not exist after typeck.
ReInfer(InferRegion),
/// Empty lifetime is for data that is never accessed.
/// Bottom in the region lattice. We treat ReEmpty somewhat
/// specially; at least right now, we do not generate instances of
/// it during the GLB computations, but rather
/// generate an error instead. This is to improve error messages.
/// The only way to get an instance of ReEmpty is to have a region
/// variable with no constraints.
ReEmpty,
}
/// Upvars do not get their own node-id. Instead, we use the pair of
/// the original var id (that is, the root variable that is referenced
/// by the upvar) and the id of the closure expression.
#[deriving(Clone, PartialEq, Eq, Hash, Show)]
pub struct UpvarId {
pub var_id: ast::NodeId,
pub closure_expr_id: ast::NodeId,
}
#[deriving(Clone, PartialEq, Eq, Hash, Show, Encodable, Decodable)]
pub enum BorrowKind {
/// Data must be immutable and is aliasable.
ImmBorrow,
/// Data must be immutable but not aliasable. This kind of borrow
/// cannot currently be expressed by the user and is used only in
/// implicit closure bindings. It is needed when you the closure
/// is borrowing or mutating a mutable referent, e.g.:
///
/// let x: &mut int = ...;
/// let y = || *x += 5;
///
/// If we were to try to translate this closure into a more explicit
/// form, we'd encounter an error with the code as written:
///
/// struct Env { x: & &mut int }
/// let x: &mut int = ...;
/// let y = (&mut Env { &x }, fn_ptr); // Closure is pair of env and fn
/// fn fn_ptr(env: &mut Env) { **env.x += 5; }
///
/// This is then illegal because you cannot mutate a `&mut` found
/// in an aliasable location. To solve, you'd have to translate with
/// an `&mut` borrow:
///
/// struct Env { x: & &mut int }
/// let x: &mut int = ...;
/// let y = (&mut Env { &mut x }, fn_ptr); // changed from &x to &mut x
/// fn fn_ptr(env: &mut Env) { **env.x += 5; }
///
/// Now the assignment to `**env.x` is legal, but creating a
/// mutable pointer to `x` is not because `x` is not mutable. We
/// could fix this by declaring `x` as `let mut x`. This is ok in
/// user code, if awkward, but extra weird for closures, since the
/// borrow is hidden.
///
/// So we introduce a "unique imm" borrow -- the referent is
/// immutable, but not aliasable. This solves the problem. For
/// simplicity, we don't give users the way to express this
/// borrow, it's just used when translating closures.
UniqueImmBorrow,
/// Data is mutable and not aliasable.
MutBorrow
}
/// Information describing the borrowing of an upvar. This is computed
/// during `typeck`, specifically by `regionck`. The general idea is
/// that the compiler analyses treat closures like:
///
/// let closure: &'e fn() = || {
/// x = 1; // upvar x is assigned to
/// use(y); // upvar y is read
/// foo(&z); // upvar z is borrowed immutably
/// };
///
/// as if they were "desugared" to something loosely like:
///
/// struct Vars<'x,'y,'z> { x: &'x mut int,
/// y: &'y const int,
/// z: &'z int }
/// let closure: &'e fn() = {
/// fn f(env: &Vars) {
/// *env.x = 1;
/// use(*env.y);
/// foo(env.z);
/// }
/// let env: &'e mut Vars<'x,'y,'z> = &mut Vars { x: &'x mut x,
/// y: &'y const y,
/// z: &'z z };
/// (env, f)
/// };
///
/// This is basically what happens at runtime. The closure is basically
/// an existentially quantified version of the `(env, f)` pair.
///
/// This data structure indicates the region and mutability of a single
/// one of the `x...z` borrows.
///
/// It may not be obvious why each borrowed variable gets its own
/// lifetime (in the desugared version of the example, these are indicated
/// by the lifetime parameters `'x`, `'y`, and `'z` in the `Vars` definition).
/// Each such lifetime must encompass the lifetime `'e` of the closure itself,
/// but need not be identical to it. The reason that this makes sense:
///
/// - Callers are only permitted to invoke the closure, and hence to
/// use the pointers, within the lifetime `'e`, so clearly `'e` must
/// be a sublifetime of `'x...'z`.
/// - The closure creator knows which upvars were borrowed by the closure
/// and thus `x...z` will be reserved for `'x...'z` respectively.
/// - Through mutation, the borrowed upvars can actually escape
/// the closure, so sometimes it is necessary for them to be larger
/// than the closure lifetime itself.
#[deriving(PartialEq, Clone, Encodable, Decodable, Show)]
pub struct UpvarBorrow {
pub kind: BorrowKind,
pub region: ty::Region,
}
pub type UpvarBorrowMap = FnvHashMap<UpvarId, UpvarBorrow>;
impl Region {
pub fn is_bound(&self) -> bool {
match *self {
ty::ReEarlyBound(..) => true,
ty::ReLateBound(..) => true,
_ => false
}
}
pub fn escapes_depth(&self, depth: uint) -> bool {
match *self {
ty::ReLateBound(debruijn, _) => debruijn.depth > depth,
_ => false,
}
}
}
#[deriving(Clone, PartialEq, PartialOrd, Eq, Ord, Hash, Encodable, Decodable, Show)]
/// A "free" region `fr` can be interpreted as "some region
/// at least as big as the scope `fr.scope`".
pub struct FreeRegion {
pub scope: region::CodeExtent,
pub bound_region: BoundRegion
}
#[deriving(Clone, PartialEq, PartialOrd, Eq, Ord, Hash, Encodable, Decodable, Show)]
pub enum BoundRegion {
/// An anonymous region parameter for a given fn (&T)
BrAnon(uint),
/// Named region parameters for functions (a in &'a T)
///
/// The def-id is needed to distinguish free regions in
/// the event of shadowing.
BrNamed(ast::DefId, ast::Name),
/// Fresh bound identifiers created during GLB computations.
BrFresh(uint),
// Anonymous region for the implicit env pointer parameter
// to a closure
BrEnv
}
#[inline]
pub fn mk_prim_t<'tcx>(primitive: &'tcx TyS<'static>) -> Ty<'tcx> {
// FIXME(#17596) Ty<'tcx> is incorrectly invariant w.r.t 'tcx.
unsafe { &*(primitive as *const _ as *const TyS<'tcx>) }
}
// Do not change these from static to const, interning types requires
// the primitives to have a significant address.
macro_rules! def_prim_tys(
($($name:ident -> $sty:expr;)*) => (
$(#[inline] pub fn $name<'tcx>() -> Ty<'tcx> {
static PRIM_TY: TyS<'static> = TyS {
sty: $sty,
flags: NO_TYPE_FLAGS,
region_depth: 0,
};
mk_prim_t(&PRIM_TY)
})*
)
)
def_prim_tys!{
mk_bool -> ty_bool;
mk_char -> ty_char;
mk_int -> ty_int(ast::TyI);
mk_i8 -> ty_int(ast::TyI8);
mk_i16 -> ty_int(ast::TyI16);
mk_i32 -> ty_int(ast::TyI32);
mk_i64 -> ty_int(ast::TyI64);
mk_uint -> ty_uint(ast::TyU);
mk_u8 -> ty_uint(ast::TyU8);
mk_u16 -> ty_uint(ast::TyU16);
mk_u32 -> ty_uint(ast::TyU32);
mk_u64 -> ty_uint(ast::TyU64);
mk_f32 -> ty_float(ast::TyF32);
mk_f64 -> ty_float(ast::TyF64);
}
#[inline]
pub fn mk_err<'tcx>() -> Ty<'tcx> {
static TY_ERR: TyS<'static> = TyS {
sty: ty_err,
flags: HAS_TY_ERR,
region_depth: 0,
};
mk_prim_t(&TY_ERR)
}
// NB: If you change this, you'll probably want to change the corresponding
// AST structure in libsyntax/ast.rs as well.
#[deriving(Clone, PartialEq, Eq, Hash, Show)]
pub enum sty<'tcx> {
ty_bool,
ty_char,
ty_int(ast::IntTy),
ty_uint(ast::UintTy),
ty_float(ast::FloatTy),
/// Substs here, possibly against intuition, *may* contain `ty_param`s.
/// That is, even after substitution it is possible that there are type
/// variables. This happens when the `ty_enum` corresponds to an enum
/// definition and not a concrete use of it. To get the correct `ty_enum`
/// from the tcx, use the `NodeId` from the `ast::Ty` and look it up in
/// the `ast_ty_to_ty_cache`. This is probably true for `ty_struct` as
/// well.`
ty_enum(DefId, Substs<'tcx>),
ty_uniq(Ty<'tcx>),
ty_str,
ty_vec(Ty<'tcx>, Option<uint>), // Second field is length.
ty_ptr(mt<'tcx>),
ty_rptr(Region, mt<'tcx>),
ty_bare_fn(BareFnTy<'tcx>),
ty_closure(Box<ClosureTy<'tcx>>),
ty_trait(Box<TyTrait<'tcx>>),
ty_struct(DefId, Substs<'tcx>),
ty_unboxed_closure(DefId, Region, Substs<'tcx>),
ty_tup(Vec<Ty<'tcx>>),
ty_param(ParamTy), // type parameter
ty_open(Ty<'tcx>), // A deref'ed fat pointer, i.e., a dynamically sized value
// and its size. Only ever used in trans. It is not necessary
// earlier since we don't need to distinguish a DST with its
// size (e.g., in a deref) vs a DST with the size elsewhere (
// e.g., in a field).
ty_infer(InferTy), // something used only during inference/typeck
ty_err, // Also only used during inference/typeck, to represent
// the type of an erroneous expression (helps cut down
// on non-useful type error messages)
}
#[deriving(Clone, PartialEq, Eq, Hash, Show)]
pub struct TyTrait<'tcx> {
// Principal trait reference.
pub principal: TraitRef<'tcx>, // would use Rc<TraitRef>, but it runs afoul of some static rules
pub bounds: ExistentialBounds
}
/// A complete reference to a trait. These take numerous guises in syntax,
/// but perhaps the most recognizable form is in a where clause:
///
/// T : Foo<U>
///
/// This would be represented by a trait-reference where the def-id is the
/// def-id for the trait `Foo` and the substs defines `T` as parameter 0 in the
/// `SelfSpace` and `U` as parameter 0 in the `TypeSpace`.
///
/// Trait references also appear in object types like `Foo<U>`, but in
/// that case the `Self` parameter is absent from the substitutions.
///
/// Note that a `TraitRef` introduces a level of region binding, to
/// account for higher-ranked trait bounds like `T : for<'a> Foo<&'a
/// U>` or higher-ranked object types.
#[deriving(Clone, PartialEq, Eq, Hash, Show)]
pub struct TraitRef<'tcx> {
pub def_id: DefId,
pub substs: Substs<'tcx>,
}
/// Binder serves as a synthetic binder for lifetimes. It is used when
/// we wish to replace the escaping higher-ranked lifetimes in a type
/// or something else that is not itself a binder (this is because the
/// `replace_late_bound_regions` function replaces all lifetimes bound
/// by the binder supplied to it; but a type is not a binder, so you
/// must introduce an artificial one).
#[deriving(Clone, PartialEq, Eq, Hash, Show)]
pub struct Binder<T> {
pub value: T
}
pub fn bind<T>(value: T) -> Binder<T> {
Binder { value: value }
}
#[deriving(Clone, PartialEq)]
pub enum IntVarValue {
IntType(ast::IntTy),
UintType(ast::UintTy),
}
#[deriving(Clone, Show)]
pub enum terr_vstore_kind {
terr_vec,
terr_str,
terr_fn,
terr_trait
}
#[deriving(Clone, Show)]
pub struct expected_found<T> {
pub expected: T,
pub found: T
}
// Data structures used in type unification
#[deriving(Clone, Show)]
pub enum type_err<'tcx> {
terr_mismatch,
terr_fn_style_mismatch(expected_found<FnStyle>),
terr_onceness_mismatch(expected_found<Onceness>),
terr_abi_mismatch(expected_found<abi::Abi>),
terr_mutability,
terr_sigil_mismatch(expected_found<TraitStore>),
terr_box_mutability,
terr_ptr_mutability,
terr_ref_mutability,
terr_vec_mutability,
terr_tuple_size(expected_found<uint>),
terr_fixed_array_size(expected_found<uint>),
terr_ty_param_size(expected_found<uint>),
terr_arg_count,
terr_regions_does_not_outlive(Region, Region),
terr_regions_not_same(Region, Region),
terr_regions_no_overlap(Region, Region),
terr_regions_insufficiently_polymorphic(BoundRegion, Region),
terr_regions_overly_polymorphic(BoundRegion, Region),
terr_trait_stores_differ(terr_vstore_kind, expected_found<TraitStore>),
terr_sorts(expected_found<Ty<'tcx>>),
terr_integer_as_char,
terr_int_mismatch(expected_found<IntVarValue>),
terr_float_mismatch(expected_found<ast::FloatTy>),
terr_traits(expected_found<ast::DefId>),
terr_builtin_bounds(expected_found<BuiltinBounds>),
terr_variadic_mismatch(expected_found<bool>),
terr_cyclic_ty,
terr_convergence_mismatch(expected_found<bool>)
}
/// Bounds suitable for a named type parameter like `A` in `fn foo<A>`
/// as well as the existential type parameter in an object type.
#[deriving(PartialEq, Eq, Hash, Clone, Show)]
pub struct ParamBounds<'tcx> {
pub region_bounds: Vec<ty::Region>,
pub builtin_bounds: BuiltinBounds,
pub trait_bounds: Vec<Rc<TraitRef<'tcx>>>
}
/// Bounds suitable for an existentially quantified type parameter
/// such as those that appear in object types or closure types. The
/// major difference between this case and `ParamBounds` is that
/// general purpose trait bounds are omitted and there must be
/// *exactly one* region.
#[deriving(PartialEq, Eq, Hash, Clone, Show)]
pub struct ExistentialBounds {
pub region_bound: ty::Region,
pub builtin_bounds: BuiltinBounds
}
pub type BuiltinBounds = EnumSet<BuiltinBound>;
#[deriving(Clone, Encodable, PartialEq, Eq, Decodable, Hash, Show)]
#[repr(uint)]
pub enum BuiltinBound {
BoundSend,
BoundSized,
BoundCopy,
BoundSync,
}
pub fn empty_builtin_bounds() -> BuiltinBounds {
EnumSet::new()
}
pub fn all_builtin_bounds() -> BuiltinBounds {
let mut set = EnumSet::new();
set.insert(BoundSend);
set.insert(BoundSized);
set.insert(BoundSync);
set
}
pub fn region_existential_bound(r: ty::Region) -> ExistentialBounds {
/*!
* An existential bound that does not implement any traits.
*/
ty::ExistentialBounds { region_bound: r,
builtin_bounds: empty_builtin_bounds() }
}
impl CLike for BuiltinBound {
fn to_uint(&self) -> uint {
*self as uint
}
fn from_uint(v: uint) -> BuiltinBound {
unsafe { mem::transmute(v) }
}
}
#[deriving(Clone, PartialEq, Eq, Hash)]
pub struct TyVid {
pub index: uint
}
#[deriving(Clone, PartialEq, Eq, Hash)]
pub struct IntVid {
pub index: uint
}
#[deriving(Clone, PartialEq, Eq, Hash)]
pub struct FloatVid {
pub index: uint
}
#[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash)]
pub struct RegionVid {
pub index: uint
}
#[deriving(Clone, PartialEq, Eq, Hash)]
pub enum InferTy {
TyVar(TyVid),
IntVar(IntVid),
FloatVar(FloatVid),
SkolemizedTy(uint),
// FIXME -- once integral fallback is impl'd, we should remove
// this type. It's only needed to prevent spurious errors for
// integers whose type winds up never being constrained.
SkolemizedIntTy(uint),
}
#[deriving(Clone, Encodable, Decodable, Eq, Hash, Show)]
pub enum InferRegion {
ReVar(RegionVid),
ReSkolemized(uint, BoundRegion)
}
impl cmp::PartialEq for InferRegion {
fn eq(&self, other: &InferRegion) -> bool {
match ((*self), *other) {
(ReVar(rva), ReVar(rvb)) => {
rva == rvb
}
(ReSkolemized(rva, _), ReSkolemized(rvb, _)) => {
rva == rvb
}
_ => false
}
}
fn ne(&self, other: &InferRegion) -> bool {
!((*self) == (*other))
}
}
impl fmt::Show for TyVid {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result{
write!(f, "_#{}t", self.index)
}
}
impl fmt::Show for IntVid {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "_#{}i", self.index)
}
}
impl fmt::Show for FloatVid {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "_#{}f", self.index)
}
}
impl fmt::Show for RegionVid {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "'_#{}r", self.index)
}
}
impl<'tcx> fmt::Show for FnSig<'tcx> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
// grr, without tcx not much we can do.
write!(f, "(...)")
}
}
impl fmt::Show for InferTy {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match *self {
TyVar(ref v) => v.fmt(f),
IntVar(ref v) => v.fmt(f),
FloatVar(ref v) => v.fmt(f),
SkolemizedTy(v) => write!(f, "SkolemizedTy({})", v),
SkolemizedIntTy(v) => write!(f, "SkolemizedIntTy({})", v),
}
}
}
impl fmt::Show for IntVarValue {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match *self {
IntType(ref v) => v.fmt(f),
UintType(ref v) => v.fmt(f),
}
}
}
#[deriving(Clone, Show)]
pub struct TypeParameterDef<'tcx> {
pub name: ast::Name,
pub def_id: ast::DefId,
pub space: subst::ParamSpace,
pub index: uint,
pub associated_with: Option<ast::DefId>,
pub bounds: ParamBounds<'tcx>,
pub default: Option<Ty<'tcx>>,
}
#[deriving(Encodable, Decodable, Clone, Show)]
pub struct RegionParameterDef {
pub name: ast::Name,
pub def_id: ast::DefId,
pub space: subst::ParamSpace,
pub index: uint,
pub bounds: Vec<ty::Region>,
}
/// Information about the type/lifetime parameters associated with an
/// item or method. Analogous to ast::Generics.
#[deriving(Clone, Show)]
pub struct Generics<'tcx> {
pub types: VecPerParamSpace<TypeParameterDef<'tcx>>,
pub regions: VecPerParamSpace<RegionParameterDef>,
}
impl<'tcx> Generics<'tcx> {
pub fn empty() -> Generics<'tcx> {
Generics { types: VecPerParamSpace::empty(),
regions: VecPerParamSpace::empty() }
}
pub fn has_type_params(&self, space: subst::ParamSpace) -> bool {
!self.types.is_empty_in(space)
}
pub fn has_region_params(&self, space: subst::ParamSpace) -> bool {
!self.regions.is_empty_in(space)
}
pub fn to_bounds(&self, tcx: &ty::ctxt<'tcx>, substs: &Substs<'tcx>)
-> GenericBounds<'tcx> {
GenericBounds {
types: self.types.map(|d| d.bounds.subst(tcx, substs)),
regions: self.regions.map(|d| d.bounds.subst(tcx, substs)),
}
}
}
/// Represents the bounds declared on a particular set of type
/// parameters. Should eventually be generalized into a flag list of
/// where clauses. You can obtain a `GenericBounds` list from a
/// `Generics` by using the `to_bounds` method. Note that this method
/// reflects an important semantic invariant of `GenericBounds`: while
/// the bounds in a `Generics` are expressed in terms of the bound type
/// parameters of the impl/trait/whatever, a `GenericBounds` instance
/// represented a set of bounds for some particular instantiation,
/// meaning that the generic parameters have been substituted with
/// their values.
///
/// Example:
///
/// struct Foo<T,U:Bar<T>> { ... }
///
/// Here, the `Generics` for `Foo` would contain a list of bounds like
/// `[[], [U:Bar<T>]]`. Now if there were some particular reference
/// like `Foo<int,uint>`, then the `GenericBounds` would be `[[],
/// [uint:Bar<int>]]`.
#[deriving(Clone, Show)]
pub struct GenericBounds<'tcx> {
pub types: VecPerParamSpace<ParamBounds<'tcx>>,
pub regions: VecPerParamSpace<Vec<Region>>,
}
impl<'tcx> GenericBounds<'tcx> {
pub fn empty() -> GenericBounds<'tcx> {
GenericBounds { types: VecPerParamSpace::empty(),
regions: VecPerParamSpace::empty() }
}
pub fn has_escaping_regions(&self) -> bool {
self.types.any(|pb| pb.trait_bounds.iter().any(|tr| tr.has_escaping_regions())) ||
self.regions.any(|rs| rs.iter().any(|r| r.escapes_depth(0)))
}
}
impl<'tcx> TraitRef<'tcx> {
pub fn new(def_id: ast::DefId, substs: Substs<'tcx>) -> TraitRef<'tcx> {
TraitRef { def_id: def_id, substs: substs }
}
pub fn self_ty(&self) -> Ty<'tcx> {
self.substs.self_ty().unwrap()
}
pub fn input_types(&self) -> &[Ty<'tcx>] {
// Select only the "input types" from a trait-reference. For
// now this is all the types that appear in the
// trait-reference, but it should eventually exclude
// associated types.
self.substs.types.as_slice()
}
pub fn has_escaping_regions(&self) -> bool {
self.substs.has_regions_escaping_depth(1)
}
pub fn has_bound_regions(&self) -> bool {
self.substs.has_regions_escaping_depth(0)
}
}
/// When type checking, we use the `ParameterEnvironment` to track
/// details about the type/lifetime parameters that are in scope.
/// It primarily stores the bounds information.
///
/// Note: This information might seem to be redundant with the data in
/// `tcx.ty_param_defs`, but it is not. That table contains the
/// parameter definitions from an "outside" perspective, but this
/// struct will contain the bounds for a parameter as seen from inside
/// the function body. Currently the only real distinction is that
/// bound lifetime parameters are replaced with free ones, but in the
/// future I hope to refine the representation of types so as to make
/// more distinctions clearer.
pub struct ParameterEnvironment<'tcx> {
/// A substitution that can be applied to move from
/// the "outer" view of a type or method to the "inner" view.
/// In general, this means converting from bound parameters to
/// free parameters. Since we currently represent bound/free type
/// parameters in the same way, this only has an effect on regions.
pub free_substs: Substs<'tcx>,
/// Bounds on the various type parameters
pub bounds: VecPerParamSpace<ParamBounds<'tcx>>,
/// Each type parameter has an implicit region bound that
/// indicates it must outlive at least the function body (the user
/// may specify stronger requirements). This field indicates the
/// region of the callee.
pub implicit_region_bound: ty::Region,
/// Obligations that the caller must satisfy. This is basically
/// the set of bounds on the in-scope type parameters, translated
/// into Obligations.
///
/// Note: This effectively *duplicates* the `bounds` array for
/// now.
pub caller_obligations: VecPerParamSpace<traits::Obligation<'tcx>>,
/// Caches the results of trait selection. This cache is used
/// for things that have to do with the parameters in scope.
pub selection_cache: traits::SelectionCache<'tcx>,
}
impl<'tcx> ParameterEnvironment<'tcx> {
pub fn for_item(cx: &ctxt<'tcx>, id: NodeId) -> ParameterEnvironment<'tcx> {
match cx.map.find(id) {
Some(ast_map::NodeImplItem(ref impl_item)) => {
match **impl_item {
ast::MethodImplItem(ref method) => {
let method_def_id = ast_util::local_def(id);
match ty::impl_or_trait_item(cx, method_def_id) {
MethodTraitItem(ref method_ty) => {
let method_generics = &method_ty.generics;
construct_parameter_environment(
cx,
method.span,
method_generics,
method.pe_body().id)
}
TypeTraitItem(_) => {
cx.sess
.bug("ParameterEnvironment::from_item(): \
can't create a parameter environment \
for type trait items")
}
}
}
ast::TypeImplItem(_) => {
cx.sess.bug("ParameterEnvironment::from_item(): \
can't create a parameter environment \
for type impl items")
}
}
}
Some(ast_map::NodeTraitItem(trait_method)) => {
match *trait_method {
ast::RequiredMethod(ref required) => {
cx.sess.span_bug(required.span,
"ParameterEnvironment::from_item():
can't create a parameter \
environment for required trait \
methods")
}
ast::ProvidedMethod(ref method) => {
let method_def_id = ast_util::local_def(id);
match ty::impl_or_trait_item(cx, method_def_id) {
MethodTraitItem(ref method_ty) => {
let method_generics = &method_ty.generics;
construct_parameter_environment(
cx,
method.span,
method_generics,
method.pe_body().id)
}
TypeTraitItem(_) => {
cx.sess
.bug("ParameterEnvironment::from_item(): \
can't create a parameter environment \
for type trait items")
}
}
}
ast::TypeTraitItem(_) => {
cx.sess.bug("ParameterEnvironment::from_item(): \
can't create a parameter environment \
for type trait items")
}
}
}
Some(ast_map::NodeItem(item)) => {
match item.node {
ast::ItemFn(_, _, _, _, ref body) => {
// We assume this is a function.
let fn_def_id = ast_util::local_def(id);
let fn_pty = ty::lookup_item_type(cx, fn_def_id);
construct_parameter_environment(cx,
item.span,
&fn_pty.generics,
body.id)
}
ast::ItemEnum(..) |
ast::ItemStruct(..) |
ast::ItemImpl(..) |
ast::ItemConst(..) |
ast::ItemStatic(..) => {
let def_id = ast_util::local_def(id);
let pty = ty::lookup_item_type(cx, def_id);
construct_parameter_environment(cx, item.span,
&pty.generics, id)
}
_ => {
cx.sess.span_bug(item.span,
"ParameterEnvironment::from_item():
can't create a parameter \
environment for this kind of item")
}
}
}
_ => {
cx.sess.bug(format!("ParameterEnvironment::from_item(): \
`{}` is not an item",
cx.map.node_to_string(id)).as_slice())
}
}
}
}
/// A polytype.
///
/// - `generics`: the set of type parameters and their bounds
/// - `ty`: the base types, which may reference the parameters defined
/// in `generics`
#[deriving(Clone, Show)]
pub struct Polytype<'tcx> {
pub generics: Generics<'tcx>,
pub ty: Ty<'tcx>
}
/// As `Polytype` but for a trait ref.
pub struct TraitDef<'tcx> {
/// Generic type definitions. Note that `Self` is listed in here
/// as having a single bound, the trait itself (e.g., in the trait
/// `Eq`, there is a single bound `Self : Eq`). This is so that
/// default methods get to assume that the `Self` parameters
/// implements the trait.
pub generics: Generics<'tcx>,
/// The "supertrait" bounds.
pub bounds: ParamBounds<'tcx>,
pub trait_ref: Rc<ty::TraitRef<'tcx>>,
}
/// Records the substitutions used to translate the polytype for an
/// item into the monotype of an item reference.
#[deriving(Clone)]
pub struct ItemSubsts<'tcx> {
pub substs: Substs<'tcx>,
}
/// Records information about each unboxed closure.
#[deriving(Clone)]
pub struct UnboxedClosure<'tcx> {
/// The type of the unboxed closure.
pub closure_type: ClosureTy<'tcx>,
/// The kind of unboxed closure this is.
pub kind: UnboxedClosureKind,
}
#[deriving(Clone, PartialEq, Eq, Show)]
pub enum UnboxedClosureKind {
FnUnboxedClosureKind,
FnMutUnboxedClosureKind,
FnOnceUnboxedClosureKind,
}
impl UnboxedClosureKind {
pub fn trait_did(&self, cx: &ctxt) -> ast::DefId {
let result = match *self {
FnUnboxedClosureKind => cx.lang_items.require(FnTraitLangItem),
FnMutUnboxedClosureKind => {
cx.lang_items.require(FnMutTraitLangItem)
}
FnOnceUnboxedClosureKind => {
cx.lang_items.require(FnOnceTraitLangItem)
}
};
match result {
Ok(trait_did) => trait_did,
Err(err) => cx.sess.fatal(err.as_slice()),
}
}
}
pub fn mk_ctxt<'tcx>(s: Session,
type_arena: &'tcx TypedArena<TyS<'tcx>>,
dm: resolve::DefMap,
named_region_map: resolve_lifetime::NamedRegionMap,
map: ast_map::Map<'tcx>,
freevars: RefCell<FreevarMap>,
capture_modes: RefCell<CaptureModeMap>,
region_maps: middle::region::RegionMaps,
lang_items: middle::lang_items::LanguageItems,
stability: stability::Index) -> ctxt<'tcx> {
ctxt {
type_arena: type_arena,
interner: RefCell::new(FnvHashMap::new()),
named_region_map: named_region_map,
item_variance_map: RefCell::new(DefIdMap::new()),
variance_computed: Cell::new(false),
sess: s,
def_map: dm,
region_maps: region_maps,
node_types: RefCell::new(FnvHashMap::new()),
item_substs: RefCell::new(NodeMap::new()),
trait_refs: RefCell::new(NodeMap::new()),
trait_defs: RefCell::new(DefIdMap::new()),
object_cast_map: RefCell::new(NodeMap::new()),
map: map,
intrinsic_defs: RefCell::new(DefIdMap::new()),
freevars: freevars,
tcache: RefCell::new(DefIdMap::new()),
rcache: RefCell::new(FnvHashMap::new()),
short_names_cache: RefCell::new(FnvHashMap::new()),
needs_unwind_cleanup_cache: RefCell::new(FnvHashMap::new()),
tc_cache: RefCell::new(FnvHashMap::new()),
ast_ty_to_ty_cache: RefCell::new(NodeMap::new()),
enum_var_cache: RefCell::new(DefIdMap::new()),
impl_or_trait_items: RefCell::new(DefIdMap::new()),
trait_item_def_ids: RefCell::new(DefIdMap::new()),
trait_items_cache: RefCell::new(DefIdMap::new()),
impl_trait_cache: RefCell::new(DefIdMap::new()),
ty_param_defs: RefCell::new(NodeMap::new()),
adjustments: RefCell::new(NodeMap::new()),
normalized_cache: RefCell::new(FnvHashMap::new()),
lang_items: lang_items,
provided_method_sources: RefCell::new(DefIdMap::new()),
struct_fields: RefCell::new(DefIdMap::new()),
destructor_for_type: RefCell::new(DefIdMap::new()),
destructors: RefCell::new(DefIdSet::new()),
trait_impls: RefCell::new(DefIdMap::new()),
inherent_impls: RefCell::new(DefIdMap::new()),
impl_items: RefCell::new(DefIdMap::new()),
used_unsafe: RefCell::new(NodeSet::new()),
used_mut_nodes: RefCell::new(NodeSet::new()),
populated_external_types: RefCell::new(DefIdSet::new()),
populated_external_traits: RefCell::new(DefIdSet::new()),
upvar_borrow_map: RefCell::new(FnvHashMap::new()),
extern_const_statics: RefCell::new(DefIdMap::new()),
extern_const_variants: RefCell::new(DefIdMap::new()),
method_map: RefCell::new(FnvHashMap::new()),
dependency_formats: RefCell::new(FnvHashMap::new()),
unboxed_closures: RefCell::new(DefIdMap::new()),
node_lint_levels: RefCell::new(FnvHashMap::new()),
transmute_restrictions: RefCell::new(Vec::new()),
stability: RefCell::new(stability),
capture_modes: capture_modes,
associated_types: RefCell::new(DefIdMap::new()),
selection_cache: traits::SelectionCache::new(),
repr_hint_cache: RefCell::new(DefIdMap::new()),
}
}
// Type constructors
// Interns a type/name combination, stores the resulting box in cx.interner,
// and returns the box as cast to an unsafe ptr (see comments for Ty above).
pub fn mk_t<'tcx>(cx: &ctxt<'tcx>, st: sty<'tcx>) -> Ty<'tcx> {
// Check for primitive types.
match st {
ty_err => return mk_err(),
ty_bool => return mk_bool(),
ty_int(i) => return mk_mach_int(i),
ty_uint(u) => return mk_mach_uint(u),
ty_float(f) => return mk_mach_float(f),
ty_char => return mk_char(),
_ => {}
};
match cx.interner.borrow().get(&st) {
Some(ty) => return *ty,
_ => ()
}
let flags = FlagComputation::for_sty(&st);
let ty = cx.type_arena.alloc(TyS {
sty: st,
flags: flags.flags,
region_depth: flags.depth,
});
cx.interner.borrow_mut().insert(InternedTy { ty: ty }, ty);
ty
}
struct FlagComputation {
flags: TypeFlags,
// maximum depth of any bound region that we have seen thus far
depth: uint,
}
impl FlagComputation {
fn new() -> FlagComputation {
FlagComputation { flags: NO_TYPE_FLAGS, depth: 0 }
}
fn for_sty(st: &sty) -> FlagComputation {
let mut result = FlagComputation::new();
result.add_sty(st);
result
}
fn add_flags(&mut self, flags: TypeFlags) {
self.flags = self.flags | flags;
}
fn add_depth(&mut self, depth: uint) {
if depth > self.depth {
self.depth = depth;
}
}
fn add_bound_computation(&mut self, computation: &FlagComputation) {
/*!
* Adds the flags/depth from a set of types that appear within
* the current type, but within a region binder.
*/
self.add_flags(computation.flags);
// The types that contributed to `computation` occured within
// a region binder, so subtract one from the region depth
// within when adding the depth to `self`.
let depth = computation.depth;
if depth > 0 {
self.add_depth(depth - 1);
}
}
fn add_sty(&mut self, st: &sty) {
match st {
&ty_bool |
&ty_char |
&ty_int(_) |
&ty_float(_) |
&ty_uint(_) |
&ty_str => {
}
// You might think that we could just return ty_err for
// any type containing ty_err as a component, and get
// rid of the HAS_TY_ERR flag -- likewise for ty_bot (with
// the exception of function types that return bot).
// But doing so caused sporadic memory corruption, and
// neither I (tjc) nor nmatsakis could figure out why,
// so we're doing it this way.
&ty_err => {
self.add_flags(HAS_TY_ERR)
}
&ty_param(ref p) => {
if p.space == subst::SelfSpace {
self.add_flags(HAS_SELF);
} else {
self.add_flags(HAS_PARAMS);
}
}
&ty_unboxed_closure(_, ref region, ref substs) => {
self.add_region(*region);
self.add_substs(substs);
}
&ty_infer(_) => {
self.add_flags(HAS_TY_INFER)
}
&ty_enum(_, ref substs) | &ty_struct(_, ref substs) => {
self.add_substs(substs);
}
&ty_trait(box TyTrait { ref principal, ref bounds }) => {
let mut computation = FlagComputation::new();
computation.add_substs(&principal.substs);
self.add_bound_computation(&computation);
self.add_bounds(bounds);
}
&ty_uniq(tt) | &ty_vec(tt, _) | &ty_open(tt) => {
self.add_ty(tt)
}
&ty_ptr(ref m) => {
self.add_ty(m.ty);
}
&ty_rptr(r, ref m) => {
self.add_region(r);
self.add_ty(m.ty);
}
&ty_tup(ref ts) => {
self.add_tys(ts[]);
}
&ty_bare_fn(ref f) => {
self.add_fn_sig(&f.sig);
}
&ty_closure(ref f) => {
match f.store {
RegionTraitStore(r, _) => {
self.add_region(r);
}
_ => {}
}
self.add_fn_sig(&f.sig);
self.add_bounds(&f.bounds);
}
}
}
fn add_ty(&mut self, ty: Ty) {
self.add_flags(ty.flags);
self.add_depth(ty.region_depth);
}
fn add_tys(&mut self, tys: &[Ty]) {
for &ty in tys.iter() {
self.add_ty(ty);
}
}
fn add_fn_sig(&mut self, fn_sig: &FnSig) {
let mut computation = FlagComputation::new();
computation.add_tys(fn_sig.inputs[]);
if let ty::FnConverging(output) = fn_sig.output {
computation.add_ty(output);
}
self.add_bound_computation(&computation);
}
fn add_region(&mut self, r: Region) {
self.add_flags(HAS_REGIONS);
match r {
ty::ReInfer(_) => { self.add_flags(HAS_RE_INFER); }
ty::ReLateBound(debruijn, _) => {
self.add_flags(HAS_RE_LATE_BOUND);
self.add_depth(debruijn.depth);
}
_ => { }
}
}
fn add_substs(&mut self, substs: &Substs) {
self.add_tys(substs.types.as_slice());
match substs.regions {
subst::ErasedRegions => {}
subst::NonerasedRegions(ref regions) => {
for &r in regions.iter() {
self.add_region(r);
}
}
}
}
fn add_bounds(&mut self, bounds: &ExistentialBounds) {
self.add_region(bounds.region_bound);
}
}
pub fn mk_mach_int<'tcx>(tm: ast::IntTy) -> Ty<'tcx> {
match tm {
ast::TyI => mk_int(),
ast::TyI8 => mk_i8(),
ast::TyI16 => mk_i16(),
ast::TyI32 => mk_i32(),
ast::TyI64 => mk_i64(),
}
}
pub fn mk_mach_uint<'tcx>(tm: ast::UintTy) -> Ty<'tcx> {
match tm {
ast::TyU => mk_uint(),
ast::TyU8 => mk_u8(),
ast::TyU16 => mk_u16(),
ast::TyU32 => mk_u32(),
ast::TyU64 => mk_u64(),
}
}
pub fn mk_mach_float<'tcx>(tm: ast::FloatTy) -> Ty<'tcx> {
match tm {
ast::TyF32 => mk_f32(),
ast::TyF64 => mk_f64(),
}
}
pub fn mk_str<'tcx>(cx: &ctxt<'tcx>) -> Ty<'tcx> {
mk_t(cx, ty_str)
}
pub fn mk_str_slice<'tcx>(cx: &ctxt<'tcx>, r: Region, m: ast::Mutability) -> Ty<'tcx> {
mk_rptr(cx, r,
mt {
ty: mk_t(cx, ty_str),
mutbl: m
})
}
pub fn mk_enum<'tcx>(cx: &ctxt<'tcx>, did: ast::DefId, substs: Substs<'tcx>) -> Ty<'tcx> {
// take a copy of substs so that we own the vectors inside
mk_t(cx, ty_enum(did, substs))
}
pub fn mk_uniq<'tcx>(cx: &ctxt<'tcx>, ty: Ty<'tcx>) -> Ty<'tcx> { mk_t(cx, ty_uniq(ty)) }
pub fn mk_ptr<'tcx>(cx: &ctxt<'tcx>, tm: mt<'tcx>) -> Ty<'tcx> { mk_t(cx, ty_ptr(tm)) }
pub fn mk_rptr<'tcx>(cx: &ctxt<'tcx>, r: Region, tm: mt<'tcx>) -> Ty<'tcx> {
mk_t(cx, ty_rptr(r, tm))
}
pub fn mk_mut_rptr<'tcx>(cx: &ctxt<'tcx>, r: Region, ty: Ty<'tcx>) -> Ty<'tcx> {
mk_rptr(cx, r, mt {ty: ty, mutbl: ast::MutMutable})
}
pub fn mk_imm_rptr<'tcx>(cx: &ctxt<'tcx>, r: Region, ty: Ty<'tcx>) -> Ty<'tcx> {
mk_rptr(cx, r, mt {ty: ty, mutbl: ast::MutImmutable})
}
pub fn mk_mut_ptr<'tcx>(cx: &ctxt<'tcx>, ty: Ty<'tcx>) -> Ty<'tcx> {
mk_ptr(cx, mt {ty: ty, mutbl: ast::MutMutable})
}
pub fn mk_imm_ptr<'tcx>(cx: &ctxt<'tcx>, ty: Ty<'tcx>) -> Ty<'tcx> {
mk_ptr(cx, mt {ty: ty, mutbl: ast::MutImmutable})
}
pub fn mk_nil_ptr<'tcx>(cx: &ctxt<'tcx>) -> Ty<'tcx> {
mk_ptr(cx, mt {ty: mk_nil(cx), mutbl: ast::MutImmutable})
}
pub fn mk_vec<'tcx>(cx: &ctxt<'tcx>, ty: Ty<'tcx>, sz: Option<uint>) -> Ty<'tcx> {
mk_t(cx, ty_vec(ty, sz))
}
pub fn mk_slice<'tcx>(cx: &ctxt<'tcx>, r: Region, tm: mt<'tcx>) -> Ty<'tcx> {
mk_rptr(cx, r,
mt {
ty: mk_vec(cx, tm.ty, None),
mutbl: tm.mutbl
})
}
pub fn mk_tup<'tcx>(cx: &ctxt<'tcx>, ts: Vec<Ty<'tcx>>) -> Ty<'tcx> {
mk_t(cx, ty_tup(ts))
}
pub fn mk_nil<'tcx>(cx: &ctxt<'tcx>) -> Ty<'tcx> {
mk_tup(cx, Vec::new())
}
pub fn mk_closure<'tcx>(cx: &ctxt<'tcx>, fty: ClosureTy<'tcx>) -> Ty<'tcx> {
mk_t(cx, ty_closure(box fty))
}
pub fn mk_bare_fn<'tcx>(cx: &ctxt<'tcx>, fty: BareFnTy<'tcx>) -> Ty<'tcx> {
mk_t(cx, ty_bare_fn(fty))
}
pub fn mk_ctor_fn<'tcx>(cx: &ctxt<'tcx>,
input_tys: &[Ty<'tcx>],
output: Ty<'tcx>) -> Ty<'tcx> {
let input_args = input_tys.iter().map(|ty| *ty).collect();
mk_bare_fn(cx,
BareFnTy {
fn_style: ast::NormalFn,
abi: abi::Rust,
sig: FnSig {
inputs: input_args,
output: ty::FnConverging(output),
variadic: false
}
})
}
pub fn mk_trait<'tcx>(cx: &ctxt<'tcx>,
principal: ty::TraitRef<'tcx>,
bounds: ExistentialBounds)
-> Ty<'tcx> {
// take a copy of substs so that we own the vectors inside
let inner = box TyTrait {
principal: principal,
bounds: bounds
};
mk_t(cx, ty_trait(inner))
}
pub fn mk_struct<'tcx>(cx: &ctxt<'tcx>, struct_id: ast::DefId,
substs: Substs<'tcx>) -> Ty<'tcx> {
// take a copy of substs so that we own the vectors inside
mk_t(cx, ty_struct(struct_id, substs))
}
pub fn mk_unboxed_closure<'tcx>(cx: &ctxt<'tcx>, closure_id: ast::DefId,
region: Region, substs: Substs<'tcx>)
-> Ty<'tcx> {
mk_t(cx, ty_unboxed_closure(closure_id, region, substs))
}
pub fn mk_var<'tcx>(cx: &ctxt<'tcx>, v: TyVid) -> Ty<'tcx> {
mk_infer(cx, TyVar(v))
}
pub fn mk_int_var<'tcx>(cx: &ctxt<'tcx>, v: IntVid) -> Ty<'tcx> {
mk_infer(cx, IntVar(v))
}
pub fn mk_float_var<'tcx>(cx: &ctxt<'tcx>, v: FloatVid) -> Ty<'tcx> {
mk_infer(cx, FloatVar(v))
}
pub fn mk_infer<'tcx>(cx: &ctxt<'tcx>, it: InferTy) -> Ty<'tcx> {
mk_t(cx, ty_infer(it))
}
pub fn mk_param<'tcx>(cx: &ctxt<'tcx>, space: subst::ParamSpace,
n: uint, k: DefId) -> Ty<'tcx> {
mk_t(cx, ty_param(ParamTy { space: space, idx: n, def_id: k }))
}
pub fn mk_self_type<'tcx>(cx: &ctxt<'tcx>, did: ast::DefId) -> Ty<'tcx> {
mk_param(cx, subst::SelfSpace, 0, did)
}
pub fn mk_param_from_def<'tcx>(cx: &ctxt<'tcx>, def: &TypeParameterDef) -> Ty<'tcx> {
mk_param(cx, def.space, def.index, def.def_id)
}
pub fn mk_open<'tcx>(cx: &ctxt<'tcx>, ty: Ty<'tcx>) -> Ty<'tcx> { mk_t(cx, ty_open(ty)) }
pub fn walk_ty<'tcx>(ty: Ty<'tcx>, f: |Ty<'tcx>|) {
maybe_walk_ty(ty, |ty| { f(ty); true });
}
pub fn maybe_walk_ty<'tcx>(ty: Ty<'tcx>, f: |Ty<'tcx>| -> bool) {
if !f(ty) {
return;
}
match ty.sty {
ty_bool | ty_char | ty_int(_) | ty_uint(_) | ty_float(_) |
ty_str | ty_infer(_) | ty_param(_) | ty_err => {}
ty_uniq(ty) | ty_vec(ty, _) | ty_open(ty) => maybe_walk_ty(ty, f),
ty_ptr(ref tm) | ty_rptr(_, ref tm) => {
maybe_walk_ty(tm.ty, f);
}
ty_trait(box TyTrait { ref principal, .. }) => {
for subty in principal.substs.types.iter() {
maybe_walk_ty(*subty, |x| f(x));
}
}
ty_enum(_, ref substs) |
ty_struct(_, ref substs) |
ty_unboxed_closure(_, _, ref substs) => {
for subty in substs.types.iter() {
maybe_walk_ty(*subty, |x| f(x));
}
}
ty_tup(ref ts) => { for tt in ts.iter() { maybe_walk_ty(*tt, |x| f(x)); } }
ty_bare_fn(ref ft) => {
for a in ft.sig.inputs.iter() { maybe_walk_ty(*a, |x| f(x)); }
if let ty::FnConverging(output) = ft.sig.output {
maybe_walk_ty(output, f);
}
}
ty_closure(ref ft) => {
for a in ft.sig.inputs.iter() { maybe_walk_ty(*a, |x| f(x)); }
if let ty::FnConverging(output) = ft.sig.output {
maybe_walk_ty(output, f);
}
}
}
}
// Folds types from the bottom up.
pub fn fold_ty<'tcx>(cx: &ctxt<'tcx>, t0: Ty<'tcx>,
fldop: |Ty<'tcx>| -> Ty<'tcx>)
-> Ty<'tcx> {
let mut f = ty_fold::BottomUpFolder {tcx: cx, fldop: fldop};
f.fold_ty(t0)
}
impl ParamTy {
pub fn new(space: subst::ParamSpace,
index: uint,
def_id: ast::DefId)
-> ParamTy {
ParamTy { space: space, idx: index, def_id: def_id }
}
pub fn for_self(trait_def_id: ast::DefId) -> ParamTy {
ParamTy::new(subst::SelfSpace, 0, trait_def_id)
}
pub fn for_def(def: &TypeParameterDef) -> ParamTy {
ParamTy::new(def.space, def.index, def.def_id)
}
pub fn to_ty<'tcx>(self, tcx: &ty::ctxt<'tcx>) -> Ty<'tcx> {
ty::mk_param(tcx, self.space, self.idx, self.def_id)
}
pub fn is_self(&self) -> bool {
self.space == subst::SelfSpace && self.idx == 0
}
}
impl<'tcx> ItemSubsts<'tcx> {
pub fn empty() -> ItemSubsts<'tcx> {
ItemSubsts { substs: Substs::empty() }
}
pub fn is_noop(&self) -> bool {
self.substs.is_noop()
}
}
impl<'tcx> ParamBounds<'tcx> {
pub fn empty() -> ParamBounds<'tcx> {
ParamBounds {
builtin_bounds: empty_builtin_bounds(),
trait_bounds: Vec::new(),
region_bounds: Vec::new(),
}
}
}
// Type utilities
pub fn type_is_nil(ty: Ty) -> bool {
match ty.sty {
ty_tup(ref tys) => tys.is_empty(),
_ => false
}
}
pub fn type_is_error(ty: Ty) -> bool {
ty.flags.intersects(HAS_TY_ERR)
}
pub fn type_needs_subst(ty: Ty) -> bool {
ty.flags.intersects(NEEDS_SUBST)
}
pub fn trait_ref_contains_error(tref: &ty::TraitRef) -> bool {
tref.substs.types.any(|&ty| type_is_error(ty))
}
pub fn type_is_ty_var(ty: Ty) -> bool {
match ty.sty {
ty_infer(TyVar(_)) => true,
_ => false
}
}
pub fn type_is_bool(ty: Ty) -> bool { ty.sty == ty_bool }
pub fn type_is_self(ty: Ty) -> bool {
match ty.sty {
ty_param(ref p) => p.space == subst::SelfSpace,
_ => false
}
}
fn type_is_slice(ty: Ty) -> bool {
match ty.sty {
ty_ptr(mt) | ty_rptr(_, mt) => match mt.ty.sty {
ty_vec(_, None) | ty_str => true,
_ => false,
},
_ => false
}
}
pub fn type_is_vec(ty: Ty) -> bool {
match ty.sty {
ty_vec(..) => true,
ty_ptr(mt{ty, ..}) | ty_rptr(_, mt{ty, ..}) |
ty_uniq(ty) => match ty.sty {
ty_vec(_, None) => true,
_ => false
},
_ => false
}
}
pub fn type_is_structural(ty: Ty) -> bool {
match ty.sty {
ty_struct(..) | ty_tup(_) | ty_enum(..) | ty_closure(_) |
ty_vec(_, Some(_)) | ty_unboxed_closure(..) => true,
_ => type_is_slice(ty) | type_is_trait(ty)
}
}
pub fn type_is_simd(cx: &ctxt, ty: Ty) -> bool {
match ty.sty {
ty_struct(did, _) => lookup_simd(cx, did),
_ => false
}
}
pub fn sequence_element_type<'tcx>(cx: &ctxt<'tcx>, ty: Ty<'tcx>) -> Ty<'tcx> {
match ty.sty {
ty_vec(ty, _) => ty,
ty_str => mk_mach_uint(ast::TyU8),
ty_open(ty) => sequence_element_type(cx, ty),
_ => cx.sess.bug(format!("sequence_element_type called on non-sequence value: {}",
ty_to_string(cx, ty)).as_slice()),
}
}
pub fn simd_type<'tcx>(cx: &ctxt<'tcx>, ty: Ty<'tcx>) -> Ty<'tcx> {
match ty.sty {
ty_struct(did, ref substs) => {
let fields = lookup_struct_fields(cx, did);
lookup_field_type(cx, did, fields[0].id, substs)
}
_ => panic!("simd_type called on invalid type")
}
}
pub fn simd_size(cx: &ctxt, ty: Ty) -> uint {
match ty.sty {
ty_struct(did, _) => {
let fields = lookup_struct_fields(cx, did);
fields.len()
}
_ => panic!("simd_size called on invalid type")
}
}
pub fn type_is_region_ptr(ty: Ty) -> bool {
match ty.sty {
ty_rptr(..) => true,
_ => false
}
}
pub fn type_is_unsafe_ptr(ty: Ty) -> bool {
match ty.sty {
ty_ptr(_) => return true,
_ => return false
}
}
pub fn type_is_unique(ty: Ty) -> bool {
match ty.sty {
ty_uniq(_) => match ty.sty {
ty_trait(..) => false,
_ => true
},
_ => false
}
}
pub fn type_is_fat_ptr<'tcx>(cx: &ctxt<'tcx>, ty: Ty<'tcx>) -> bool {
match ty.sty {
ty_ptr(mt{ty, ..}) | ty_rptr(_, mt{ty, ..})
| ty_uniq(ty) if !type_is_sized(cx, ty) => true,
_ => false,
}
}
/*
A scalar type is one that denotes an atomic datum, with no sub-components.
(A ty_ptr is scalar because it represents a non-managed pointer, so its
contents are abstract to rustc.)
*/
pub fn type_is_scalar(ty: Ty) -> bool {
match ty.sty {
ty_bool | ty_char | ty_int(_) | ty_float(_) | ty_uint(_) |
ty_infer(IntVar(_)) | ty_infer(FloatVar(_)) |
ty_bare_fn(..) | ty_ptr(_) => true,
ty_tup(ref tys) if tys.is_empty() => true,
_ => false
}
}
/// Returns true if this type is a floating point type and false otherwise.
pub fn type_is_floating_point(ty: Ty) -> bool {
match ty.sty {
ty_float(_) => true,
_ => false,
}
}
pub fn type_needs_drop<'tcx>(cx: &ctxt<'tcx>, ty: Ty<'tcx>) -> bool {
type_contents(cx, ty).needs_drop(cx)
}
// Some things don't need cleanups during unwinding because the
// task can free them all at once later. Currently only things
// that only contain scalars and shared boxes can avoid unwind
// cleanups.
pub fn type_needs_unwind_cleanup<'tcx>(cx: &ctxt<'tcx>, ty: Ty<'tcx>) -> bool {
return memoized(&cx.needs_unwind_cleanup_cache, ty, |ty| {
type_needs_unwind_cleanup_(cx, ty, &mut FnvHashSet::new())
});
fn type_needs_unwind_cleanup_<'tcx>(cx: &ctxt<'tcx>, ty: Ty<'tcx>,
tycache: &mut FnvHashSet<Ty<'tcx>>) -> bool {
// Prevent infinite recursion
if !tycache.insert(ty) {
return false;
}
let mut needs_unwind_cleanup = false;
maybe_walk_ty(ty, |ty| {
needs_unwind_cleanup |= match ty.sty {
ty_bool | ty_int(_) | ty_uint(_) |
ty_float(_) | ty_tup(_) | ty_ptr(_) => false,
ty_enum(did, ref substs) =>
enum_variants(cx, did).iter().any(|v|
v.args.iter().any(|aty| {
let t = aty.subst(cx, substs);
type_needs_unwind_cleanup_(cx, t, tycache)
})
),
_ => true
};
!needs_unwind_cleanup
});
needs_unwind_cleanup
}
}
/// Type contents is how the type checker reasons about kinds.
/// They track what kinds of things are found within a type. You can
/// think of them as kind of an "anti-kind". They track the kinds of values
/// and thinks that are contained in types. Having a larger contents for
/// a type tends to rule that type *out* from various kinds. For example,
/// a type that contains a reference is not sendable.
///
/// The reason we compute type contents and not kinds is that it is
/// easier for me (nmatsakis) to think about what is contained within
/// a type than to think about what is *not* contained within a type.
#[deriving(Clone)]
pub struct TypeContents {
pub bits: u64
}
macro_rules! def_type_content_sets(
(mod $mname:ident { $($name:ident = $bits:expr),+ }) => {
#[allow(non_snake_case)]
mod $mname {
use middle::ty::TypeContents;
$(
#[allow(non_upper_case_globals)]
pub const $name: TypeContents = TypeContents { bits: $bits };
)+
}
}
)
def_type_content_sets!(
mod TC {
None = 0b0000_0000__0000_0000__0000,
// Things that are interior to the value (first nibble):
InteriorUnsized = 0b0000_0000__0000_0000__0001,
InteriorUnsafe = 0b0000_0000__0000_0000__0010,
// InteriorAll = 0b00000000__00000000__1111,
// Things that are owned by the value (second and third nibbles):
OwnsOwned = 0b0000_0000__0000_0001__0000,
OwnsDtor = 0b0000_0000__0000_0010__0000,
OwnsManaged /* see [1] below */ = 0b0000_0000__0000_0100__0000,
OwnsAffine = 0b0000_0000__0000_1000__0000,
OwnsAll = 0b0000_0000__1111_1111__0000,
// Things that are reachable by the value in any way (fourth nibble):
ReachesBorrowed = 0b0000_0010__0000_0000__0000,
// ReachesManaged /* see [1] below */ = 0b0000_0100__0000_0000__0000,
ReachesMutable = 0b0000_1000__0000_0000__0000,
ReachesFfiUnsafe = 0b0010_0000__0000_0000__0000,
ReachesAll = 0b0011_1111__0000_0000__0000,
// Things that cause values to *move* rather than *copy*. This
// is almost the same as the `Copy` trait, but for managed
// data -- atm, we consider managed data to copy, not move,
// but it does not impl Copy as a pure memcpy is not good
// enough. Yuck.
Moves = 0b0000_0000__0000_1011__0000,
// Things that mean drop glue is necessary
NeedsDrop = 0b0000_0000__0000_0111__0000,
// Things that prevent values from being considered sized
Nonsized = 0b0000_0000__0000_0000__0001,
// Things that make values considered not POD (would be same
// as `Moves`, but for the fact that managed data `@` is
// not considered POD)
Noncopy = 0b0000_0000__0000_1111__0000,
// Bits to set when a managed value is encountered
//
// [1] Do not set the bits TC::OwnsManaged or
// TC::ReachesManaged directly, instead reference
// TC::Managed to set them both at once.
Managed = 0b0000_0100__0000_0100__0000,
// All bits
All = 0b1111_1111__1111_1111__1111
}
)
impl TypeContents {
pub fn when(&self, cond: bool) -> TypeContents {
if cond {*self} else {TC::None}
}
pub fn intersects(&self, tc: TypeContents) -> bool {
(self.bits & tc.bits) != 0
}
pub fn owns_managed(&self) -> bool {
self.intersects(TC::OwnsManaged)
}
pub fn owns_owned(&self) -> bool {
self.intersects(TC::OwnsOwned)
}
pub fn is_sized(&self, _: &ctxt) -> bool {
!self.intersects(TC::Nonsized)
}
pub fn interior_unsafe(&self) -> bool {
self.intersects(TC::InteriorUnsafe)
}
pub fn interior_unsized(&self) -> bool {
self.intersects(TC::InteriorUnsized)
}
pub fn moves_by_default(&self, _: &ctxt) -> bool {
self.intersects(TC::Moves)
}
pub fn needs_drop(&self, _: &ctxt) -> bool {
self.intersects(TC::NeedsDrop)
}
pub fn owned_pointer(&self) -> TypeContents {
/*!
* Includes only those bits that still apply
* when indirected through a `Box` pointer
*/
TC::OwnsOwned | (
*self & (TC::OwnsAll | TC::ReachesAll))
}
pub fn reference(&self, bits: TypeContents) -> TypeContents {
/*!
* Includes only those bits that still apply
* when indirected through a reference (`&`)
*/
bits | (
*self & TC::ReachesAll)
}
pub fn managed_pointer(&self) -> TypeContents {
/*!
* Includes only those bits that still apply
* when indirected through a managed pointer (`@`)
*/
TC::Managed | (
*self & TC::ReachesAll)
}
pub fn unsafe_pointer(&self) -> TypeContents {
/*!
* Includes only those bits that still apply
* when indirected through an unsafe pointer (`*`)
*/
*self & TC::ReachesAll
}
pub fn union<T>(v: &[T], f: |&T| -> TypeContents) -> TypeContents {
v.iter().fold(TC::None, |tc, ty| tc | f(ty))
}
pub fn has_dtor(&self) -> bool {
self.intersects(TC::OwnsDtor)
}
}
impl ops::BitOr<TypeContents,TypeContents> for TypeContents {
fn bitor(&self, other: &TypeContents) -> TypeContents {
TypeContents {bits: self.bits | other.bits}
}
}
impl ops::BitAnd<TypeContents,TypeContents> for TypeContents {
fn bitand(&self, other: &TypeContents) -> TypeContents {
TypeContents {bits: self.bits & other.bits}
}
}
impl ops::Sub<TypeContents,TypeContents> for TypeContents {
fn sub(&self, other: &TypeContents) -> TypeContents {
TypeContents {bits: self.bits & !other.bits}
}
}
impl fmt::Show for TypeContents {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "TypeContents({:b})", self.bits)
}
}
pub fn type_interior_is_unsafe<'tcx>(cx: &ctxt<'tcx>, ty: Ty<'tcx>) -> bool {
type_contents(cx, ty).interior_unsafe()
}
pub fn type_contents<'tcx>(cx: &ctxt<'tcx>, ty: Ty<'tcx>) -> TypeContents {
return memoized(&cx.tc_cache, ty, |ty| {
tc_ty(cx, ty, &mut FnvHashMap::new())
});
fn tc_ty<'tcx>(cx: &ctxt<'tcx>,
ty: Ty<'tcx>,
cache: &mut FnvHashMap<Ty<'tcx>, TypeContents>) -> TypeContents
{
// Subtle: Note that we are *not* using cx.tc_cache here but rather a
// private cache for this walk. This is needed in the case of cyclic
// types like:
//
// struct List { next: Box<Option<List>>, ... }
//
// When computing the type contents of such a type, we wind up deeply
// recursing as we go. So when we encounter the recursive reference
// to List, we temporarily use TC::None as its contents. Later we'll
// patch up the cache with the correct value, once we've computed it
// (this is basically a co-inductive process, if that helps). So in
// the end we'll compute TC::OwnsOwned, in this case.
//
// The problem is, as we are doing the computation, we will also
// compute an *intermediate* contents for, e.g., Option<List> of
// TC::None. This is ok during the computation of List itself, but if
// we stored this intermediate value into cx.tc_cache, then later
// requests for the contents of Option<List> would also yield TC::None
// which is incorrect. This value was computed based on the crutch
// value for the type contents of list. The correct value is
// TC::OwnsOwned. This manifested as issue #4821.
match cache.get(&ty) {
Some(tc) => { return *tc; }
None => {}
}
match cx.tc_cache.borrow().get(&ty) { // Must check both caches!
Some(tc) => { return *tc; }
None => {}
}
cache.insert(ty, TC::None);
let result = match ty.sty {
// uint and int are ffi-unsafe
ty_uint(ast::TyU) | ty_int(ast::TyI) => {
TC::ReachesFfiUnsafe
}
// Scalar and unique types are sendable, and durable
ty_infer(ty::SkolemizedIntTy(_)) |
ty_bool | ty_int(_) | ty_uint(_) | ty_float(_) |
ty_bare_fn(_) | ty::ty_char => {
TC::None
}
ty_closure(ref c) => {
closure_contents(cx, &**c) | TC::ReachesFfiUnsafe
}
ty_uniq(typ) => {
TC::ReachesFfiUnsafe | match typ.sty {
ty_str => TC::OwnsOwned,
_ => tc_ty(cx, typ, cache).owned_pointer(),
}
}
ty_trait(box TyTrait { bounds, .. }) => {
object_contents(cx, bounds) | TC::ReachesFfiUnsafe | TC::Nonsized
}
ty_ptr(ref mt) => {
tc_ty(cx, mt.ty, cache).unsafe_pointer()
}
ty_rptr(r, ref mt) => {
TC::ReachesFfiUnsafe | match mt.ty.sty {
ty_str => borrowed_contents(r, ast::MutImmutable),
ty_vec(..) => tc_ty(cx, mt.ty, cache).reference(borrowed_contents(r, mt.mutbl)),
_ => tc_ty(cx, mt.ty, cache).reference(borrowed_contents(r, mt.mutbl)),
}
}
ty_vec(ty, Some(_)) => {
tc_ty(cx, ty, cache)
}
ty_vec(ty, None) => {
tc_ty(cx, ty, cache) | TC::Nonsized
}
ty_str => TC::Nonsized,
ty_struct(did, ref substs) => {
let flds = struct_fields(cx, did, substs);
let mut res =
TypeContents::union(flds.as_slice(),
|f| tc_mt(cx, f.mt, cache));
if !lookup_repr_hints(cx, did).contains(&attr::ReprExtern) {
res = res | TC::ReachesFfiUnsafe;
}
if ty::has_dtor(cx, did) {
res = res | TC::OwnsDtor;
}
apply_lang_items(cx, did, res)
}
ty_unboxed_closure(did, r, ref substs) => {
// FIXME(#14449): `borrowed_contents` below assumes `&mut`
// unboxed closure.
let upvars = unboxed_closure_upvars(cx, did, substs);
TypeContents::union(upvars.as_slice(),
|f| tc_ty(cx, f.ty, cache)) |
borrowed_contents(r, MutMutable)
}
ty_tup(ref tys) => {
TypeContents::union(tys.as_slice(),
|ty| tc_ty(cx, *ty, cache))
}
ty_enum(did, ref substs) => {
let variants = substd_enum_variants(cx, did, substs);
let mut res =
TypeContents::union(variants.as_slice(), |variant| {
TypeContents::union(variant.args.as_slice(),
|arg_ty| {
tc_ty(cx, *arg_ty, cache)
})
});
if ty::has_dtor(cx, did) {
res = res | TC::OwnsDtor;
}
if variants.len() != 0 {
let repr_hints = lookup_repr_hints(cx, did);
if repr_hints.len() > 1 {
// this is an error later on, but this type isn't safe
res = res | TC::ReachesFfiUnsafe;
}
match repr_hints.as_slice().get(0) {
Some(h) => if !h.is_ffi_safe() {
res = res | TC::ReachesFfiUnsafe;
},
// ReprAny
None => {
res = res | TC::ReachesFfiUnsafe;
// We allow ReprAny enums if they are eligible for
// the nullable pointer optimization and the
// contained type is an `extern fn`
if variants.len() == 2 {
let mut data_idx = 0;
if variants[0].args.len() == 0 {
data_idx = 1;
}
if variants[data_idx].args.len() == 1 {
match variants[data_idx].args[0].sty {
ty_bare_fn(..) => { res = res - TC::ReachesFfiUnsafe; }
_ => { }
}
}
}
}
}
}
apply_lang_items(cx, did, res)
}
ty_param(p) => {
// We only ever ask for the kind of types that are defined in
// the current crate; therefore, the only type parameters that
// could be in scope are those defined in the current crate.
// If this assertion fails, it is likely because of a
// failure of the cross-crate inlining code to translate a
// def-id.
assert_eq!(p.def_id.krate, ast::LOCAL_CRATE);
let ty_param_defs = cx.ty_param_defs.borrow();
let tp_def = &(*ty_param_defs)[p.def_id.node];
kind_bounds_to_contents(
cx,
tp_def.bounds.builtin_bounds,
tp_def.bounds.trait_bounds.as_slice())
}
ty_infer(_) => {
// This occurs during coherence, but shouldn't occur at other
// times.
TC::All
}
ty_open(ty) => {
let result = tc_ty(cx, ty, cache);
assert!(!result.is_sized(cx))
result.unsafe_pointer() | TC::Nonsized
}
ty_err => {
cx.sess.bug("asked to compute contents of error type");
}
};
cache.insert(ty, result);
result
}
fn tc_mt<'tcx>(cx: &ctxt<'tcx>,
mt: mt<'tcx>,
cache: &mut FnvHashMap<Ty<'tcx>, TypeContents>) -> TypeContents
{
let mc = TC::ReachesMutable.when(mt.mutbl == MutMutable);
mc | tc_ty(cx, mt.ty, cache)
}
fn apply_lang_items(cx: &ctxt,
did: ast::DefId,
tc: TypeContents)
-> TypeContents
{
if Some(did) == cx.lang_items.managed_bound() {
tc | TC::Managed
} else if Some(did) == cx.lang_items.no_copy_bound() {
tc | TC::OwnsAffine
} else if Some(did) == cx.lang_items.unsafe_type() {
tc | TC::InteriorUnsafe
} else {
tc
}
}
fn borrowed_contents(region: ty::Region,
mutbl: ast::Mutability)
-> TypeContents {
/*!
* Type contents due to containing a reference
* with the region `region` and borrow kind `bk`
*/
let b = match mutbl {
ast::MutMutable => TC::ReachesMutable | TC::OwnsAffine,
ast::MutImmutable => TC::None,
};
b | (TC::ReachesBorrowed).when(region != ty::ReStatic)
}
fn closure_contents(cx: &ctxt, cty: &ClosureTy) -> TypeContents {
// Closure contents are just like trait contents, but with potentially
// even more stuff.
let st = object_contents(cx, cty.bounds);
let st = match cty.store {
UniqTraitStore => {
st.owned_pointer()
}
RegionTraitStore(r, mutbl) => {
st.reference(borrowed_contents(r, mutbl))
}
};
// This also prohibits "@once fn" from being copied, which allows it to
// be called. Neither way really makes much sense.
let ot = match cty.onceness {
ast::Once => TC::OwnsAffine,
ast::Many => TC::None,
};
st | ot
}
fn object_contents(cx: &ctxt,
bounds: ExistentialBounds)
-> TypeContents {
// These are the type contents of the (opaque) interior
kind_bounds_to_contents(cx, bounds.builtin_bounds, &[])
}
fn kind_bounds_to_contents<'tcx>(cx: &ctxt<'tcx>,
bounds: BuiltinBounds,
traits: &[Rc<TraitRef<'tcx>>])
-> TypeContents {
let _i = indenter();
let mut tc = TC::All;
each_inherited_builtin_bound(cx, bounds, traits, |bound| {
tc = tc - match bound {
BoundSync | BoundSend => TC::None,
BoundSized => TC::Nonsized,
BoundCopy => TC::Noncopy,
};
});
return tc;
// Iterates over all builtin bounds on the type parameter def, including
// those inherited from traits with builtin-kind-supertraits.
fn each_inherited_builtin_bound<'tcx>(cx: &ctxt<'tcx>,
bounds: BuiltinBounds,
traits: &[Rc<TraitRef<'tcx>>],
f: |BuiltinBound|) {
for bound in bounds.iter() {
f(bound);
}
each_bound_trait_and_supertraits(cx, traits, |trait_ref| {
let trait_def = lookup_trait_def(cx, trait_ref.def_id);
for bound in trait_def.bounds.builtin_bounds.iter() {
f(bound);
}
true
});
}
}
}
pub fn type_moves_by_default<'tcx>(cx: &ctxt<'tcx>, ty: Ty<'tcx>) -> bool {
type_contents(cx, ty).moves_by_default(cx)
}
pub fn is_ffi_safe<'tcx>(cx: &ctxt<'tcx>, ty: Ty<'tcx>) -> bool {
!type_contents(cx, ty).intersects(TC::ReachesFfiUnsafe)
}
// True if instantiating an instance of `r_ty` requires an instance of `r_ty`.
pub fn is_instantiable<'tcx>(cx: &ctxt<'tcx>, r_ty: Ty<'tcx>) -> bool {
fn type_requires<'tcx>(cx: &ctxt<'tcx>, seen: &mut Vec<DefId>,
r_ty: Ty<'tcx>, ty: Ty<'tcx>) -> bool {
debug!("type_requires({}, {})?",
::util::ppaux::ty_to_string(cx, r_ty),
::util::ppaux::ty_to_string(cx, ty));
let r = r_ty == ty || subtypes_require(cx, seen, r_ty, ty);
debug!("type_requires({}, {})? {}",
::util::ppaux::ty_to_string(cx, r_ty),
::util::ppaux::ty_to_string(cx, ty),
r);
return r;
}
fn subtypes_require<'tcx>(cx: &ctxt<'tcx>, seen: &mut Vec<DefId>,
r_ty: Ty<'tcx>, ty: Ty<'tcx>) -> bool {
debug!("subtypes_require({}, {})?",
::util::ppaux::ty_to_string(cx, r_ty),
::util::ppaux::ty_to_string(cx, ty));
let r = match ty.sty {
// fixed length vectors need special treatment compared to
// normal vectors, since they don't necessarily have the
// possibility to have length zero.
ty_vec(_, Some(0)) => false, // don't need no contents
ty_vec(ty, Some(_)) => type_requires(cx, seen, r_ty, ty),
ty_bool |
ty_char |
ty_int(_) |
ty_uint(_) |
ty_float(_) |
ty_str |
ty_bare_fn(_) |
ty_closure(_) |
ty_infer(_) |
ty_err |
ty_param(_) |
ty_vec(_, None) => {
false
}
ty_uniq(typ) | ty_open(typ) => {
type_requires(cx, seen, r_ty, typ)
}
ty_rptr(_, ref mt) => {
type_requires(cx, seen, r_ty, mt.ty)
}
ty_ptr(..) => {
false // unsafe ptrs can always be NULL
}
ty_trait(..) => {
false
}
ty_struct(ref did, _) if seen.contains(did) => {
false
}
ty_struct(did, ref substs) => {
seen.push(did);
let fields = struct_fields(cx, did, substs);
let r = fields.iter().any(|f| type_requires(cx, seen, r_ty, f.mt.ty));
seen.pop().unwrap();
r
}
ty_unboxed_closure(did, _, ref substs) => {
let upvars = unboxed_closure_upvars(cx, did, substs);
upvars.iter().any(|f| type_requires(cx, seen, r_ty, f.ty))
}
ty_tup(ref ts) => {
ts.iter().any(|ty| type_requires(cx, seen, r_ty, *ty))
}
ty_enum(ref did, _) if seen.contains(did) => {
false
}
ty_enum(did, ref substs) => {
seen.push(did);
let vs = enum_variants(cx, did);
let r = !vs.is_empty() && vs.iter().all(|variant| {
variant.args.iter().any(|aty| {
let sty = aty.subst(cx, substs);
type_requires(cx, seen, r_ty, sty)
})
});
seen.pop().unwrap();
r
}
};
debug!("subtypes_require({}, {})? {}",
::util::ppaux::ty_to_string(cx, r_ty),
::util::ppaux::ty_to_string(cx, ty),
r);
return r;
}
let mut seen = Vec::new();
!subtypes_require(cx, &mut seen, r_ty, r_ty)
}
/// Describes whether a type is representable. For types that are not
/// representable, 'SelfRecursive' and 'ContainsRecursive' are used to
/// distinguish between types that are recursive with themselves and types that
/// contain a different recursive type. These cases can therefore be treated
/// differently when reporting errors.
///
/// The ordering of the cases is significant. They are sorted so that cmp::max
/// will keep the "more erroneous" of two values.
#[deriving(PartialOrd, Ord, Eq, PartialEq, Show)]
pub enum Representability {
Representable,
ContainsRecursive,
SelfRecursive,
}
/// Check whether a type is representable. This means it cannot contain unboxed
/// structural recursion. This check is needed for structs and enums.
pub fn is_type_representable<'tcx>(cx: &ctxt<'tcx>, sp: Span, ty: Ty<'tcx>)
-> Representability {
// Iterate until something non-representable is found
fn find_nonrepresentable<'tcx, It: Iterator<Ty<'tcx>>>(cx: &ctxt<'tcx>, sp: Span,
seen: &mut Vec<Ty<'tcx>>,
mut iter: It)
-> Representability {
iter.fold(Representable,
|r, ty| cmp::max(r, is_type_structurally_recursive(cx, sp, seen, ty)))
}
fn are_inner_types_recursive<'tcx>(cx: &ctxt<'tcx>, sp: Span,
seen: &mut Vec<Ty<'tcx>>, ty: Ty<'tcx>)
-> Representability {
match ty.sty {
ty_tup(ref ts) => {
find_nonrepresentable(cx, sp, seen, ts.iter().map(|ty| *ty))
}
// Fixed-length vectors.
// FIXME(#11924) Behavior undecided for zero-length vectors.
ty_vec(ty, Some(_)) => {
is_type_structurally_recursive(cx, sp, seen, ty)
}
ty_struct(did, ref substs) => {
let fields = struct_fields(cx, did, substs);
find_nonrepresentable(cx, sp, seen, fields.iter().map(|f| f.mt.ty))
}
ty_enum(did, ref substs) => {
let vs = enum_variants(cx, did);
let iter = vs.iter()
.flat_map(|variant| { variant.args.iter() })
.map(|aty| { aty.subst_spanned(cx, substs, Some(sp)) });
find_nonrepresentable(cx, sp, seen, iter)
}
ty_unboxed_closure(did, _, ref substs) => {
let upvars = unboxed_closure_upvars(cx, did, substs);
find_nonrepresentable(cx, sp, seen, upvars.iter().map(|f| f.ty))
}
_ => Representable,
}
}
fn same_struct_or_enum_def_id(ty: Ty, did: DefId) -> bool {
match ty.sty {
ty_struct(ty_did, _) | ty_enum(ty_did, _) => {
ty_did == did
}
_ => false
}
}
fn same_type<'tcx>(a: Ty<'tcx>, b: Ty<'tcx>) -> bool {
match (&a.sty, &b.sty) {
(&ty_struct(did_a, ref substs_a), &ty_struct(did_b, ref substs_b)) |
(&ty_enum(did_a, ref substs_a), &ty_enum(did_b, ref substs_b)) => {
if did_a != did_b {
return false;
}
let types_a = substs_a.types.get_slice(subst::TypeSpace);
let types_b = substs_b.types.get_slice(subst::TypeSpace);
let mut pairs = types_a.iter().zip(types_b.iter());
pairs.all(|(&a, &b)| same_type(a, b))
}
_ => {
a == b
}
}
}
// Does the type `ty` directly (without indirection through a pointer)
// contain any types on stack `seen`?
fn is_type_structurally_recursive<'tcx>(cx: &ctxt<'tcx>, sp: Span,
seen: &mut Vec<Ty<'tcx>>,
ty: Ty<'tcx>) -> Representability {
debug!("is_type_structurally_recursive: {}",
::util::ppaux::ty_to_string(cx, ty));
match ty.sty {
ty_struct(did, _) | ty_enum(did, _) => {
{
// Iterate through stack of previously seen types.
let mut iter = seen.iter();
// The first item in `seen` is the type we are actually curious about.
// We want to return SelfRecursive if this type contains itself.
// It is important that we DON'T take generic parameters into account
// for this check, so that Bar<T> in this example counts as SelfRecursive:
//
// struct Foo;
// struct Bar<T> { x: Bar<Foo> }
match iter.next() {
Some(&seen_type) => {
if same_struct_or_enum_def_id(seen_type, did) {
debug!("SelfRecursive: {} contains {}",
::util::ppaux::ty_to_string(cx, seen_type),
::util::ppaux::ty_to_string(cx, ty));
return SelfRecursive;
}
}
None => {}
}
// We also need to know whether the first item contains other types that
// are structurally recursive. If we don't catch this case, we will recurse
// infinitely for some inputs.
//
// It is important that we DO take generic parameters into account here,
// so that code like this is considered SelfRecursive, not ContainsRecursive:
//
// struct Foo { Option<Option<Foo>> }
for &seen_type in iter {
if same_type(ty, seen_type) {
debug!("ContainsRecursive: {} contains {}",
::util::ppaux::ty_to_string(cx, seen_type),
::util::ppaux::ty_to_string(cx, ty));
return ContainsRecursive;
}
}
}
// For structs and enums, track all previously seen types by pushing them
// onto the 'seen' stack.
seen.push(ty);
let out = are_inner_types_recursive(cx, sp, seen, ty);
seen.pop();
out
}
_ => {
// No need to push in other cases.
are_inner_types_recursive(cx, sp, seen, ty)
}
}
}
debug!("is_type_representable: {}",
::util::ppaux::ty_to_string(cx, ty));
// To avoid a stack overflow when checking an enum variant or struct that
// contains a different, structurally recursive type, maintain a stack
// of seen types and check recursion for each of them (issues #3008, #3779).
let mut seen: Vec<Ty> = Vec::new();
let r = is_type_structurally_recursive(cx, sp, &mut seen, ty);
debug!("is_type_representable: {} is {}",
::util::ppaux::ty_to_string(cx, ty), r);
r
}
pub fn type_is_trait(ty: Ty) -> bool {
type_trait_info(ty).is_some()
}
pub fn type_trait_info<'tcx>(ty: Ty<'tcx>) -> Option<&'tcx TyTrait<'tcx>> {
match ty.sty {
ty_uniq(ty) | ty_rptr(_, mt { ty, ..}) | ty_ptr(mt { ty, ..}) => match ty.sty {
ty_trait(ref t) => Some(&**t),
_ => None
},
ty_trait(ref t) => Some(&**t),
_ => None
}
}
pub fn type_is_integral(ty: Ty) -> bool {
match ty.sty {
ty_infer(IntVar(_)) | ty_int(_) | ty_uint(_) => true,
_ => false
}
}
pub fn type_is_skolemized(ty: Ty) -> bool {
match ty.sty {
ty_infer(SkolemizedTy(_)) => true,
ty_infer(SkolemizedIntTy(_)) => true,
_ => false
}
}
pub fn type_is_uint(ty: Ty) -> bool {
match ty.sty {
ty_infer(IntVar(_)) | ty_uint(ast::TyU) => true,
_ => false
}
}
pub fn type_is_char(ty: Ty) -> bool {
match ty.sty {
ty_char => true,
_ => false
}
}
pub fn type_is_bare_fn(ty: Ty) -> bool {
match ty.sty {
ty_bare_fn(..) => true,
_ => false
}
}
pub fn type_is_fp(ty: Ty) -> bool {
match ty.sty {
ty_infer(FloatVar(_)) | ty_float(_) => true,
_ => false
}
}
pub fn type_is_numeric(ty: Ty) -> bool {
return type_is_integral(ty) || type_is_fp(ty);
}
pub fn type_is_signed(ty: Ty) -> bool {
match ty.sty {
ty_int(_) => true,
_ => false
}
}
pub fn type_is_machine(ty: Ty) -> bool {
match ty.sty {
ty_int(ast::TyI) | ty_uint(ast::TyU) => false,
ty_int(..) | ty_uint(..) | ty_float(..) => true,
_ => false
}
}
// Is the type's representation size known at compile time?
pub fn type_is_sized<'tcx>(cx: &ctxt<'tcx>, ty: Ty<'tcx>) -> bool {
type_contents(cx, ty).is_sized(cx)
}
pub fn lltype_is_sized<'tcx>(cx: &ctxt<'tcx>, ty: Ty<'tcx>) -> bool {
match ty.sty {
ty_open(_) => true,
_ => type_contents(cx, ty).is_sized(cx)
}
}
// Return the smallest part of `ty` which is unsized. Fails if `ty` is sized.
// 'Smallest' here means component of the static representation of the type; not
// the size of an object at runtime.
pub fn unsized_part_of_type<'tcx>(cx: &ctxt<'tcx>, ty: Ty<'tcx>) -> Ty<'tcx> {
match ty.sty {
ty_str | ty_trait(..) | ty_vec(..) => ty,
ty_struct(def_id, ref substs) => {
let unsized_fields: Vec<_> = struct_fields(cx, def_id, substs).iter()
.map(|f| f.mt.ty).filter(|ty| !type_is_sized(cx, *ty)).collect();
// Exactly one of the fields must be unsized.
assert!(unsized_fields.len() == 1)
unsized_part_of_type(cx, unsized_fields[0])
}
_ => {
assert!(type_is_sized(cx, ty),
"unsized_part_of_type failed even though ty is unsized");
panic!("called unsized_part_of_type with sized ty");
}
}
}
// Whether a type is enum like, that is an enum type with only nullary
// constructors
pub fn type_is_c_like_enum(cx: &ctxt, ty: Ty) -> bool {
match ty.sty {
ty_enum(did, _) => {
let variants = enum_variants(cx, did);
if variants.len() == 0 {
false
} else {
variants.iter().all(|v| v.args.len() == 0)
}
}
_ => false
}
}
// Returns the type and mutability of *ty.
//
// The parameter `explicit` indicates if this is an *explicit* dereference.
// Some types---notably unsafe ptrs---can only be dereferenced explicitly.
pub fn deref<'tcx>(ty: Ty<'tcx>, explicit: bool) -> Option<mt<'tcx>> {
match ty.sty {
ty_uniq(ty) => {
Some(mt {
ty: ty,
mutbl: ast::MutImmutable,
})
},
ty_rptr(_, mt) => Some(mt),
ty_ptr(mt) if explicit => Some(mt),
_ => None
}
}
pub fn close_type<'tcx>(cx: &ctxt<'tcx>, ty: Ty<'tcx>) -> Ty<'tcx> {
match ty.sty {
ty_open(ty) => mk_rptr(cx, ReStatic, mt {ty: ty, mutbl:ast::MutImmutable}),
_ => cx.sess.bug(format!("Trying to close a non-open type {}",
ty_to_string(cx, ty)).as_slice())
}
}
pub fn type_content<'tcx>(ty: Ty<'tcx>) -> Ty<'tcx> {
match ty.sty {
ty_uniq(ty) => ty,
ty_rptr(_, mt) |ty_ptr(mt) => mt.ty,
_ => ty
}
}
// Extract the unsized type in an open type (or just return ty if it is not open).
pub fn unopen_type<'tcx>(ty: Ty<'tcx>) -> Ty<'tcx> {
match ty.sty {
ty_open(ty) => ty,
_ => ty
}
}
// Returns the type of ty[i]
pub fn index<'tcx>(ty: Ty<'tcx>) -> Option<Ty<'tcx>> {
match ty.sty {
ty_vec(ty, _) => Some(ty),
_ => None
}
}
// Returns the type of elements contained within an 'array-like' type.
// This is exactly the same as the above, except it supports strings,
// which can't actually be indexed.
pub fn array_element_ty<'tcx>(ty: Ty<'tcx>) -> Option<Ty<'tcx>> {
match ty.sty {
ty_vec(ty, _) => Some(ty),
ty_str => Some(mk_u8()),
_ => None
}
}
/// Returns the type of element at index `i` in tuple or tuple-like type `t`.
/// For an enum `t`, `variant` is None only if `t` is a univariant enum.
pub fn positional_element_ty<'tcx>(cx: &ctxt<'tcx>,
ty: Ty<'tcx>,
i: uint,
variant: Option<ast::DefId>) -> Option<Ty<'tcx>> {
match (&ty.sty, variant) {
(&ty_tup(ref v), None) => v.as_slice().get(i).map(|&t| t),
(&ty_struct(def_id, ref substs), None) => lookup_struct_fields(cx, def_id)
.as_slice().get(i)
.map(|&t|lookup_item_type(cx, t.id).ty.subst(cx, substs)),
(&ty_enum(def_id, ref substs), Some(variant_def_id)) => {
let variant_info = enum_variant_with_id(cx, def_id, variant_def_id);
variant_info.args.as_slice().get(i).map(|t|t.subst(cx, substs))
}
(&ty_enum(def_id, ref substs), None) => {
assert!(enum_is_univariant(cx, def_id));
let enum_variants = enum_variants(cx, def_id);
let variant_info = &(*enum_variants)[0];
variant_info.args.as_slice().get(i).map(|t|t.subst(cx, substs))
}
_ => None
}
}
/// Returns the type of element at field `n` in struct or struct-like type `t`.
/// For an enum `t`, `variant` must be some def id.
pub fn named_element_ty<'tcx>(cx: &ctxt<'tcx>,
ty: Ty<'tcx>,
n: ast::Name,
variant: Option<ast::DefId>) -> Option<Ty<'tcx>> {
match (&ty.sty, variant) {
(&ty_struct(def_id, ref substs), None) => {
let r = lookup_struct_fields(cx, def_id);
r.iter().find(|f| f.name == n)
.map(|&f| lookup_field_type(cx, def_id, f.id, substs))
}
(&ty_enum(def_id, ref substs), Some(variant_def_id)) => {
let variant_info = enum_variant_with_id(cx, def_id, variant_def_id);
variant_info.arg_names.as_ref()
.expect("must have struct enum variant if accessing a named fields")
.iter().zip(variant_info.args.iter())
.find(|&(ident, _)| ident.name == n)
.map(|(_ident, arg_t)| arg_t.subst(cx, substs))
}
_ => None
}
}
pub fn node_id_to_trait_ref<'tcx>(cx: &ctxt<'tcx>, id: ast::NodeId)
-> Rc<ty::TraitRef<'tcx>> {
match cx.trait_refs.borrow().get(&id) {
Some(ty) => ty.clone(),
None => cx.sess.bug(
format!("node_id_to_trait_ref: no trait ref for node `{}`",
cx.map.node_to_string(id)).as_slice())
}
}
pub fn try_node_id_to_type<'tcx>(cx: &ctxt<'tcx>, id: ast::NodeId) -> Option<Ty<'tcx>> {
cx.node_types.borrow().get(&id).cloned()
}
pub fn node_id_to_type<'tcx>(cx: &ctxt<'tcx>, id: ast::NodeId) -> Ty<'tcx> {
match try_node_id_to_type(cx, id) {
Some(ty) => ty,
None => cx.sess.bug(
format!("node_id_to_type: no type for node `{}`",
cx.map.node_to_string(id)).as_slice())
}
}
pub fn node_id_to_type_opt<'tcx>(cx: &ctxt<'tcx>, id: ast::NodeId) -> Option<Ty<'tcx>> {
match cx.node_types.borrow().get(&id) {
Some(&ty) => Some(ty),
None => None
}
}
pub fn node_id_item_substs<'tcx>(cx: &ctxt<'tcx>, id: ast::NodeId) -> ItemSubsts<'tcx> {
match cx.item_substs.borrow().get(&id) {
None => ItemSubsts::empty(),
Some(ts) => ts.clone(),
}
}
pub fn fn_is_variadic(fty: Ty) -> bool {
match fty.sty {
ty_bare_fn(ref f) => f.sig.variadic,
ty_closure(ref f) => f.sig.variadic,
ref s => {
panic!("fn_is_variadic() called on non-fn type: {}", s)
}
}
}
pub fn ty_fn_sig<'tcx>(fty: Ty<'tcx>) -> &'tcx FnSig<'tcx> {
match fty.sty {
ty_bare_fn(ref f) => &f.sig,
ty_closure(ref f) => &f.sig,
ref s => {
panic!("ty_fn_sig() called on non-fn type: {}", s)
}
}
}
/// Returns the ABI of the given function.
pub fn ty_fn_abi(fty: Ty) -> abi::Abi {
match fty.sty {
ty_bare_fn(ref f) => f.abi,
ty_closure(ref f) => f.abi,
_ => panic!("ty_fn_abi() called on non-fn type"),
}
}
// Type accessors for substructures of types
pub fn ty_fn_args<'tcx>(fty: Ty<'tcx>) -> &'tcx [Ty<'tcx>] {
ty_fn_sig(fty).inputs.as_slice()
}
pub fn ty_closure_store(fty: Ty) -> TraitStore {
match fty.sty {
ty_closure(ref f) => f.store,
ty_unboxed_closure(..) => {
// Close enough for the purposes of all the callers of this
// function (which is soon to be deprecated anyhow).
UniqTraitStore
}
ref s => {
panic!("ty_closure_store() called on non-closure type: {}", s)
}
}
}
pub fn ty_fn_ret<'tcx>(fty: Ty<'tcx>) -> FnOutput<'tcx> {
match fty.sty {
ty_bare_fn(ref f) => f.sig.output,
ty_closure(ref f) => f.sig.output,
ref s => {
panic!("ty_fn_ret() called on non-fn type: {}", s)
}
}
}
pub fn is_fn_ty(fty: Ty) -> bool {
match fty.sty {
ty_bare_fn(_) => true,
ty_closure(_) => true,
_ => false
}
}
pub fn ty_region(tcx: &ctxt,
span: Span,
ty: Ty) -> Region {
match ty.sty {
ty_rptr(r, _) => r,
ref s => {
tcx.sess.span_bug(
span,
format!("ty_region() invoked on an inappropriate ty: {}",
s).as_slice());
}
}
}
pub fn free_region_from_def(free_id: ast::NodeId, def: &RegionParameterDef)
-> ty::Region
{
ty::ReFree(ty::FreeRegion { scope: region::CodeExtent::from_node_id(free_id),
bound_region: ty::BrNamed(def.def_id,
def.name) })
}
// Returns the type of a pattern as a monotype. Like @expr_ty, this function
// doesn't provide type parameter substitutions.
pub fn pat_ty<'tcx>(cx: &ctxt<'tcx>, pat: &ast::Pat) -> Ty<'tcx> {
return node_id_to_type(cx, pat.id);
}
// Returns the type of an expression as a monotype.
//
// NB (1): This is the PRE-ADJUSTMENT TYPE for the expression. That is, in
// some cases, we insert `AutoAdjustment` annotations such as auto-deref or
// auto-ref. The type returned by this function does not consider such
// adjustments. See `expr_ty_adjusted()` instead.
//
// NB (2): This type doesn't provide type parameter substitutions; e.g. if you
// ask for the type of "id" in "id(3)", it will return "fn(&int) -> int"
// instead of "fn(ty) -> T with T = int".
pub fn expr_ty<'tcx>(cx: &ctxt<'tcx>, expr: &ast::Expr) -> Ty<'tcx> {
return node_id_to_type(cx, expr.id);
}
pub fn expr_ty_opt<'tcx>(cx: &ctxt<'tcx>, expr: &ast::Expr) -> Option<Ty<'tcx>> {
return node_id_to_type_opt(cx, expr.id);
}
pub fn expr_ty_adjusted<'tcx>(cx: &ctxt<'tcx>, expr: &ast::Expr) -> Ty<'tcx> {
/*!
*
* Returns the type of `expr`, considering any `AutoAdjustment`
* entry recorded for that expression.
*
* It would almost certainly be better to store the adjusted ty in with
* the `AutoAdjustment`, but I opted not to do this because it would
* require serializing and deserializing the type and, although that's not
* hard to do, I just hate that code so much I didn't want to touch it
* unless it was to fix it properly, which seemed a distraction from the
* task at hand! -nmatsakis
*/
adjust_ty(cx, expr.span, expr.id, expr_ty(cx, expr),
cx.adjustments.borrow().get(&expr.id),
|method_call| cx.method_map.borrow().get(&method_call).map(|method| method.ty))
}
pub fn expr_span(cx: &ctxt, id: NodeId) -> Span {
match cx.map.find(id) {
Some(ast_map::NodeExpr(e)) => {
e.span
}
Some(f) => {
cx.sess.bug(format!("Node id {} is not an expr: {}",
id,
f).as_slice());
}
None => {
cx.sess.bug(format!("Node id {} is not present \
in the node map", id).as_slice());
}
}
}
pub fn local_var_name_str(cx: &ctxt, id: NodeId) -> InternedString {
match cx.map.find(id) {
Some(ast_map::NodeLocal(pat)) => {
match pat.node {
ast::PatIdent(_, ref path1, _) => {
token::get_ident(path1.node)
}
_ => {
cx.sess.bug(
format!("Variable id {} maps to {}, not local",
id,
pat).as_slice());
}
}
}
r => {
cx.sess.bug(format!("Variable id {} maps to {}, not local",
id,
r).as_slice());
}
}
}
pub fn adjust_ty<'tcx>(cx: &ctxt<'tcx>,
span: Span,
expr_id: ast::NodeId,
unadjusted_ty: Ty<'tcx>,
adjustment: Option<&AutoAdjustment<'tcx>>,
method_type: |typeck::MethodCall| -> Option<Ty<'tcx>>)
-> Ty<'tcx> {
/*! See `expr_ty_adjusted` */
match unadjusted_ty.sty {
ty_err => return unadjusted_ty,
_ => {}
}
return match adjustment {
Some(adjustment) => {
match *adjustment {
AdjustAddEnv(store) => {
match unadjusted_ty.sty {
ty::ty_bare_fn(ref b) => {
let bounds = ty::ExistentialBounds {
region_bound: ReStatic,
builtin_bounds: all_builtin_bounds(),
};
ty::mk_closure(
cx,
ty::ClosureTy {fn_style: b.fn_style,
onceness: ast::Many,
store: store,
bounds: bounds,
sig: b.sig.clone(),
abi: b.abi})
}
ref b => {
cx.sess.bug(
format!("add_env adjustment on non-bare-fn: \
{}",
b).as_slice());
}
}
}
AdjustDerefRef(ref adj) => {
let mut adjusted_ty = unadjusted_ty;
if !ty::type_is_error(adjusted_ty) {
for i in range(0, adj.autoderefs) {
let method_call = typeck::MethodCall::autoderef(expr_id, i);
match method_type(method_call) {
Some(method_ty) => {
if let ty::FnConverging(result_type) = ty_fn_ret(method_ty) {
adjusted_ty = result_type;
}
}
None => {}
}
match deref(adjusted_ty, true) {
Some(mt) => { adjusted_ty = mt.ty; }
None => {
cx.sess.span_bug(
span,
format!("the {}th autoderef failed: \
{}",
i,
ty_to_string(cx, adjusted_ty))
.as_slice());
}
}
}
}
adjust_ty_for_autoref(cx, span, adjusted_ty, adj.autoref.as_ref())
}
}
}
None => unadjusted_ty
};
}
pub fn adjust_ty_for_autoref<'tcx>(cx: &ctxt<'tcx>,
span: Span,
ty: Ty<'tcx>,
autoref: Option<&AutoRef<'tcx>>)
-> Ty<'tcx>
{
match autoref {
None => ty,
Some(&AutoPtr(r, m, ref a)) => {
let adjusted_ty = match a {
&Some(box ref a) => adjust_ty_for_autoref(cx, span, ty, Some(a)),
&None => ty
};
mk_rptr(cx, r, mt {
ty: adjusted_ty,
mutbl: m
})
}
Some(&AutoUnsafe(m, ref a)) => {
let adjusted_ty = match a {
&Some(box ref a) => adjust_ty_for_autoref(cx, span, ty, Some(a)),
&None => ty
};
mk_ptr(cx, mt {ty: adjusted_ty, mutbl: m})
}
Some(&AutoUnsize(ref k)) => unsize_ty(cx, ty, k, span),
Some(&AutoUnsizeUniq(ref k)) => ty::mk_uniq(cx, unsize_ty(cx, ty, k, span)),
}
}
// Take a sized type and a sizing adjustment and produce an unsized version of
// the type.
pub fn unsize_ty<'tcx>(cx: &ctxt<'tcx>,
ty: Ty<'tcx>,
kind: &UnsizeKind<'tcx>,
span: Span)
-> Ty<'tcx> {
match kind {
&UnsizeLength(len) => match ty.sty {
ty_vec(ty, Some(n)) => {
assert!(len == n);
mk_vec(cx, ty, None)
}
_ => cx.sess.span_bug(span,
format!("UnsizeLength with bad sty: {}",
ty_to_string(cx, ty)).as_slice())
},
&UnsizeStruct(box ref k, tp_index) => match ty.sty {
ty_struct(did, ref substs) => {
let ty_substs = substs.types.get_slice(subst::TypeSpace);
let new_ty = unsize_ty(cx, ty_substs[tp_index], k, span);
let mut unsized_substs = substs.clone();
unsized_substs.types.get_mut_slice(subst::TypeSpace)[tp_index] = new_ty;
mk_struct(cx, did, unsized_substs)
}
_ => cx.sess.span_bug(span,
format!("UnsizeStruct with bad sty: {}",
ty_to_string(cx, ty)).as_slice())
},
&UnsizeVtable(TyTrait { ref principal, bounds }, _) => {
mk_trait(cx, (*principal).clone(), bounds)
}
}
}
pub fn resolve_expr(tcx: &ctxt, expr: &ast::Expr) -> def::Def {
match tcx.def_map.borrow().get(&expr.id) {
Some(&def) => def,
None => {
tcx.sess.span_bug(expr.span, format!(
"no def-map entry for expr {}", expr.id).as_slice());
}
}
}
pub fn expr_is_lval(tcx: &ctxt, e: &ast::Expr) -> bool {
match expr_kind(tcx, e) {
LvalueExpr => true,
RvalueDpsExpr | RvalueDatumExpr | RvalueStmtExpr => false
}
}
/// We categorize expressions into three kinds. The distinction between
/// lvalue/rvalue is fundamental to the language. The distinction between the
/// two kinds of rvalues is an artifact of trans which reflects how we will
/// generate code for that kind of expression. See trans/expr.rs for more
/// information.
pub enum ExprKind {
LvalueExpr,
RvalueDpsExpr,
RvalueDatumExpr,
RvalueStmtExpr
}
pub fn expr_kind(tcx: &ctxt, expr: &ast::Expr) -> ExprKind {
if tcx.method_map.borrow().contains_key(&typeck::MethodCall::expr(expr.id)) {
// Overloaded operations are generally calls, and hence they are
// generated via DPS, but there are a few exceptions:
return match expr.node {
// `a += b` has a unit result.
ast::ExprAssignOp(..) => RvalueStmtExpr,
// the deref method invoked for `*a` always yields an `&T`
ast::ExprUnary(ast::UnDeref, _) => LvalueExpr,
// the index method invoked for `a[i]` always yields an `&T`
ast::ExprIndex(..) => LvalueExpr,
// the slice method invoked for `a[..]` always yields an `&T`
ast::ExprSlice(..) => LvalueExpr,
// `for` loops are statements
ast::ExprForLoop(..) => RvalueStmtExpr,
// in the general case, result could be any type, use DPS
_ => RvalueDpsExpr
};
}
match expr.node {
ast::ExprPath(..) => {
match resolve_expr(tcx, expr) {
def::DefVariant(tid, vid, _) => {
let variant_info = enum_variant_with_id(tcx, tid, vid);
if variant_info.args.len() > 0u {
// N-ary variant.
RvalueDatumExpr
} else {
// Nullary variant.
RvalueDpsExpr
}
}
def::DefStruct(_) => {
match expr_ty(tcx, expr).sty {
ty_bare_fn(..) => RvalueDatumExpr,
_ => RvalueDpsExpr
}
}
// Special case: A unit like struct's constructor must be called without () at the
// end (like `UnitStruct`) which means this is an ExprPath to a DefFn. But in case
// of unit structs this is should not be interpreted as function pointer but as
// call to the constructor.
def::DefFn(_, true) => RvalueDpsExpr,
// Fn pointers are just scalar values.
def::DefFn(..) | def::DefStaticMethod(..) | def::DefMethod(..) => RvalueDatumExpr,
// Note: there is actually a good case to be made that
// DefArg's, particularly those of immediate type, ought to
// considered rvalues.
def::DefStatic(..) |
def::DefUpvar(..) |
def::DefLocal(..) => LvalueExpr,
def::DefConst(..) => RvalueDatumExpr,
def => {
tcx.sess.span_bug(
expr.span,
format!("uncategorized def for expr {}: {}",
expr.id,
def).as_slice());
}
}
}
ast::ExprUnary(ast::UnDeref, _) |
ast::ExprField(..) |
ast::ExprTupField(..) |
ast::ExprIndex(..) |
ast::ExprSlice(..) => {
LvalueExpr
}
ast::ExprCall(..) |
ast::ExprMethodCall(..) |
ast::ExprStruct(..) |
ast::ExprTup(..) |
ast::ExprIf(..) |
ast::ExprMatch(..) |
ast::ExprClosure(..) |
ast::ExprProc(..) |
ast::ExprBlock(..) |
ast::ExprRepeat(..) |
ast::ExprVec(..) => {
RvalueDpsExpr
}
ast::ExprIfLet(..) => {
tcx.sess.span_bug(expr.span, "non-desugared ExprIfLet");
}
ast::ExprWhileLet(..) => {
tcx.sess.span_bug(expr.span, "non-desugared ExprWhileLet");
}
ast::ExprLit(ref lit) if lit_is_str(&**lit) => {
RvalueDpsExpr
}
ast::ExprCast(..) => {
match tcx.node_types.borrow().get(&expr.id) {
Some(&ty) => {
if type_is_trait(ty) {
RvalueDpsExpr
} else {
RvalueDatumExpr
}
}
None => {
// Technically, it should not happen that the expr is not
// present within the table. However, it DOES happen
// during type check, because the final types from the
// expressions are not yet recorded in the tcx. At that
// time, though, we are only interested in knowing lvalue
// vs rvalue. It would be better to base this decision on
// the AST type in cast node---but (at the time of this
// writing) it's not easy to distinguish casts to traits
// from other casts based on the AST. This should be
// easier in the future, when casts to traits
// would like @Foo, Box<Foo>, or &Foo.
RvalueDatumExpr
}
}
}
ast::ExprBreak(..) |
ast::ExprAgain(..) |
ast::ExprRet(..) |
ast::ExprWhile(..) |
ast::ExprLoop(..) |
ast::ExprAssign(..) |
ast::ExprInlineAsm(..) |
ast::ExprAssignOp(..) |
ast::ExprForLoop(..) => {
RvalueStmtExpr
}
ast::ExprLit(_) | // Note: LitStr is carved out above
ast::ExprUnary(..) |
ast::ExprAddrOf(..) |
ast::ExprBinary(..) => {
RvalueDatumExpr
}
ast::ExprBox(ref place, _) => {
// Special case `Box<T>` for now:
let definition = match tcx.def_map.borrow().get(&place.id) {
Some(&def) => def,
None => panic!("no def for place"),
};
let def_id = definition.def_id();
if tcx.lang_items.exchange_heap() == Some(def_id) {
RvalueDatumExpr
} else {
RvalueDpsExpr
}
}
ast::ExprParen(ref e) => expr_kind(tcx, &**e),
ast::ExprMac(..) => {
tcx.sess.span_bug(
expr.span,
"macro expression remains after expansion");
}
}
}
pub fn stmt_node_id(s: &ast::Stmt) -> ast::NodeId {
match s.node {
ast::StmtDecl(_, id) | StmtExpr(_, id) | StmtSemi(_, id) => {
return id;
}
ast::StmtMac(..) => panic!("unexpanded macro in trans")
}
}
pub fn field_idx_strict(tcx: &ctxt, name: ast::Name, fields: &[field])
-> uint {
let mut i = 0u;
for f in fields.iter() { if f.name == name { return i; } i += 1u; }
tcx.sess.bug(format!(
"no field named `{}` found in the list of fields `{}`",
token::get_name(name),
fields.iter()
.map(|f| token::get_name(f.name).get().to_string())
.collect::<Vec<String>>()).as_slice());
}
pub fn impl_or_trait_item_idx(id: ast::Name, trait_items: &[ImplOrTraitItem])
-> Option<uint> {
trait_items.iter().position(|m| m.name() == id)
}
pub fn ty_sort_string<'tcx>(cx: &ctxt<'tcx>, ty: Ty<'tcx>) -> String {
match ty.sty {
ty_bool | ty_char | ty_int(_) |
ty_uint(_) | ty_float(_) | ty_str => {
::util::ppaux::ty_to_string(cx, ty)
}
ty_tup(ref tys) if tys.is_empty() => ::util::ppaux::ty_to_string(cx, ty),
ty_enum(id, _) => format!("enum {}", item_path_str(cx, id)),
ty_uniq(_) => "box".to_string(),
ty_vec(_, Some(n)) => format!("array of {} elements", n),
ty_vec(_, None) => "slice".to_string(),
ty_ptr(_) => "*-ptr".to_string(),
ty_rptr(_, _) => "&-ptr".to_string(),
ty_bare_fn(_) => "extern fn".to_string(),
ty_closure(_) => "fn".to_string(),
ty_trait(ref inner) => {
format!("trait {}", item_path_str(cx, inner.principal.def_id))
}
ty_struct(id, _) => {
format!("struct {}", item_path_str(cx, id))
}
ty_unboxed_closure(..) => "closure".to_string(),
ty_tup(_) => "tuple".to_string(),
ty_infer(TyVar(_)) => "inferred type".to_string(),
ty_infer(IntVar(_)) => "integral variable".to_string(),
ty_infer(FloatVar(_)) => "floating-point variable".to_string(),
ty_infer(SkolemizedTy(_)) => "skolemized type".to_string(),
ty_infer(SkolemizedIntTy(_)) => "skolemized integral type".to_string(),
ty_param(ref p) => {
if p.space == subst::SelfSpace {
"Self".to_string()
} else {
"type parameter".to_string()
}
}
ty_err => "type error".to_string(),
ty_open(_) => "opened DST".to_string(),
}
}
pub fn type_err_to_str<'tcx>(cx: &ctxt<'tcx>, err: &type_err<'tcx>) -> String {
/*!
*
* Explains the source of a type err in a short,
* human readable way. This is meant to be placed in
* parentheses after some larger message. You should
* also invoke `note_and_explain_type_err()` afterwards
* to present additional details, particularly when
* it comes to lifetime-related errors. */
fn tstore_to_closure(s: &TraitStore) -> String {
match s {
&UniqTraitStore => "proc".to_string(),
&RegionTraitStore(..) => "closure".to_string()
}
}
match *err {
terr_cyclic_ty => "cyclic type of infinite size".to_string(),
terr_mismatch => "types differ".to_string(),
terr_fn_style_mismatch(values) => {
format!("expected {} fn, found {} fn",
values.expected.to_string(),
values.found.to_string())
}
terr_abi_mismatch(values) => {
format!("expected {} fn, found {} fn",
values.expected.to_string(),
values.found.to_string())
}
terr_onceness_mismatch(values) => {
format!("expected {} fn, found {} fn",
values.expected.to_string(),
values.found.to_string())
}
terr_sigil_mismatch(values) => {
format!("expected {}, found {}",
tstore_to_closure(&values.expected),
tstore_to_closure(&values.found))
}
terr_mutability => "values differ in mutability".to_string(),
terr_box_mutability => {
"boxed values differ in mutability".to_string()
}
terr_vec_mutability => "vectors differ in mutability".to_string(),
terr_ptr_mutability => "pointers differ in mutability".to_string(),
terr_ref_mutability => "references differ in mutability".to_string(),
terr_ty_param_size(values) => {
format!("expected a type with {} type params, \
found one with {} type params",
values.expected,
values.found)
}
terr_fixed_array_size(values) => {
format!("expected an array with a fixed size of {} elements, \
found one with {} elements",
values.expected,
values.found)
}
terr_tuple_size(values) => {
format!("expected a tuple with {} elements, \
found one with {} elements",
values.expected,
values.found)
}
terr_arg_count => {
"incorrect number of function parameters".to_string()
}
terr_regions_does_not_outlive(..) => {
"lifetime mismatch".to_string()
}
terr_regions_not_same(..) => {
"lifetimes are not the same".to_string()
}
terr_regions_no_overlap(..) => {
"lifetimes do not intersect".to_string()
}
terr_regions_insufficiently_polymorphic(br, _) => {
format!("expected bound lifetime parameter {}, \
found concrete lifetime",
bound_region_ptr_to_string(cx, br))
}
terr_regions_overly_polymorphic(br, _) => {
format!("expected concrete lifetime, \
found bound lifetime parameter {}",
bound_region_ptr_to_string(cx, br))
}
terr_trait_stores_differ(_, ref values) => {
format!("trait storage differs: expected `{}`, found `{}`",
trait_store_to_string(cx, (*values).expected),
trait_store_to_string(cx, (*values).found))
}
terr_sorts(values) => {
// A naive approach to making sure that we're not reporting silly errors such as:
// (expected closure, found closure).
let expected_str = ty_sort_string(cx, values.expected);
let found_str = ty_sort_string(cx, values.found);
if expected_str == found_str {
format!("expected {}, found a different {}", expected_str, found_str)
} else {
format!("expected {}, found {}", expected_str, found_str)
}
}
terr_traits(values) => {
format!("expected trait `{}`, found trait `{}`",
item_path_str(cx, values.expected),
item_path_str(cx, values.found))
}
terr_builtin_bounds(values) => {
if values.expected.is_empty() {
format!("expected no bounds, found `{}`",
values.found.user_string(cx))
} else if values.found.is_empty() {
format!("expected bounds `{}`, found no bounds",
values.expected.user_string(cx))
} else {
format!("expected bounds `{}`, found bounds `{}`",
values.expected.user_string(cx),
values.found.user_string(cx))
}
}
terr_integer_as_char => {
"expected an integral type, found `char`".to_string()
}
terr_int_mismatch(ref values) => {
format!("expected `{}`, found `{}`",
values.expected.to_string(),
values.found.to_string())
}
terr_float_mismatch(ref values) => {
format!("expected `{}`, found `{}`",
values.expected.to_string(),
values.found.to_string())
}
terr_variadic_mismatch(ref values) => {
format!("expected {} fn, found {} function",
if values.expected { "variadic" } else { "non-variadic" },
if values.found { "variadic" } else { "non-variadic" })
}
terr_convergence_mismatch(ref values) => {
format!("expected {} fn, found {} function",
if values.expected { "converging" } else { "diverging" },
if values.found { "converging" } else { "diverging" })
}
}
}
pub fn note_and_explain_type_err(cx: &ctxt, err: &type_err) {
match *err {
terr_regions_does_not_outlive(subregion, superregion) => {
note_and_explain_region(cx, "", subregion, "...");
note_and_explain_region(cx, "...does not necessarily outlive ",
superregion, "");
}
terr_regions_not_same(region1, region2) => {
note_and_explain_region(cx, "", region1, "...");
note_and_explain_region(cx, "...is not the same lifetime as ",
region2, "");
}
terr_regions_no_overlap(region1, region2) => {
note_and_explain_region(cx, "", region1, "...");
note_and_explain_region(cx, "...does not overlap ",
region2, "");
}
terr_regions_insufficiently_polymorphic(_, conc_region) => {
note_and_explain_region(cx,
"concrete lifetime that was found is ",
conc_region, "");
}
terr_regions_overly_polymorphic(_, conc_region) => {
note_and_explain_region(cx,
"expected concrete lifetime is ",
conc_region, "");
}
_ => {}
}
}
pub fn provided_source(cx: &ctxt, id: ast::DefId) -> Option<ast::DefId> {
cx.provided_method_sources.borrow().get(&id).map(|x| *x)
}
pub fn provided_trait_methods<'tcx>(cx: &ctxt<'tcx>, id: ast::DefId)
-> Vec<Rc<Method<'tcx>>> {
if is_local(id) {
match cx.map.find(id.node) {
Some(ast_map::NodeItem(item)) => {
match item.node {
ItemTrait(_, _, _, ref ms) => {
let (_, p) =
ast_util::split_trait_methods(ms.as_slice());
p.iter()
.map(|m| {
match impl_or_trait_item(
cx,
ast_util::local_def(m.id)) {
MethodTraitItem(m) => m,
TypeTraitItem(_) => {
cx.sess.bug("provided_trait_methods(): \
split_trait_methods() put \
associated types in the \
provided method bucket?!")
}
}
}).collect()
}
_ => {
cx.sess.bug(format!("provided_trait_methods: `{}` is \
not a trait",
id).as_slice())
}
}
}
_ => {
cx.sess.bug(format!("provided_trait_methods: `{}` is not a \
trait",
id).as_slice())
}
}
} else {
csearch::get_provided_trait_methods(cx, id)
}
}
fn lookup_locally_or_in_crate_store<V:Clone>(
descr: &str,
def_id: ast::DefId,
map: &mut DefIdMap<V>,
load_external: || -> V) -> V {
/*!
* Helper for looking things up in the various maps
* that are populated during typeck::collect (e.g.,
* `cx.impl_or_trait_items`, `cx.tcache`, etc). All of these share
* the pattern that if the id is local, it should have
* been loaded into the map by the `typeck::collect` phase.
* If the def-id is external, then we have to go consult
* the crate loading code (and cache the result for the future).
*/
match map.get(&def_id).cloned() {
Some(v) => { return v; }
None => { }
}
if def_id.krate == ast::LOCAL_CRATE {
panic!("No def'n found for {} in tcx.{}", def_id, descr);
}
let v = load_external();
map.insert(def_id, v.clone());
v
}
pub fn trait_item<'tcx>(cx: &ctxt<'tcx>, trait_did: ast::DefId, idx: uint)
-> ImplOrTraitItem<'tcx> {
let method_def_id = (*ty::trait_item_def_ids(cx, trait_did))[idx].def_id();
impl_or_trait_item(cx, method_def_id)
}
pub fn trait_items<'tcx>(cx: &ctxt<'tcx>, trait_did: ast::DefId)
-> Rc<Vec<ImplOrTraitItem<'tcx>>> {
let mut trait_items = cx.trait_items_cache.borrow_mut();
match trait_items.get(&trait_did).cloned() {
Some(trait_items) => trait_items,
None => {
let def_ids = ty::trait_item_def_ids(cx, trait_did);
let items: Rc<Vec<ImplOrTraitItem>> =
Rc::new(def_ids.iter()
.map(|d| impl_or_trait_item(cx, d.def_id()))
.collect());
trait_items.insert(trait_did, items.clone());
items
}
}
}
pub fn impl_or_trait_item<'tcx>(cx: &ctxt<'tcx>, id: ast::DefId)
-> ImplOrTraitItem<'tcx> {
lookup_locally_or_in_crate_store("impl_or_trait_items",
id,
&mut *cx.impl_or_trait_items
.borrow_mut(),
|| {
csearch::get_impl_or_trait_item(cx, id)
})
}
/// Returns true if the given ID refers to an associated type and false if it
/// refers to anything else.
pub fn is_associated_type(cx: &ctxt, id: ast::DefId) -> bool {
memoized(&cx.associated_types, id, |id: ast::DefId| {
if id.krate == ast::LOCAL_CRATE {
match cx.impl_or_trait_items.borrow().get(&id) {
Some(ref item) => {
match **item {
TypeTraitItem(_) => true,
MethodTraitItem(_) => false,
}
}
None => false,
}
} else {
csearch::is_associated_type(&cx.sess.cstore, id)
}
})
}
/// Returns the parameter index that the given associated type corresponds to.
pub fn associated_type_parameter_index(cx: &ctxt,
trait_def: &TraitDef,
associated_type_id: ast::DefId)
-> uint {
for type_parameter_def in trait_def.generics.types.iter() {
if type_parameter_def.def_id == associated_type_id {
return type_parameter_def.index
}
}
cx.sess.bug("couldn't find associated type parameter index")
}
#[deriving(PartialEq, Eq)]
pub struct AssociatedTypeInfo {
pub def_id: ast::DefId,
pub index: uint,
pub name: ast::Name,
}
impl PartialOrd for AssociatedTypeInfo {
fn partial_cmp(&self, other: &AssociatedTypeInfo) -> Option<Ordering> {
Some(self.index.cmp(&other.index))
}
}
impl Ord for AssociatedTypeInfo {
fn cmp(&self, other: &AssociatedTypeInfo) -> Ordering {
self.index.cmp(&other.index)
}
}
pub fn trait_item_def_ids(cx: &ctxt, id: ast::DefId)
-> Rc<Vec<ImplOrTraitItemId>> {
lookup_locally_or_in_crate_store("trait_item_def_ids",
id,
&mut *cx.trait_item_def_ids.borrow_mut(),
|| {
Rc::new(csearch::get_trait_item_def_ids(&cx.sess.cstore, id))
})
}
pub fn impl_trait_ref<'tcx>(cx: &ctxt<'tcx>, id: ast::DefId)
-> Option<Rc<TraitRef<'tcx>>> {
memoized(&cx.impl_trait_cache, id, |id: ast::DefId| {
if id.krate == ast::LOCAL_CRATE {
debug!("(impl_trait_ref) searching for trait impl {}", id);
match cx.map.find(id.node) {
Some(ast_map::NodeItem(item)) => {
match item.node {
ast::ItemImpl(_, ref opt_trait, _, _) => {
match opt_trait {
&Some(ref t) => {
Some(ty::node_id_to_trait_ref(cx, t.ref_id))
}
&None => None
}
}
_ => None
}
}
_ => None
}
} else {
csearch::get_impl_trait(cx, id)
}
})
}
pub fn trait_ref_to_def_id(tcx: &ctxt, tr: &ast::TraitRef) -> ast::DefId {
let def = *tcx.def_map.borrow()
.get(&tr.ref_id)
.expect("no def-map entry for trait");
def.def_id()
}
pub fn try_add_builtin_trait(
tcx: &ctxt,
trait_def_id: ast::DefId,
builtin_bounds: &mut EnumSet<BuiltinBound>)
-> bool
{
//! Checks whether `trait_ref` refers to one of the builtin
//! traits, like `Send`, and adds the corresponding
//! bound to the set `builtin_bounds` if so. Returns true if `trait_ref`
//! is a builtin trait.
match tcx.lang_items.to_builtin_kind(trait_def_id) {
Some(bound) => { builtin_bounds.insert(bound); true }
None => false
}
}
pub fn ty_to_def_id(ty: Ty) -> Option<ast::DefId> {
match ty.sty {
ty_trait(ref tt) =>
Some(tt.principal.def_id),
ty_struct(id, _) |
ty_enum(id, _) |
ty_unboxed_closure(id, _, _) =>
Some(id),
_ =>
None
}
}
// Enum information
#[deriving(Clone)]
pub struct VariantInfo<'tcx> {
pub args: Vec<Ty<'tcx>>,
pub arg_names: Option<Vec<ast::Ident>>,
pub ctor_ty: Option<Ty<'tcx>>,
pub name: ast::Name,
pub id: ast::DefId,
pub disr_val: Disr,
pub vis: Visibility
}
impl<'tcx> VariantInfo<'tcx> {
/// Creates a new VariantInfo from the corresponding ast representation.
///
/// Does not do any caching of the value in the type context.
pub fn from_ast_variant(cx: &ctxt<'tcx>,
ast_variant: &ast::Variant,
discriminant: Disr) -> VariantInfo<'tcx> {
let ctor_ty = node_id_to_type(cx, ast_variant.node.id);
match ast_variant.node.kind {
ast::TupleVariantKind(ref args) => {
let arg_tys = if args.len() > 0 {
ty_fn_args(ctor_ty).iter().map(|a| *a).collect()
} else {
Vec::new()
};
return VariantInfo {
args: arg_tys,
arg_names: None,
ctor_ty: Some(ctor_ty),
name: ast_variant.node.name.name,
id: ast_util::local_def(ast_variant.node.id),
disr_val: discriminant,
vis: ast_variant.node.vis
};
},
ast::StructVariantKind(ref struct_def) => {
let fields: &[StructField] = struct_def.fields.as_slice();
assert!(fields.len() > 0);
let arg_tys = struct_def.fields.iter()
.map(|field| node_id_to_type(cx, field.node.id)).collect();
let arg_names = fields.iter().map(|field| {
match field.node.kind {
NamedField(ident, _) => ident,
UnnamedField(..) => cx.sess.bug(
"enum_variants: all fields in struct must have a name")
}
}).collect();
return VariantInfo {
args: arg_tys,
arg_names: Some(arg_names),
ctor_ty: None,
name: ast_variant.node.name.name,
id: ast_util::local_def(ast_variant.node.id),
disr_val: discriminant,
vis: ast_variant.node.vis
};
}
}
}
}
pub fn substd_enum_variants<'tcx>(cx: &ctxt<'tcx>,
id: ast::DefId,
substs: &Substs<'tcx>)
-> Vec<Rc<VariantInfo<'tcx>>> {
enum_variants(cx, id).iter().map(|variant_info| {
let substd_args = variant_info.args.iter()
.map(|aty| aty.subst(cx, substs)).collect::<Vec<_>>();
let substd_ctor_ty = variant_info.ctor_ty.subst(cx, substs);
Rc::new(VariantInfo {
args: substd_args,
ctor_ty: substd_ctor_ty,
..(**variant_info).clone()
})
}).collect()
}
pub fn item_path_str(cx: &ctxt, id: ast::DefId) -> String {
with_path(cx, id, |path| ast_map::path_to_string(path)).to_string()
}
pub enum DtorKind {
NoDtor,
TraitDtor(DefId, bool)
}
impl DtorKind {
pub fn is_present(&self) -> bool {
match *self {
TraitDtor(..) => true,
_ => false
}
}
pub fn has_drop_flag(&self) -> bool {
match self {
&NoDtor => false,
&TraitDtor(_, flag) => flag
}
}
}
/* If struct_id names a struct with a dtor, return Some(the dtor's id).
Otherwise return none. */
pub fn ty_dtor(cx: &ctxt, struct_id: DefId) -> DtorKind {
match cx.destructor_for_type.borrow().get(&struct_id) {
Some(&method_def_id) => {
let flag = !has_attr(cx, struct_id, "unsafe_no_drop_flag");
TraitDtor(method_def_id, flag)
}
None => NoDtor,
}
}
pub fn has_dtor(cx: &ctxt, struct_id: DefId) -> bool {
cx.destructor_for_type.borrow().contains_key(&struct_id)
}
pub fn with_path<T>(cx: &ctxt, id: ast::DefId, f: |ast_map::PathElems| -> T) -> T {
if id.krate == ast::LOCAL_CRATE {
cx.map.with_path(id.node, f)
} else {
f(ast_map::Values(csearch::get_item_path(cx, id).iter()).chain(None))
}
}
pub fn enum_is_univariant(cx: &ctxt, id: ast::DefId) -> bool {
enum_variants(cx, id).len() == 1
}
pub fn type_is_empty(cx: &ctxt, ty: Ty) -> bool {
match ty.sty {
ty_enum(did, _) => (*enum_variants(cx, did)).is_empty(),
_ => false
}
}
pub fn enum_variants<'tcx>(cx: &ctxt<'tcx>, id: ast::DefId)
-> Rc<Vec<Rc<VariantInfo<'tcx>>>> {
memoized(&cx.enum_var_cache, id, |id: ast::DefId| {
if ast::LOCAL_CRATE != id.krate {
Rc::new(csearch::get_enum_variants(cx, id))
} else {
/*
Although both this code and check_enum_variants in typeck/check
call eval_const_expr, it should never get called twice for the same
expr, since check_enum_variants also updates the enum_var_cache
*/
match cx.map.get(id.node) {
ast_map::NodeItem(ref item) => {
match item.node {
ast::ItemEnum(ref enum_definition, _) => {
let mut last_discriminant: Option<Disr> = None;
Rc::new(enum_definition.variants.iter().map(|variant| {
let mut discriminant = match last_discriminant {
Some(val) => val + 1,
None => INITIAL_DISCRIMINANT_VALUE
};
match variant.node.disr_expr {
Some(ref e) =>
match const_eval::eval_const_expr_partial(cx, &**e) {
Ok(const_eval::const_int(val)) => {
discriminant = val as Disr
}
Ok(const_eval::const_uint(val)) => {
discriminant = val as Disr
}
Ok(_) => {
cx.sess
.span_err(e.span,
"expected signed integer constant");
}
Err(ref err) => {
cx.sess
.span_err(e.span,
format!("expected constant: {}",
*err).as_slice());
}
},
None => {}
};
last_discriminant = Some(discriminant);
Rc::new(VariantInfo::from_ast_variant(cx, &**variant,
discriminant))
}).collect())
}
_ => {
cx.sess.bug("enum_variants: id not bound to an enum")
}
}
}
_ => cx.sess.bug("enum_variants: id not bound to an enum")
}
}
})
}
// Returns information about the enum variant with the given ID:
pub fn enum_variant_with_id<'tcx>(cx: &ctxt<'tcx>,
enum_id: ast::DefId,
variant_id: ast::DefId)
-> Rc<VariantInfo<'tcx>> {
enum_variants(cx, enum_id).iter()
.find(|variant| variant.id == variant_id)
.expect("enum_variant_with_id(): no variant exists with that ID")
.clone()
}
// If the given item is in an external crate, looks up its type and adds it to
// the type cache. Returns the type parameters and type.
pub fn lookup_item_type<'tcx>(cx: &ctxt<'tcx>,
did: ast::DefId)
-> Polytype<'tcx> {
lookup_locally_or_in_crate_store(
"tcache", did, &mut *cx.tcache.borrow_mut(),
|| csearch::get_type(cx, did))
}
/// Given the did of a trait, returns its canonical trait ref.
pub fn lookup_trait_def<'tcx>(cx: &ctxt<'tcx>, did: ast::DefId)
-> Rc<ty::TraitDef<'tcx>> {
memoized(&cx.trait_defs, did, |did: DefId| {
assert!(did.krate != ast::LOCAL_CRATE);
Rc::new(csearch::get_trait_def(cx, did))
})
}
/// Given a reference to a trait, returns the bounds declared on the
/// trait, with appropriate substitutions applied.
pub fn bounds_for_trait_ref<'tcx>(tcx: &ctxt<'tcx>,
trait_ref: &TraitRef<'tcx>)
-> ty::ParamBounds<'tcx>
{
let trait_def = lookup_trait_def(tcx, trait_ref.def_id);
debug!("bounds_for_trait_ref(trait_def={}, trait_ref={})",
trait_def.repr(tcx), trait_ref.repr(tcx));
// The interaction between HRTB and supertraits is not entirely
// obvious. Let me walk you (and myself) through an example.
//
// Let's start with an easy case. Consider two traits:
//
// trait Foo<'a> : Bar<'a,'a> { }
// trait Bar<'b,'c> { }
//
// Now, if we have a trait reference `for<'x> T : Foo<'x>`, then
// we can deduce that `for<'x> T : Bar<'x,'x>`. Basically, if we
// knew that `Foo<'x>` (for any 'x) then we also know that
// `Bar<'x,'x>` (for any 'x). This more-or-less falls out from
// normal substitution.
//
// In terms of why this is sound, the idea is that whenever there
// is an impl of `T:Foo<'a>`, it must show that `T:Bar<'a,'a>`
// holds. So if there is an impl of `T:Foo<'a>` that applies to
// all `'a`, then we must know that `T:Bar<'a,'a>` holds for all
// `'a`.
//
// Another example to be careful of is this:
//
// trait Foo1<'a> : for<'b> Bar1<'a,'b> { }
// trait Bar1<'b,'c> { }
//
// Here, if we have `for<'x> T : Foo1<'x>`, then what do we know?
// The answer is that we know `for<'x,'b> T : Bar1<'x,'b>`. The
// reason is similar to the previous example: any impl of
// `T:Foo1<'x>` must show that `for<'b> T : Bar1<'x, 'b>`. So
// basically we would want to collapse the bound lifetimes from
// the input (`trait_ref`) and the supertraits.
//
// To achieve this in practice is fairly straightforward. Let's
// consider the more complicated scenario:
//
// - We start out with `for<'x> T : Foo1<'x>`. In this case, `'x`
// has a De Bruijn index of 1. We want to produce `for<'x,'b> T : Bar1<'x,'b>`,
// where both `'x` and `'b` would have a DB index of 1.
// The substitution from the input trait-ref is therefore going to be
// `'a => 'x` (where `'x` has a DB index of 1).
// - The super-trait-ref is `for<'b> Bar1<'a,'b>`, where `'a` is an
// early-bound parameter and `'b' is a late-bound parameter with a
// DB index of 1.
// - If we replace `'a` with `'x` from the input, it too will have
// a DB index of 1, and thus we'll have `for<'x,'b> Bar1<'x,'b>`
// just as we wanted.
//
// There is only one catch. If we just apply the substitution `'a
// => 'x` to `for<'b> Bar1<'a,'b>`, the substitution code will
// adjust the DB index because we substituting into a binder (it
// tries to be so smart...) resulting in `for<'x> for<'b>
// Bar1<'x,'b>` (we have no syntax for this, so use your
// imagination). Basically the 'x will have DB index of 2 and 'b
// will have DB index of 1. Not quite what we want. So we apply
// the substitution to the *contents* of the trait reference,
// rather than the trait reference itself (put another way, the
// substitution code expects equal binding levels in the values
// from the substitution and the value being substituted into, and
// this trick achieves that).
// Carefully avoid the binder introduced by each trait-ref by
// substituting over the substs, not the trait-refs themselves,
// thus achieving the "collapse" described in the big comment
// above.
let trait_bounds: Vec<_> =
trait_def.bounds.trait_bounds
.iter()
.map(|bound_trait_ref| {
ty::TraitRef::new(bound_trait_ref.def_id,
bound_trait_ref.substs.subst(tcx, &trait_ref.substs))
})
.map(|bound_trait_ref| Rc::new(bound_trait_ref))
.collect();
debug!("bounds_for_trait_ref: trait_bounds={}",
trait_bounds.repr(tcx));
// The region bounds and builtin bounds do not currently introduce
// binders so we can just substitute in a straightforward way here.
let region_bounds =
trait_def.bounds.region_bounds.subst(tcx, &trait_ref.substs);
let builtin_bounds =
trait_def.bounds.builtin_bounds.subst(tcx, &trait_ref.substs);
ty::ParamBounds {
trait_bounds: trait_bounds,
region_bounds: region_bounds,
builtin_bounds: builtin_bounds,
}
}
/// Iterate over attributes of a definition.
// (This should really be an iterator, but that would require csearch and
// decoder to use iterators instead of higher-order functions.)
pub fn each_attr(tcx: &ctxt, did: DefId, f: |&ast::Attribute| -> bool) -> bool {
if is_local(did) {
let item = tcx.map.expect_item(did.node);
item.attrs.iter().all(|attr| f(attr))
} else {
info!("getting foreign attrs");
let mut cont = true;
csearch::get_item_attrs(&tcx.sess.cstore, did, |attrs| {
if cont {
cont = attrs.iter().all(|attr| f(attr));
}
});
info!("done");
cont
}
}
/// Determine whether an item is annotated with an attribute
pub fn has_attr(tcx: &ctxt, did: DefId, attr: &str) -> bool {
let mut found = false;
each_attr(tcx, did, |item| {
if item.check_name(attr) {
found = true;
false
} else {
true
}
});
found
}
/// Determine whether an item is annotated with `#[repr(packed)]`
pub fn lookup_packed(tcx: &ctxt, did: DefId) -> bool {
lookup_repr_hints(tcx, did).contains(&attr::ReprPacked)
}
/// Determine whether an item is annotated with `#[simd]`
pub fn lookup_simd(tcx: &ctxt, did: DefId) -> bool {
has_attr(tcx, did, "simd")
}
/// Obtain the representation annotation for a struct definition.
pub fn lookup_repr_hints(tcx: &ctxt, did: DefId) -> Rc<Vec<attr::ReprAttr>> {
memoized(&tcx.repr_hint_cache, did, |did: DefId| {
Rc::new(if did.krate == LOCAL_CRATE {
let mut acc = Vec::new();
ty::each_attr(tcx, did, |meta| {
acc.extend(attr::find_repr_attrs(tcx.sess.diagnostic(),
meta).into_iter());
true
});
acc
} else {
csearch::get_repr_attrs(&tcx.sess.cstore, did)
})
})
}
// Look up a field ID, whether or not it's local
// Takes a list of type substs in case the struct is generic
pub fn lookup_field_type<'tcx>(tcx: &ctxt<'tcx>,
struct_id: DefId,
id: DefId,
substs: &Substs<'tcx>)
-> Ty<'tcx> {
let ty = if id.krate == ast::LOCAL_CRATE {
node_id_to_type(tcx, id.node)
} else {
let mut tcache = tcx.tcache.borrow_mut();
let pty = match tcache.entry(id) {
Occupied(entry) => entry.into_mut(),
Vacant(entry) => entry.set(csearch::get_field_type(tcx, struct_id, id)),
};
pty.ty
};
ty.subst(tcx, substs)
}
// Look up the list of field names and IDs for a given struct.
// Panics if the id is not bound to a struct.
pub fn lookup_struct_fields(cx: &ctxt, did: ast::DefId) -> Vec<field_ty> {
if did.krate == ast::LOCAL_CRATE {
let struct_fields = cx.struct_fields.borrow();
match struct_fields.get(&did) {
Some(fields) => (**fields).clone(),
_ => {
cx.sess.bug(
format!("ID not mapped to struct fields: {}",
cx.map.node_to_string(did.node)).as_slice());
}
}
} else {
csearch::get_struct_fields(&cx.sess.cstore, did)
}
}
pub fn is_tuple_struct(cx: &ctxt, did: ast::DefId) -> bool {
let fields = lookup_struct_fields(cx, did);
!fields.is_empty() && fields.iter().all(|f| f.name == token::special_names::unnamed_field)
}
// Returns a list of fields corresponding to the struct's items. trans uses
// this. Takes a list of substs with which to instantiate field types.
pub fn struct_fields<'tcx>(cx: &ctxt<'tcx>, did: ast::DefId, substs: &Substs<'tcx>)
-> Vec<field<'tcx>> {
lookup_struct_fields(cx, did).iter().map(|f| {
field {
name: f.name,
mt: mt {
ty: lookup_field_type(cx, did, f.id, substs),
mutbl: MutImmutable
}
}
}).collect()
}
// Returns a list of fields corresponding to the tuple's items. trans uses
// this.
pub fn tup_fields<'tcx>(v: &[Ty<'tcx>]) -> Vec<field<'tcx>> {
v.iter().enumerate().map(|(i, &f)| {
field {
name: token::intern(i.to_string().as_slice()),
mt: mt {
ty: f,
mutbl: MutImmutable
}
}
}).collect()
}
pub struct UnboxedClosureUpvar<'tcx> {
pub def: def::Def,
pub span: Span,
pub ty: Ty<'tcx>,
}
// Returns a list of `UnboxedClosureUpvar`s for each upvar.
pub fn unboxed_closure_upvars<'tcx>(tcx: &ctxt<'tcx>, closure_id: ast::DefId, substs: &Substs<'tcx>)
-> Vec<UnboxedClosureUpvar<'tcx>> {
// Presently an unboxed closure type cannot "escape" out of a
// function, so we will only encounter ones that originated in the
// local crate or were inlined into it along with some function.
// This may change if abstract return types of some sort are
// implemented.
assert!(closure_id.krate == ast::LOCAL_CRATE);
let capture_mode = tcx.capture_modes.borrow()[closure_id.node].clone();
match tcx.freevars.borrow().get(&closure_id.node) {
None => vec![],
Some(ref freevars) => {
freevars.iter().map(|freevar| {
let freevar_def_id = freevar.def.def_id();
let freevar_ty = node_id_to_type(tcx, freevar_def_id.node);
let mut freevar_ty = freevar_ty.subst(tcx, substs);
if capture_mode == ast::CaptureByRef {
let borrow = tcx.upvar_borrow_map.borrow()[ty::UpvarId {
var_id: freevar_def_id.node,
closure_expr_id: closure_id.node
}].clone();
freevar_ty = mk_rptr(tcx, borrow.region, ty::mt {
ty: freevar_ty,
mutbl: borrow.kind.to_mutbl_lossy()
});
}
UnboxedClosureUpvar {
def: freevar.def,
span: freevar.span,
ty: freevar_ty
}
}).collect()
}
}
}
pub fn is_binopable<'tcx>(cx: &ctxt<'tcx>, ty: Ty<'tcx>, op: ast::BinOp) -> bool {
#![allow(non_upper_case_globals)]
static tycat_other: int = 0;
static tycat_bool: int = 1;
static tycat_char: int = 2;
static tycat_int: int = 3;
static tycat_float: int = 4;
static tycat_raw_ptr: int = 6;
static opcat_add: int = 0;
static opcat_sub: int = 1;
static opcat_mult: int = 2;
static opcat_shift: int = 3;
static opcat_rel: int = 4;
static opcat_eq: int = 5;
static opcat_bit: int = 6;
static opcat_logic: int = 7;
static opcat_mod: int = 8;
fn opcat(op: ast::BinOp) -> int {
match op {
ast::BiAdd => opcat_add,
ast::BiSub => opcat_sub,
ast::BiMul => opcat_mult,
ast::BiDiv => opcat_mult,
ast::BiRem => opcat_mod,
ast::BiAnd => opcat_logic,
ast::BiOr => opcat_logic,
ast::BiBitXor => opcat_bit,
ast::BiBitAnd => opcat_bit,
ast::BiBitOr => opcat_bit,
ast::BiShl => opcat_shift,
ast::BiShr => opcat_shift,
ast::BiEq => opcat_eq,
ast::BiNe => opcat_eq,
ast::BiLt => opcat_rel,
ast::BiLe => opcat_rel,
ast::BiGe => opcat_rel,
ast::BiGt => opcat_rel
}
}
fn tycat<'tcx>(cx: &ctxt<'tcx>, ty: Ty<'tcx>) -> int {
if type_is_simd(cx, ty) {
return tycat(cx, simd_type(cx, ty))
}
match ty.sty {
ty_char => tycat_char,
ty_bool => tycat_bool,
ty_int(_) | ty_uint(_) | ty_infer(IntVar(_)) => tycat_int,
ty_float(_) | ty_infer(FloatVar(_)) => tycat_float,
ty_ptr(_) => tycat_raw_ptr,
_ => tycat_other
}
}
static t: bool = true;
static f: bool = false;
let tbl = [
// +, -, *, shift, rel, ==, bit, logic, mod
/*other*/ [f, f, f, f, f, f, f, f, f],
/*bool*/ [f, f, f, f, t, t, t, t, f],
/*char*/ [f, f, f, f, t, t, f, f, f],
/*int*/ [t, t, t, t, t, t, t, f, t],
/*float*/ [t, t, t, f, t, t, f, f, f],
/*bot*/ [t, t, t, t, t, t, t, t, t],
/*raw ptr*/ [f, f, f, f, t, t, f, f, f]];
return tbl[tycat(cx, ty) as uint ][opcat(op) as uint];
}
/// Returns an equivalent type with all the typedefs and self regions removed.
pub fn normalize_ty<'tcx>(cx: &ctxt<'tcx>, ty: Ty<'tcx>) -> Ty<'tcx> {
let u = TypeNormalizer(cx).fold_ty(ty);
return u;
struct TypeNormalizer<'a, 'tcx: 'a>(&'a ctxt<'tcx>);
impl<'a, 'tcx> TypeFolder<'tcx> for TypeNormalizer<'a, 'tcx> {
fn tcx(&self) -> &ctxt<'tcx> { let TypeNormalizer(c) = *self; c }
fn fold_ty(&mut self, ty: Ty<'tcx>) -> Ty<'tcx> {
match self.tcx().normalized_cache.borrow().get(&ty).cloned() {
None => {}
Some(u) => return u
}
let t_norm = ty_fold::super_fold_ty(self, ty);
self.tcx().normalized_cache.borrow_mut().insert(ty, t_norm);
return t_norm;
}
fn fold_region(&mut self, _: ty::Region) -> ty::Region {
ty::ReStatic
}
fn fold_substs(&mut self,
substs: &subst::Substs<'tcx>)
-> subst::Substs<'tcx> {
subst::Substs { regions: subst::ErasedRegions,
types: substs.types.fold_with(self) }
}
fn fold_fn_sig(&mut self,
sig: &ty::FnSig<'tcx>)
-> ty::FnSig<'tcx> {
// The binder-id is only relevant to bound regions, which
// are erased at trans time.
ty::FnSig {
inputs: sig.inputs.fold_with(self),
output: sig.output.fold_with(self),
variadic: sig.variadic,
}
}
}
}
// Returns the repeat count for a repeating vector expression.
pub fn eval_repeat_count(tcx: &ctxt, count_expr: &ast::Expr) -> uint {
match const_eval::eval_const_expr_partial(tcx, count_expr) {
Ok(val) => {
let found = match val {
const_eval::const_uint(count) => return count as uint,
const_eval::const_int(count) if count >= 0 => return count as uint,
const_eval::const_int(_) =>
"negative integer",
const_eval::const_float(_) =>
"float",
const_eval::const_str(_) =>
"string",
const_eval::const_bool(_) =>
"boolean",
const_eval::const_binary(_) =>
"binary array"
};
tcx.sess.span_err(count_expr.span, format!(
"expected positive integer for repeat count, found {}",
found).as_slice());
}
Err(_) => {
let found = match count_expr.node {
ast::ExprPath(ast::Path {
global: false,
ref segments,
..
}) if segments.len() == 1 =>
"variable",
_ =>
"non-constant expression"
};
tcx.sess.span_err(count_expr.span, format!(
"expected constant integer for repeat count, found {}",
found).as_slice());
}
}
0
}
// Iterate over a type parameter's bounded traits and any supertraits
// of those traits, ignoring kinds.
// Here, the supertraits are the transitive closure of the supertrait
// relation on the supertraits from each bounded trait's constraint
// list.
pub fn each_bound_trait_and_supertraits<'tcx>(tcx: &ctxt<'tcx>,
bounds: &[Rc<TraitRef<'tcx>>],
f: |Rc<TraitRef<'tcx>>| -> bool)
-> bool
{
for bound_trait_ref in traits::transitive_bounds(tcx, bounds) {
if !f(bound_trait_ref) {
return false;
}
}
return true;
}
pub fn required_region_bounds<'tcx>(tcx: &ctxt<'tcx>,
region_bounds: &[ty::Region],
builtin_bounds: BuiltinBounds,
trait_bounds: &[Rc<TraitRef<'tcx>>])
-> Vec<ty::Region>
{
/*!
* Given a type which must meet the builtin bounds and trait
* bounds, returns a set of lifetimes which the type must outlive.
*
* Requires that trait definitions have been processed.
*/
let mut all_bounds = Vec::new();
debug!("required_region_bounds(builtin_bounds={}, trait_bounds={})",
builtin_bounds.repr(tcx),
trait_bounds.repr(tcx));
all_bounds.push_all(region_bounds);
push_region_bounds(&[],
builtin_bounds,
&mut all_bounds);
debug!("from builtin bounds: all_bounds={}", all_bounds.repr(tcx));
each_bound_trait_and_supertraits(
tcx,
trait_bounds,
|trait_ref| {
let bounds = ty::bounds_for_trait_ref(tcx, &*trait_ref);
push_region_bounds(bounds.region_bounds.as_slice(),
bounds.builtin_bounds,
&mut all_bounds);
debug!("from {}: bounds={} all_bounds={}",
trait_ref.repr(tcx),
bounds.repr(tcx),
all_bounds.repr(tcx));
true
});
return all_bounds;
fn push_region_bounds(region_bounds: &[ty::Region],
builtin_bounds: ty::BuiltinBounds,
all_bounds: &mut Vec<ty::Region>) {
all_bounds.push_all(region_bounds.as_slice());
if builtin_bounds.contains(&ty::BoundSend) {
all_bounds.push(ty::ReStatic);
}
}
}
pub fn get_tydesc_ty<'tcx>(tcx: &ctxt<'tcx>) -> Result<Ty<'tcx>, String> {
tcx.lang_items.require(TyDescStructLangItem).map(|tydesc_lang_item| {
tcx.intrinsic_defs.borrow().get(&tydesc_lang_item).cloned()
.expect("Failed to resolve TyDesc")
})
}
pub fn item_variances(tcx: &ctxt, item_id: ast::DefId) -> Rc<ItemVariances> {
lookup_locally_or_in_crate_store(
"item_variance_map", item_id, &mut *tcx.item_variance_map.borrow_mut(),
|| Rc::new(csearch::get_item_variances(&tcx.sess.cstore, item_id)))
}
/// Records a trait-to-implementation mapping.
pub fn record_trait_implementation(tcx: &ctxt,
trait_def_id: DefId,
impl_def_id: DefId) {
match tcx.trait_impls.borrow().get(&trait_def_id) {
Some(impls_for_trait) => {
impls_for_trait.borrow_mut().push(impl_def_id);
return;
}
None => {}
}
tcx.trait_impls.borrow_mut().insert(trait_def_id, Rc::new(RefCell::new(vec!(impl_def_id))));
}
/// Populates the type context with all the implementations for the given type
/// if necessary.
pub fn populate_implementations_for_type_if_necessary(tcx: &ctxt,
type_id: ast::DefId) {
if type_id.krate == LOCAL_CRATE {
return
}
if tcx.populated_external_types.borrow().contains(&type_id) {
return
}
let mut inherent_impls = Vec::new();
csearch::each_implementation_for_type(&tcx.sess.cstore, type_id,
|impl_def_id| {
let impl_items = csearch::get_impl_items(&tcx.sess.cstore,
impl_def_id);
// Record the trait->implementation mappings, if applicable.
let associated_traits = csearch::get_impl_trait(tcx, impl_def_id);
for trait_ref in associated_traits.iter() {
record_trait_implementation(tcx, trait_ref.def_id, impl_def_id);
}
// For any methods that use a default implementation, add them to
// the map. This is a bit unfortunate.
for impl_item_def_id in impl_items.iter() {
let method_def_id = impl_item_def_id.def_id();
match impl_or_trait_item(tcx, method_def_id) {
MethodTraitItem(method) => {
for &source in method.provided_source.iter() {
tcx.provided_method_sources
.borrow_mut()
.insert(method_def_id, source);
}
}
TypeTraitItem(_) => {}
}
}
// Store the implementation info.
tcx.impl_items.borrow_mut().insert(impl_def_id, impl_items);
// If this is an inherent implementation, record it.
if associated_traits.is_none() {
inherent_impls.push(impl_def_id);
}
});
tcx.inherent_impls.borrow_mut().insert(type_id, Rc::new(inherent_impls));
tcx.populated_external_types.borrow_mut().insert(type_id);
}
/// Populates the type context with all the implementations for the given
/// trait if necessary.
pub fn populate_implementations_for_trait_if_necessary(
tcx: &ctxt,
trait_id: ast::DefId) {
if trait_id.krate == LOCAL_CRATE {
return
}
if tcx.populated_external_traits.borrow().contains(&trait_id) {
return
}
csearch::each_implementation_for_trait(&tcx.sess.cstore, trait_id,
|implementation_def_id| {
let impl_items = csearch::get_impl_items(&tcx.sess.cstore, implementation_def_id);
// Record the trait->implementation mapping.
record_trait_implementation(tcx, trait_id, implementation_def_id);
// For any methods that use a default implementation, add them to
// the map. This is a bit unfortunate.
for impl_item_def_id in impl_items.iter() {
let method_def_id = impl_item_def_id.def_id();
match impl_or_trait_item(tcx, method_def_id) {
MethodTraitItem(method) => {
for &source in method.provided_source.iter() {
tcx.provided_method_sources
.borrow_mut()
.insert(method_def_id, source);
}
}
TypeTraitItem(_) => {}
}
}
// Store the implementation info.
tcx.impl_items.borrow_mut().insert(implementation_def_id, impl_items);
});
tcx.populated_external_traits.borrow_mut().insert(trait_id);
}
/// Given the def_id of an impl, return the def_id of the trait it implements.
/// If it implements no trait, return `None`.
pub fn trait_id_of_impl(tcx: &ctxt,
def_id: ast::DefId) -> Option<ast::DefId> {
let node = match tcx.map.find(def_id.node) {
Some(node) => node,
None => return None
};
match node {
ast_map::NodeItem(item) => {
match item.node {
ast::ItemImpl(_, Some(ref trait_ref), _, _) => {
Some(node_id_to_trait_ref(tcx, trait_ref.ref_id).def_id)
}
_ => None
}
}
_ => None
}
}
/// If the given def ID describes a method belonging to an impl, return the
/// ID of the impl that the method belongs to. Otherwise, return `None`.
pub fn impl_of_method(tcx: &ctxt, def_id: ast::DefId)
-> Option<ast::DefId> {
if def_id.krate != LOCAL_CRATE {
return match csearch::get_impl_or_trait_item(tcx,
def_id).container() {
TraitContainer(_) => None,
ImplContainer(def_id) => Some(def_id),
};
}
match tcx.impl_or_trait_items.borrow().get(&def_id).cloned() {
Some(trait_item) => {
match trait_item.container() {
TraitContainer(_) => None,
ImplContainer(def_id) => Some(def_id),
}
}
None => None
}
}
/// If the given def ID describes an item belonging to a trait (either a
/// default method or an implementation of a trait method), return the ID of
/// the trait that the method belongs to. Otherwise, return `None`.
pub fn trait_of_item(tcx: &ctxt, def_id: ast::DefId) -> Option<ast::DefId> {
if def_id.krate != LOCAL_CRATE {
return csearch::get_trait_of_item(&tcx.sess.cstore, def_id, tcx);
}
match tcx.impl_or_trait_items.borrow().get(&def_id).cloned() {
Some(impl_or_trait_item) => {
match impl_or_trait_item.container() {
TraitContainer(def_id) => Some(def_id),
ImplContainer(def_id) => trait_id_of_impl(tcx, def_id),
}
}
None => None
}
}
/// If the given def ID describes an item belonging to a trait, (either a
/// default method or an implementation of a trait method), return the ID of
/// the method inside trait definition (this means that if the given def ID
/// is already that of the original trait method, then the return value is
/// the same).
/// Otherwise, return `None`.
pub fn trait_item_of_item(tcx: &ctxt, def_id: ast::DefId)
-> Option<ImplOrTraitItemId> {
let impl_item = match tcx.impl_or_trait_items.borrow().get(&def_id) {
Some(m) => m.clone(),
None => return None,
};
let name = impl_item.name();
match trait_of_item(tcx, def_id) {
Some(trait_did) => {
let trait_items = ty::trait_items(tcx, trait_did);
trait_items.iter()
.position(|m| m.name() == name)
.map(|idx| ty::trait_item(tcx, trait_did, idx).id())
}
None => None
}
}
/// Creates a hash of the type `Ty` which will be the same no matter what crate
/// context it's calculated within. This is used by the `type_id` intrinsic.
pub fn hash_crate_independent(tcx: &ctxt, ty: Ty, svh: &Svh) -> u64 {
let mut state = sip::SipState::new();
macro_rules! byte( ($b:expr) => { ($b as u8).hash(&mut state) } );
macro_rules! hash( ($e:expr) => { $e.hash(&mut state) } );
let region = |_state: &mut sip::SipState, r: Region| {
match r {
ReStatic => {}
ReEmpty |
ReEarlyBound(..) |
ReLateBound(..) |
ReFree(..) |
ReScope(..) |
ReInfer(..) => {
tcx.sess.bug("non-static region found when hashing a type")
}
}
};
let did = |state: &mut sip::SipState, did: DefId| {
let h = if ast_util::is_local(did) {
svh.clone()
} else {
tcx.sess.cstore.get_crate_hash(did.krate)
};
h.as_str().hash(state);
did.node.hash(state);
};
let mt = |state: &mut sip::SipState, mt: mt| {
mt.mutbl.hash(state);
};
ty::walk_ty(ty, |ty| {
match ty.sty {
ty_bool => byte!(2),
ty_char => byte!(3),
ty_int(i) => {
byte!(4);
hash!(i);
}
ty_uint(u) => {
byte!(5);
hash!(u);
}
ty_float(f) => {
byte!(6);
hash!(f);
}
ty_str => {
byte!(7);
}
ty_enum(d, _) => {
byte!(8);
did(&mut state, d);
}
ty_uniq(_) => {
byte!(9);
}
ty_vec(_, Some(n)) => {
byte!(10);
n.hash(&mut state);
}
ty_vec(_, None) => {
byte!(11);
}
ty_ptr(m) => {
byte!(12);
mt(&mut state, m);
}
ty_rptr(r, m) => {
byte!(13);
region(&mut state, r);
mt(&mut state, m);
}
ty_bare_fn(ref b) => {
byte!(14);
hash!(b.fn_style);
hash!(b.abi);
}
ty_closure(ref c) => {
byte!(15);
hash!(c.fn_style);
hash!(c.onceness);
hash!(c.bounds);
match c.store {
UniqTraitStore => byte!(0),
RegionTraitStore(r, m) => {
byte!(1)
region(&mut state, r);
assert_eq!(m, ast::MutMutable);
}
}
}
ty_trait(box TyTrait { ref principal, bounds }) => {
byte!(17);
did(&mut state, principal.def_id);
hash!(bounds);
}
ty_struct(d, _) => {
byte!(18);
did(&mut state, d);
}
ty_tup(ref inner) => {
byte!(19);
hash!(inner.len());
}
ty_param(p) => {
byte!(20);
hash!(p.idx);
did(&mut state, p.def_id);
}
ty_open(_) => byte!(22),
ty_infer(_) => unreachable!(),
ty_err => byte!(23),
ty_unboxed_closure(d, r, _) => {
byte!(24);
did(&mut state, d);
region(&mut state, r);
}
}
});
state.result()
}
impl Variance {
pub fn to_string(self) -> &'static str {
match self {
Covariant => "+",
Contravariant => "-",
Invariant => "o",
Bivariant => "*",
}
}
}
pub fn empty_parameter_environment<'tcx>() -> ParameterEnvironment<'tcx> {
/*!
* Construct a parameter environment suitable for static contexts
* or other contexts where there are no free type/lifetime
* parameters in scope.
*/
ty::ParameterEnvironment { free_substs: Substs::empty(),
bounds: VecPerParamSpace::empty(),
caller_obligations: VecPerParamSpace::empty(),
implicit_region_bound: ty::ReEmpty,
selection_cache: traits::SelectionCache::new(), }
}
pub fn construct_parameter_environment<'tcx>(
tcx: &ctxt<'tcx>,
span: Span,
generics: &ty::Generics<'tcx>,
free_id: ast::NodeId)
-> ParameterEnvironment<'tcx>
{
/*! See `ParameterEnvironment` struct def'n for details */
//
// Construct the free substs.
//
// map T => T
let mut types = VecPerParamSpace::empty();
for &space in subst::ParamSpace::all().iter() {
push_types_from_defs(tcx, &mut types, space,
generics.types.get_slice(space));
}
// map bound 'a => free 'a
let mut regions = VecPerParamSpace::empty();
for &space in subst::ParamSpace::all().iter() {
push_region_params(&mut regions, space, free_id,
generics.regions.get_slice(space));
}
let free_substs = Substs {
types: types,
regions: subst::NonerasedRegions(regions)
};
let free_id_scope = region::CodeExtent::from_node_id(free_id);
//
// Compute the bounds on Self and the type parameters.
//
let bounds = generics.to_bounds(tcx, &free_substs);
let bounds = liberate_late_bound_regions(tcx, free_id_scope, &bind(bounds)).value;
let obligations = traits::obligations_for_generics(tcx,
traits::ObligationCause::misc(span),
&bounds,
&free_substs.types);
let type_bounds = bounds.types.subst(tcx, &free_substs);
//
// Compute region bounds. For now, these relations are stored in a
// global table on the tcx, so just enter them there. I'm not
// crazy about this scheme, but it's convenient, at least.
//
for &space in subst::ParamSpace::all().iter() {
record_region_bounds(tcx, space, &free_substs, bounds.regions.get_slice(space));
}
debug!("construct_parameter_environment: free_id={} free_subst={} \
obligations={} type_bounds={}",
free_id,
free_substs.repr(tcx),
obligations.repr(tcx),
type_bounds.repr(tcx));
return ty::ParameterEnvironment {
free_substs: free_substs,
bounds: bounds.types,
implicit_region_bound: ty::ReScope(free_id_scope),
caller_obligations: obligations,
selection_cache: traits::SelectionCache::new(),
};
fn push_region_params(regions: &mut VecPerParamSpace<ty::Region>,
space: subst::ParamSpace,
free_id: ast::NodeId,
region_params: &[RegionParameterDef])
{
for r in region_params.iter() {
regions.push(space, ty::free_region_from_def(free_id, r));
}
}
fn push_types_from_defs<'tcx>(tcx: &ty::ctxt<'tcx>,
types: &mut subst::VecPerParamSpace<Ty<'tcx>>,
space: subst::ParamSpace,
defs: &[TypeParameterDef<'tcx>]) {
for (i, def) in defs.iter().enumerate() {
debug!("construct_parameter_environment(): push_types_from_defs: \
space={} def={} index={}",
space,
def.repr(tcx),
i);
let ty = ty::mk_param(tcx, space, i, def.def_id);
types.push(space, ty);
}
}
fn record_region_bounds<'tcx>(tcx: &ty::ctxt<'tcx>,
space: subst::ParamSpace,
free_substs: &Substs<'tcx>,
bound_sets: &[Vec<ty::Region>]) {
for (subst_region, bound_set) in
free_substs.regions().get_slice(space).iter().zip(
bound_sets.iter())
{
// For each region parameter 'subst...
for bound_region in bound_set.iter() {
// Which is declared with a bound like 'subst:'bound...
match (subst_region, bound_region) {
(&ty::ReFree(subst_fr), &ty::ReFree(bound_fr)) => {
// Record that 'subst outlives 'bound. Or, put
// another way, 'bound <= 'subst.
tcx.region_maps.relate_free_regions(bound_fr, subst_fr);
},
_ => {
// All named regions are instantiated with free regions.
tcx.sess.bug(
format!("record_region_bounds: \
non free region: {} / {}",
subst_region.repr(tcx),
bound_region.repr(tcx)).as_slice());
}
}
}
}
}
}
impl BorrowKind {
pub fn from_mutbl(m: ast::Mutability) -> BorrowKind {
match m {
ast::MutMutable => MutBorrow,
ast::MutImmutable => ImmBorrow,
}
}
pub fn to_mutbl_lossy(self) -> ast::Mutability {
/*!
* Returns a mutability `m` such that an `&m T` pointer could
* be used to obtain this borrow kind. Because borrow kinds
* are richer than mutabilities, we sometimes have to pick a
* mutability that is stronger than necessary so that it at
* least *would permit* the borrow in question.
*/
match self {
MutBorrow => ast::MutMutable,
ImmBorrow => ast::MutImmutable,
// We have no type corresponding to a unique imm borrow, so
// use `&mut`. It gives all the capabilities of an `&uniq`
// and hence is a safe "over approximation".
UniqueImmBorrow => ast::MutMutable,
}
}
pub fn to_user_str(&self) -> &'static str {
match *self {
MutBorrow => "mutable",
ImmBorrow => "immutable",
UniqueImmBorrow => "uniquely immutable",
}
}
}
impl<'tcx> mc::Typer<'tcx> for ty::ctxt<'tcx> {
fn tcx<'a>(&'a self) -> &'a ty::ctxt<'tcx> {
self
}
fn node_ty(&self, id: ast::NodeId) -> mc::McResult<Ty<'tcx>> {
Ok(ty::node_id_to_type(self, id))
}
fn node_method_ty(&self, method_call: typeck::MethodCall) -> Option<Ty<'tcx>> {
self.method_map.borrow().get(&method_call).map(|method| method.ty)
}
fn adjustments<'a>(&'a self) -> &'a RefCell<NodeMap<ty::AutoAdjustment<'tcx>>> {
&self.adjustments
}
fn is_method_call(&self, id: ast::NodeId) -> bool {
self.method_map.borrow().contains_key(&typeck::MethodCall::expr(id))
}
fn temporary_scope(&self, rvalue_id: ast::NodeId) -> Option<region::CodeExtent> {
self.region_maps.temporary_scope(rvalue_id)
}
fn upvar_borrow(&self, upvar_id: ty::UpvarId) -> ty::UpvarBorrow {
self.upvar_borrow_map.borrow()[upvar_id].clone()
}
fn capture_mode(&self, closure_expr_id: ast::NodeId)
-> ast::CaptureClause {
self.capture_modes.borrow()[closure_expr_id].clone()
}
fn unboxed_closures<'a>(&'a self)
-> &'a RefCell<DefIdMap<UnboxedClosure<'tcx>>> {
&self.unboxed_closures
}
}
/// The category of explicit self.
#[deriving(Clone, Eq, PartialEq, Show)]
pub enum ExplicitSelfCategory {
StaticExplicitSelfCategory,
ByValueExplicitSelfCategory,
ByReferenceExplicitSelfCategory(Region, ast::Mutability),
ByBoxExplicitSelfCategory,
}
/// Pushes all the lifetimes in the given type onto the given list. A
/// "lifetime in a type" is a lifetime specified by a reference or a lifetime
/// in a list of type substitutions. This does *not* traverse into nominal
/// types, nor does it resolve fictitious types.
pub fn accumulate_lifetimes_in_type(accumulator: &mut Vec<ty::Region>,
ty: Ty) {
walk_ty(ty, |ty| {
match ty.sty {
ty_rptr(region, _) => {
accumulator.push(region)
}
ty_trait(ref t) => {
accumulator.push_all(t.principal.substs.regions().as_slice());
}
ty_enum(_, ref substs) |
ty_struct(_, ref substs) => {
accum_substs(accumulator, substs);
}
ty_closure(ref closure_ty) => {
match closure_ty.store {
RegionTraitStore(region, _) => accumulator.push(region),
UniqTraitStore => {}
}
}
ty_unboxed_closure(_, ref region, ref substs) => {
accumulator.push(*region);
accum_substs(accumulator, substs);
}
ty_bool |
ty_char |
ty_int(_) |
ty_uint(_) |
ty_float(_) |
ty_uniq(_) |
ty_str |
ty_vec(_, _) |
ty_ptr(_) |
ty_bare_fn(_) |
ty_tup(_) |
ty_param(_) |
ty_infer(_) |
ty_open(_) |
ty_err => {
}
}
});
fn accum_substs(accumulator: &mut Vec<Region>, substs: &Substs) {
match substs.regions {
subst::ErasedRegions => {}
subst::NonerasedRegions(ref regions) => {
for region in regions.iter() {
accumulator.push(*region)
}
}
}
}
}
/// A free variable referred to in a function.
#[deriving(Encodable, Decodable)]
pub struct Freevar {
/// The variable being accessed free.
pub def: def::Def,
// First span where it is accessed (there can be multiple).
pub span: Span
}
pub type FreevarMap = NodeMap<Vec<Freevar>>;
pub type CaptureModeMap = NodeMap<ast::CaptureClause>;
pub fn with_freevars<T>(tcx: &ty::ctxt, fid: ast::NodeId, f: |&[Freevar]| -> T) -> T {
match tcx.freevars.borrow().get(&fid) {
None => f(&[]),
Some(d) => f(d.as_slice())
}
}
impl<'tcx> AutoAdjustment<'tcx> {
pub fn is_identity(&self) -> bool {
match *self {
AdjustAddEnv(..) => false,
AdjustDerefRef(ref r) => r.is_identity(),
}
}
}
impl<'tcx> AutoDerefRef<'tcx> {
pub fn is_identity(&self) -> bool {
self.autoderefs == 0 && self.autoref.is_none()
}
}
pub fn liberate_late_bound_regions<'tcx, HR>(
tcx: &ty::ctxt<'tcx>,
scope: region::CodeExtent,
value: &HR)
-> HR
where HR : HigherRankedFoldable<'tcx>
{
/*!
* Replace any late-bound regions bound in `value` with free variants
* attached to scope-id `scope_id`.
*/
replace_late_bound_regions(
tcx, value,
|br, _| ty::ReFree(ty::FreeRegion{scope: scope, bound_region: br})).0
}
pub fn erase_late_bound_regions<'tcx, HR>(
tcx: &ty::ctxt<'tcx>,
value: &HR)
-> HR
where HR : HigherRankedFoldable<'tcx>
{
/*!
* Replace any late-bound regions bound in `value` with `'static`.
* Useful in trans but also method lookup and a few other places
* where precise region relationships are not required.
*/
replace_late_bound_regions(tcx, value, |_, _| ty::ReStatic).0
}
pub fn replace_late_bound_regions<'tcx, HR>(
tcx: &ty::ctxt<'tcx>,
value: &HR,
mapf: |BoundRegion, DebruijnIndex| -> ty::Region)
-> (HR, FnvHashMap<ty::BoundRegion,ty::Region>)
where HR : HigherRankedFoldable<'tcx>
{
/*!
* Replaces the late-bound-regions in `value` that are bound by `value`.
*/
debug!("replace_late_bound_regions({})", value.repr(tcx));
let mut map = FnvHashMap::new();
let value = {
let mut f = ty_fold::RegionFolder::new(tcx, |region, current_depth| {
debug!("region={}", region.repr(tcx));
match region {
ty::ReLateBound(debruijn, br) if debruijn.depth == current_depth => {
* match map.entry(br) {
Vacant(entry) => entry.set(mapf(br, debruijn)),
Occupied(entry) => entry.into_mut(),
}
}
_ => {
region
}
}
});
// Note: use `fold_contents` not `fold_with`. If we used
// `fold_with`, it would consider the late-bound regions bound
// by `value` to be bound, but we want to consider them as
// `free`.
value.fold_contents(&mut f)
};
debug!("resulting map: {} value: {}", map, value.repr(tcx));
(value, map)
}
impl DebruijnIndex {
pub fn new(depth: uint) -> DebruijnIndex {
assert!(depth > 0);
DebruijnIndex { depth: depth }
}
pub fn shifted(&self, amount: uint) -> DebruijnIndex {
DebruijnIndex { depth: self.depth + amount }
}
}
impl<'tcx> Repr<'tcx> for AutoAdjustment<'tcx> {
fn repr(&self, tcx: &ctxt<'tcx>) -> String {
match *self {
AdjustAddEnv(ref trait_store) => {
format!("AdjustAddEnv({})", trait_store)
}
AdjustDerefRef(ref data) => {
data.repr(tcx)
}
}
}
}
impl<'tcx> Repr<'tcx> for UnsizeKind<'tcx> {
fn repr(&self, tcx: &ctxt<'tcx>) -> String {
match *self {
UnsizeLength(n) => format!("UnsizeLength({})", n),
UnsizeStruct(ref k, n) => format!("UnsizeStruct({},{})", k.repr(tcx), n),
UnsizeVtable(ref a, ref b) => format!("UnsizeVtable({},{})", a.repr(tcx), b.repr(tcx)),
}
}
}
impl<'tcx> Repr<'tcx> for AutoDerefRef<'tcx> {
fn repr(&self, tcx: &ctxt<'tcx>) -> String {
format!("AutoDerefRef({}, {})", self.autoderefs, self.autoref.repr(tcx))
}
}
impl<'tcx> Repr<'tcx> for AutoRef<'tcx> {
fn repr(&self, tcx: &ctxt<'tcx>) -> String {
match *self {
AutoPtr(a, b, ref c) => {
format!("AutoPtr({},{},{})", a.repr(tcx), b, c.repr(tcx))
}
AutoUnsize(ref a) => {
format!("AutoUnsize({})", a.repr(tcx))
}
AutoUnsizeUniq(ref a) => {
format!("AutoUnsizeUniq({})", a.repr(tcx))
}
AutoUnsafe(ref a, ref b) => {
format!("AutoUnsafe({},{})", a, b.repr(tcx))
}
}
}
}
impl<'tcx> Repr<'tcx> for TyTrait<'tcx> {
fn repr(&self, tcx: &ctxt<'tcx>) -> String {
format!("TyTrait({},{})",
self.principal.repr(tcx),
self.bounds.repr(tcx))
}
}