rust/src/libsyntax/test.rs
2018-05-26 15:20:23 +03:00

839 lines
30 KiB
Rust

// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
// Code that generates a test runner to run all the tests in a crate
#![allow(dead_code)]
#![allow(unused_imports)]
use self::HasTestSignature::*;
use std::iter;
use std::slice;
use std::mem;
use std::vec;
use attr::{self, HasAttrs};
use syntax_pos::{self, DUMMY_SP, NO_EXPANSION, Span, FileMap, BytePos};
use codemap::{self, CodeMap, ExpnInfo, NameAndSpan, MacroAttribute, dummy_spanned};
use errors;
use config;
use entry::{self, EntryPointType};
use ext::base::{ExtCtxt, Resolver};
use ext::build::AstBuilder;
use ext::expand::ExpansionConfig;
use ext::hygiene::{self, Mark, SyntaxContext};
use fold::Folder;
use feature_gate::Features;
use util::move_map::MoveMap;
use fold;
use parse::{token, ParseSess};
use print::pprust;
use ast::{self, Ident};
use ptr::P;
use symbol::{self, Symbol, keywords};
use util::small_vector::SmallVector;
enum ShouldPanic {
No,
Yes(Option<Symbol>),
}
struct Test {
span: Span,
path: Vec<Ident> ,
bench: bool,
ignore: bool,
should_panic: ShouldPanic,
allow_fail: bool,
}
struct TestCtxt<'a> {
span_diagnostic: &'a errors::Handler,
path: Vec<Ident>,
ext_cx: ExtCtxt<'a>,
testfns: Vec<Test>,
reexport_test_harness_main: Option<Symbol>,
is_libtest: bool,
ctxt: SyntaxContext,
features: &'a Features,
// top-level re-export submodule, filled out after folding is finished
toplevel_reexport: Option<Ident>,
}
// Traverse the crate, collecting all the test functions, eliding any
// existing main functions, and synthesizing a main test harness
pub fn modify_for_testing(sess: &ParseSess,
resolver: &mut Resolver,
should_test: bool,
krate: ast::Crate,
span_diagnostic: &errors::Handler,
features: &Features) -> ast::Crate {
// Check for #[reexport_test_harness_main = "some_name"] which
// creates a `use __test::main as some_name;`. This needs to be
// unconditional, so that the attribute is still marked as used in
// non-test builds.
let reexport_test_harness_main =
attr::first_attr_value_str_by_name(&krate.attrs,
"reexport_test_harness_main");
if should_test {
generate_test_harness(sess, resolver, reexport_test_harness_main,
krate, span_diagnostic, features)
} else {
krate
}
}
struct TestHarnessGenerator<'a> {
cx: TestCtxt<'a>,
tests: Vec<Ident>,
// submodule name, gensym'd identifier for re-exports
tested_submods: Vec<(Ident, Ident)>,
}
impl<'a> fold::Folder for TestHarnessGenerator<'a> {
fn fold_crate(&mut self, c: ast::Crate) -> ast::Crate {
let mut folded = fold::noop_fold_crate(c, self);
// Add a special __test module to the crate that will contain code
// generated for the test harness
let (mod_, reexport) = mk_test_module(&mut self.cx);
if let Some(re) = reexport {
folded.module.items.push(re)
}
folded.module.items.push(mod_);
folded
}
fn fold_item(&mut self, i: P<ast::Item>) -> SmallVector<P<ast::Item>> {
let ident = i.ident;
if ident.name != keywords::Invalid.name() {
self.cx.path.push(ident);
}
debug!("current path: {}", path_name_i(&self.cx.path));
if is_test_fn(&self.cx, &i) || is_bench_fn(&self.cx, &i) {
match i.node {
ast::ItemKind::Fn(_, ast::Unsafety::Unsafe, _, _, _, _) => {
let diag = self.cx.span_diagnostic;
diag.span_fatal(i.span, "unsafe functions cannot be used for tests").raise();
}
_ => {
debug!("this is a test function");
let test = Test {
span: i.span,
path: self.cx.path.clone(),
bench: is_bench_fn(&self.cx, &i),
ignore: is_ignored(&i),
should_panic: should_panic(&i, &self.cx),
allow_fail: is_allowed_fail(&i),
};
self.cx.testfns.push(test);
self.tests.push(i.ident);
}
}
}
let mut item = i.into_inner();
// We don't want to recurse into anything other than mods, since
// mods or tests inside of functions will break things
if let ast::ItemKind::Mod(module) = item.node {
let tests = mem::replace(&mut self.tests, Vec::new());
let tested_submods = mem::replace(&mut self.tested_submods, Vec::new());
let mut mod_folded = fold::noop_fold_mod(module, self);
let tests = mem::replace(&mut self.tests, tests);
let tested_submods = mem::replace(&mut self.tested_submods, tested_submods);
if !tests.is_empty() || !tested_submods.is_empty() {
let (it, sym) = mk_reexport_mod(&mut self.cx, item.id, tests, tested_submods);
mod_folded.items.push(it);
if !self.cx.path.is_empty() {
self.tested_submods.push((self.cx.path[self.cx.path.len()-1], sym));
} else {
debug!("pushing nothing, sym: {:?}", sym);
self.cx.toplevel_reexport = Some(sym);
}
}
item.node = ast::ItemKind::Mod(mod_folded);
}
if ident.name != keywords::Invalid.name() {
self.cx.path.pop();
}
SmallVector::one(P(item))
}
fn fold_mac(&mut self, mac: ast::Mac) -> ast::Mac { mac }
}
struct EntryPointCleaner {
// Current depth in the ast
depth: usize,
}
impl fold::Folder for EntryPointCleaner {
fn fold_item(&mut self, i: P<ast::Item>) -> SmallVector<P<ast::Item>> {
self.depth += 1;
let folded = fold::noop_fold_item(i, self).expect_one("noop did something");
self.depth -= 1;
// Remove any #[main] or #[start] from the AST so it doesn't
// clash with the one we're going to add, but mark it as
// #[allow(dead_code)] to avoid printing warnings.
let folded = match entry::entry_point_type(&folded, self.depth) {
EntryPointType::MainNamed |
EntryPointType::MainAttr |
EntryPointType::Start =>
folded.map(|ast::Item {id, ident, attrs, node, vis, span, tokens}| {
let allow_ident = Ident::from_str("allow");
let dc_nested = attr::mk_nested_word_item(Ident::from_str("dead_code"));
let allow_dead_code_item = attr::mk_list_item(DUMMY_SP, allow_ident,
vec![dc_nested]);
let allow_dead_code = attr::mk_attr_outer(DUMMY_SP,
attr::mk_attr_id(),
allow_dead_code_item);
ast::Item {
id,
ident,
attrs: attrs.into_iter()
.filter(|attr| {
!attr.check_name("main") && !attr.check_name("start")
})
.chain(iter::once(allow_dead_code))
.collect(),
node,
vis,
span,
tokens,
}
}),
EntryPointType::None |
EntryPointType::OtherMain => folded,
};
SmallVector::one(folded)
}
fn fold_mac(&mut self, mac: ast::Mac) -> ast::Mac { mac }
}
fn mk_reexport_mod(cx: &mut TestCtxt,
parent: ast::NodeId,
tests: Vec<Ident>,
tested_submods: Vec<(Ident, Ident)>)
-> (P<ast::Item>, Ident) {
let super_ = Ident::from_str("super");
let items = tests.into_iter().map(|r| {
cx.ext_cx.item_use_simple(DUMMY_SP, dummy_spanned(ast::VisibilityKind::Public),
cx.ext_cx.path(DUMMY_SP, vec![super_, r]))
}).chain(tested_submods.into_iter().map(|(r, sym)| {
let path = cx.ext_cx.path(DUMMY_SP, vec![super_, r, sym]);
cx.ext_cx.item_use_simple_(DUMMY_SP, dummy_spanned(ast::VisibilityKind::Public),
Some(r), path)
})).collect();
let reexport_mod = ast::Mod {
inner: DUMMY_SP,
items,
};
let sym = Ident::with_empty_ctxt(Symbol::gensym("__test_reexports"));
let parent = if parent == ast::DUMMY_NODE_ID { ast::CRATE_NODE_ID } else { parent };
cx.ext_cx.current_expansion.mark = cx.ext_cx.resolver.get_module_scope(parent);
let it = cx.ext_cx.monotonic_expander().fold_item(P(ast::Item {
ident: sym,
attrs: Vec::new(),
id: ast::DUMMY_NODE_ID,
node: ast::ItemKind::Mod(reexport_mod),
vis: dummy_spanned(ast::VisibilityKind::Public),
span: DUMMY_SP,
tokens: None,
})).pop().unwrap();
(it, sym)
}
fn generate_test_harness(sess: &ParseSess,
resolver: &mut Resolver,
reexport_test_harness_main: Option<Symbol>,
krate: ast::Crate,
sd: &errors::Handler,
features: &Features) -> ast::Crate {
// Remove the entry points
let mut cleaner = EntryPointCleaner { depth: 0 };
let krate = cleaner.fold_crate(krate);
let mark = Mark::fresh(Mark::root());
let mut econfig = ExpansionConfig::default("test".to_string());
econfig.features = Some(features);
let cx = TestCtxt {
span_diagnostic: sd,
ext_cx: ExtCtxt::new(sess, econfig, resolver),
path: Vec::new(),
testfns: Vec::new(),
reexport_test_harness_main,
// NB: doesn't consider the value of `--crate-name` passed on the command line.
is_libtest: attr::find_crate_name(&krate.attrs).map(|s| s == "test").unwrap_or(false),
toplevel_reexport: None,
ctxt: SyntaxContext::empty().apply_mark(mark),
features,
};
mark.set_expn_info(ExpnInfo {
call_site: DUMMY_SP,
callee: NameAndSpan {
format: MacroAttribute(Symbol::intern("test")),
span: None,
allow_internal_unstable: true,
allow_internal_unsafe: false,
edition: hygiene::default_edition(),
}
});
TestHarnessGenerator {
cx,
tests: Vec::new(),
tested_submods: Vec::new(),
}.fold_crate(krate)
}
/// Craft a span that will be ignored by the stability lint's
/// call to codemap's `is_internal` check.
/// The expanded code calls some unstable functions in the test crate.
fn ignored_span(cx: &TestCtxt, sp: Span) -> Span {
sp.with_ctxt(cx.ctxt)
}
#[derive(PartialEq)]
enum HasTestSignature {
Yes,
No(BadTestSignature),
}
#[derive(PartialEq)]
enum BadTestSignature {
NotEvenAFunction,
WrongTypeSignature,
NoArgumentsAllowed,
ShouldPanicOnlyWithNoArgs,
}
fn is_test_fn(cx: &TestCtxt, i: &ast::Item) -> bool {
let has_test_attr = attr::contains_name(&i.attrs, "test");
fn has_test_signature(cx: &TestCtxt, i: &ast::Item) -> HasTestSignature {
let has_should_panic_attr = attr::contains_name(&i.attrs, "should_panic");
match i.node {
ast::ItemKind::Fn(ref decl, _, _, _, ref generics, _) => {
// If the termination trait is active, the compiler will check that the output
// type implements the `Termination` trait as `libtest` enforces that.
let has_output = match decl.output {
ast::FunctionRetTy::Default(..) => false,
ast::FunctionRetTy::Ty(ref t) if t.node == ast::TyKind::Tup(vec![]) => false,
_ => true
};
if !decl.inputs.is_empty() {
return No(BadTestSignature::NoArgumentsAllowed);
}
match (has_output, cx.features.termination_trait_test, has_should_panic_attr) {
(true, true, true) => No(BadTestSignature::ShouldPanicOnlyWithNoArgs),
(true, true, false) => if generics.is_parameterized() {
No(BadTestSignature::WrongTypeSignature)
} else {
Yes
},
(true, false, _) => No(BadTestSignature::WrongTypeSignature),
(false, _, _) => Yes
}
}
_ => No(BadTestSignature::NotEvenAFunction),
}
}
let has_test_signature = if has_test_attr {
let diag = cx.span_diagnostic;
match has_test_signature(cx, i) {
Yes => true,
No(cause) => {
match cause {
BadTestSignature::NotEvenAFunction =>
diag.span_err(i.span, "only functions may be used as tests"),
BadTestSignature::WrongTypeSignature =>
diag.span_err(i.span,
"functions used as tests must have signature fn() -> ()"),
BadTestSignature::NoArgumentsAllowed =>
diag.span_err(i.span, "functions used as tests can not have any arguments"),
BadTestSignature::ShouldPanicOnlyWithNoArgs =>
diag.span_err(i.span, "functions using `#[should_panic]` must return `()`"),
}
false
}
}
} else {
false
};
has_test_attr && has_test_signature
}
fn is_bench_fn(cx: &TestCtxt, i: &ast::Item) -> bool {
let has_bench_attr = attr::contains_name(&i.attrs, "bench");
fn has_bench_signature(cx: &TestCtxt, i: &ast::Item) -> bool {
match i.node {
ast::ItemKind::Fn(ref decl, _, _, _, ref generics, _) => {
let input_cnt = decl.inputs.len();
// If the termination trait is active, the compiler will check that the output
// type implements the `Termination` trait as `libtest` enforces that.
let output_matches = if cx.features.termination_trait_test {
true
} else {
let no_output = match decl.output {
ast::FunctionRetTy::Default(..) => true,
ast::FunctionRetTy::Ty(ref t) if t.node == ast::TyKind::Tup(vec![]) => true,
_ => false
};
let tparm_cnt = generics.params.iter()
.filter(|param| param.is_type_param())
.count();
no_output && tparm_cnt == 0
};
// NB: inadequate check, but we're running
// well before resolve, can't get too deep.
input_cnt == 1 && output_matches
}
_ => false
}
}
let has_bench_signature = has_bench_signature(cx, i);
if has_bench_attr && !has_bench_signature {
let diag = cx.span_diagnostic;
if cx.features.termination_trait_test {
diag.span_err(i.span, "functions used as benches must have signature \
`fn(&mut Bencher) -> impl Termination`");
} else {
diag.span_err(i.span, "functions used as benches must have signature \
`fn(&mut Bencher) -> ()`");
}
}
has_bench_attr && has_bench_signature
}
fn is_ignored(i: &ast::Item) -> bool {
attr::contains_name(&i.attrs, "ignore")
}
fn is_allowed_fail(i: &ast::Item) -> bool {
attr::contains_name(&i.attrs, "allow_fail")
}
fn should_panic(i: &ast::Item, cx: &TestCtxt) -> ShouldPanic {
match attr::find_by_name(&i.attrs, "should_panic") {
Some(attr) => {
let sd = cx.span_diagnostic;
if attr.is_value_str() {
sd.struct_span_warn(
attr.span(),
"attribute must be of the form: \
`#[should_panic]` or \
`#[should_panic(expected = \"error message\")]`"
).note("Errors in this attribute were erroneously allowed \
and will become a hard error in a future release.")
.emit();
return ShouldPanic::Yes(None);
}
match attr.meta_item_list() {
// Handle #[should_panic]
None => ShouldPanic::Yes(None),
// Handle #[should_panic(expected = "foo")]
Some(list) => {
let msg = list.iter()
.find(|mi| mi.check_name("expected"))
.and_then(|mi| mi.meta_item())
.and_then(|mi| mi.value_str());
if list.len() != 1 || msg.is_none() {
sd.struct_span_warn(
attr.span(),
"argument must be of the form: \
`expected = \"error message\"`"
).note("Errors in this attribute were erroneously \
allowed and will become a hard error in a \
future release.").emit();
ShouldPanic::Yes(None)
} else {
ShouldPanic::Yes(msg)
}
},
}
}
None => ShouldPanic::No,
}
}
/*
We're going to be building a module that looks more or less like:
mod __test {
extern crate test (name = "test", vers = "...");
fn main() {
test::test_main_static(&::os::args()[], tests, test::Options::new())
}
static tests : &'static [test::TestDescAndFn] = &[
... the list of tests in the crate ...
];
}
*/
fn mk_std(cx: &TestCtxt) -> P<ast::Item> {
let id_test = Ident::from_str("test");
let sp = ignored_span(cx, DUMMY_SP);
let (vi, vis, ident) = if cx.is_libtest {
(ast::ItemKind::Use(P(ast::UseTree {
span: DUMMY_SP,
prefix: path_node(vec![id_test]),
kind: ast::UseTreeKind::Simple(None),
})),
ast::VisibilityKind::Public, keywords::Invalid.ident())
} else {
(ast::ItemKind::ExternCrate(None), ast::VisibilityKind::Inherited, id_test)
};
P(ast::Item {
id: ast::DUMMY_NODE_ID,
ident,
node: vi,
attrs: vec![],
vis: dummy_spanned(vis),
span: sp,
tokens: None,
})
}
fn mk_main(cx: &mut TestCtxt) -> P<ast::Item> {
// Writing this out by hand with 'ignored_span':
// pub fn main() {
// #![main]
// use std::slice::AsSlice;
// test::test_main_static(::std::os::args().as_slice(), TESTS, test::Options::new());
// }
let sp = ignored_span(cx, DUMMY_SP);
let ecx = &cx.ext_cx;
// test::test_main_static
let test_main_path =
ecx.path(sp, vec![Ident::from_str("test"), Ident::from_str("test_main_static")]);
// test::test_main_static(...)
let test_main_path_expr = ecx.expr_path(test_main_path);
let tests_ident_expr = ecx.expr_ident(sp, Ident::from_str("TESTS"));
let call_test_main = ecx.expr_call(sp, test_main_path_expr,
vec![tests_ident_expr]);
let call_test_main = ecx.stmt_expr(call_test_main);
// #![main]
let main_meta = ecx.meta_word(sp, Symbol::intern("main"));
let main_attr = ecx.attribute(sp, main_meta);
// pub fn main() { ... }
let main_ret_ty = ecx.ty(sp, ast::TyKind::Tup(vec![]));
let main_body = ecx.block(sp, vec![call_test_main]);
let main = ast::ItemKind::Fn(ecx.fn_decl(vec![], ast::FunctionRetTy::Ty(main_ret_ty)),
ast::Unsafety::Normal,
dummy_spanned(ast::Constness::NotConst),
::rustc_target::spec::abi::Abi::Rust,
ast::Generics::default(),
main_body);
P(ast::Item {
ident: Ident::from_str("main"),
attrs: vec![main_attr],
id: ast::DUMMY_NODE_ID,
node: main,
vis: dummy_spanned(ast::VisibilityKind::Public),
span: sp,
tokens: None,
})
}
fn mk_test_module(cx: &mut TestCtxt) -> (P<ast::Item>, Option<P<ast::Item>>) {
// Link to test crate
let import = mk_std(cx);
// A constant vector of test descriptors.
let tests = mk_tests(cx);
// The synthesized main function which will call the console test runner
// with our list of tests
let mainfn = mk_main(cx);
let testmod = ast::Mod {
inner: DUMMY_SP,
items: vec![import, mainfn, tests],
};
let item_ = ast::ItemKind::Mod(testmod);
let mod_ident = Ident::with_empty_ctxt(Symbol::gensym("__test"));
let mut expander = cx.ext_cx.monotonic_expander();
let item = expander.fold_item(P(ast::Item {
id: ast::DUMMY_NODE_ID,
ident: mod_ident,
attrs: vec![],
node: item_,
vis: dummy_spanned(ast::VisibilityKind::Public),
span: DUMMY_SP,
tokens: None,
})).pop().unwrap();
let reexport = cx.reexport_test_harness_main.map(|s| {
// building `use __test::main as <ident>;`
let rename = Ident::with_empty_ctxt(s);
let use_path = ast::UseTree {
span: DUMMY_SP,
prefix: path_node(vec![mod_ident, Ident::from_str("main")]),
kind: ast::UseTreeKind::Simple(Some(rename)),
};
expander.fold_item(P(ast::Item {
id: ast::DUMMY_NODE_ID,
ident: keywords::Invalid.ident(),
attrs: vec![],
node: ast::ItemKind::Use(P(use_path)),
vis: dummy_spanned(ast::VisibilityKind::Inherited),
span: DUMMY_SP,
tokens: None,
})).pop().unwrap()
});
debug!("Synthetic test module:\n{}\n", pprust::item_to_string(&item));
(item, reexport)
}
fn nospan<T>(t: T) -> codemap::Spanned<T> {
codemap::Spanned { node: t, span: DUMMY_SP }
}
fn path_node(ids: Vec<Ident>) -> ast::Path {
ast::Path {
span: DUMMY_SP,
segments: ids.into_iter().map(|id| ast::PathSegment::from_ident(id)).collect(),
}
}
fn path_name_i(idents: &[Ident]) -> String {
let mut path_name = "".to_string();
let mut idents_iter = idents.iter().peekable();
while let Some(ident) = idents_iter.next() {
path_name.push_str(&ident.as_str());
if let Some(_) = idents_iter.peek() {
path_name.push_str("::")
}
}
path_name
}
fn mk_tests(cx: &TestCtxt) -> P<ast::Item> {
// The vector of test_descs for this crate
let test_descs = mk_test_descs(cx);
// FIXME #15962: should be using quote_item, but that stringifies
// __test_reexports, causing it to be reinterned, losing the
// gensym information.
let sp = ignored_span(cx, DUMMY_SP);
let ecx = &cx.ext_cx;
let struct_type = ecx.ty_path(ecx.path(sp, vec![ecx.ident_of("self"),
ecx.ident_of("test"),
ecx.ident_of("TestDescAndFn")]));
let static_lt = ecx.lifetime(sp, keywords::StaticLifetime.ident());
// &'static [self::test::TestDescAndFn]
let static_type = ecx.ty_rptr(sp,
ecx.ty(sp, ast::TyKind::Slice(struct_type)),
Some(static_lt),
ast::Mutability::Immutable);
// static TESTS: $static_type = &[...];
ecx.item_const(sp,
ecx.ident_of("TESTS"),
static_type,
test_descs)
}
fn mk_test_descs(cx: &TestCtxt) -> P<ast::Expr> {
debug!("building test vector from {} tests", cx.testfns.len());
P(ast::Expr {
id: ast::DUMMY_NODE_ID,
node: ast::ExprKind::AddrOf(ast::Mutability::Immutable,
P(ast::Expr {
id: ast::DUMMY_NODE_ID,
node: ast::ExprKind::Array(cx.testfns.iter().map(|test| {
mk_test_desc_and_fn_rec(cx, test)
}).collect()),
span: DUMMY_SP,
attrs: ast::ThinVec::new(),
})),
span: DUMMY_SP,
attrs: ast::ThinVec::new(),
})
}
fn mk_test_desc_and_fn_rec(cx: &TestCtxt, test: &Test) -> P<ast::Expr> {
// FIXME #15962: should be using quote_expr, but that stringifies
// __test_reexports, causing it to be reinterned, losing the
// gensym information.
let span = ignored_span(cx, test.span);
let ecx = &cx.ext_cx;
let self_id = ecx.ident_of("self");
let test_id = ecx.ident_of("test");
// creates self::test::$name
let test_path = |name| {
ecx.path(span, vec![self_id, test_id, ecx.ident_of(name)])
};
// creates $name: $expr
let field = |name, expr| ecx.field_imm(span, ecx.ident_of(name), expr);
// path to the #[test] function: "foo::bar::baz"
let path_string = path_name_i(&test.path[..]);
debug!("encoding {}", path_string);
let name_expr = ecx.expr_str(span, Symbol::intern(&path_string));
// self::test::StaticTestName($name_expr)
let name_expr = ecx.expr_call(span,
ecx.expr_path(test_path("StaticTestName")),
vec![name_expr]);
let ignore_expr = ecx.expr_bool(span, test.ignore);
let should_panic_path = |name| {
ecx.path(span, vec![self_id, test_id, ecx.ident_of("ShouldPanic"), ecx.ident_of(name)])
};
let fail_expr = match test.should_panic {
ShouldPanic::No => ecx.expr_path(should_panic_path("No")),
ShouldPanic::Yes(msg) => {
match msg {
Some(msg) => {
let msg = ecx.expr_str(span, msg);
let path = should_panic_path("YesWithMessage");
ecx.expr_call(span, ecx.expr_path(path), vec![msg])
}
None => ecx.expr_path(should_panic_path("Yes")),
}
}
};
let allow_fail_expr = ecx.expr_bool(span, test.allow_fail);
// self::test::TestDesc { ... }
let desc_expr = ecx.expr_struct(
span,
test_path("TestDesc"),
vec![field("name", name_expr),
field("ignore", ignore_expr),
field("should_panic", fail_expr),
field("allow_fail", allow_fail_expr)]);
let mut visible_path = vec![];
if cx.features.extern_absolute_paths {
visible_path.push(keywords::Crate.ident());
}
match cx.toplevel_reexport {
Some(id) => visible_path.push(id),
None => {
let diag = cx.span_diagnostic;
diag.bug("expected to find top-level re-export name, but found None");
}
};
visible_path.extend_from_slice(&test.path[..]);
// Rather than directly give the test function to the test
// harness, we create a wrapper like one of the following:
//
// || test::assert_test_result(real_function()) // for test
// |b| test::assert_test_result(real_function(b)) // for bench
//
// this will coerce into a fn pointer that is specialized to the
// actual return type of `real_function` (Typically `()`, but not always).
let fn_expr = {
// construct `real_function()` (this will be inserted into the overall expr)
let real_function_expr = ecx.expr_path(ecx.path_global(span, visible_path));
// construct path `test::assert_test_result`
let assert_test_result = test_path("assert_test_result");
if test.bench {
// construct `|b| {..}`
let b_ident = Ident::with_empty_ctxt(Symbol::gensym("b"));
let b_expr = ecx.expr_ident(span, b_ident);
ecx.lambda(
span,
vec![b_ident],
// construct `assert_test_result(..)`
ecx.expr_call(
span,
ecx.expr_path(assert_test_result),
vec![
// construct `real_function(b)`
ecx.expr_call(
span,
real_function_expr,
vec![b_expr],
)
],
),
)
} else {
// construct `|| {..}`
ecx.lambda(
span,
vec![],
// construct `assert_test_result(..)`
ecx.expr_call(
span,
ecx.expr_path(assert_test_result),
vec![
// construct `real_function()`
ecx.expr_call(
span,
real_function_expr,
vec![],
)
],
),
)
}
};
let variant_name = if test.bench { "StaticBenchFn" } else { "StaticTestFn" };
// self::test::$variant_name($fn_expr)
let testfn_expr = ecx.expr_call(span, ecx.expr_path(test_path(variant_name)), vec![fn_expr]);
// self::test::TestDescAndFn { ... }
ecx.expr_struct(span,
test_path("TestDescAndFn"),
vec![field("desc", desc_expr),
field("testfn", testfn_expr)])
}