rust/compiler/rustc_parse/src/parser/mod.rs
Vadim Petrochenkov f2b7fa4847 ast: Introduce some traits to get AST node properties generically
And use them to avoid constructing some artificial `Nonterminal` tokens during expansion
2022-05-11 12:43:27 +03:00

1483 lines
54 KiB
Rust

pub mod attr;
mod attr_wrapper;
mod diagnostics;
mod expr;
mod generics;
mod item;
mod nonterminal;
mod pat;
mod path;
mod stmt;
mod ty;
use crate::lexer::UnmatchedBrace;
pub use attr_wrapper::AttrWrapper;
pub use diagnostics::AttemptLocalParseRecovery;
use diagnostics::Error;
pub(crate) use item::FnParseMode;
pub use pat::{CommaRecoveryMode, RecoverColon, RecoverComma};
pub use path::PathStyle;
use rustc_ast::ptr::P;
use rustc_ast::token::{self, Delimiter, Nonterminal, Token, TokenKind};
use rustc_ast::tokenstream::AttributesData;
use rustc_ast::tokenstream::{self, DelimSpan, Spacing};
use rustc_ast::tokenstream::{TokenStream, TokenTree};
use rustc_ast::AttrId;
use rustc_ast::DUMMY_NODE_ID;
use rustc_ast::{self as ast, AnonConst, AttrStyle, AttrVec, Const, CrateSugar, Extern};
use rustc_ast::{Async, Expr, ExprKind, MacArgs, MacArgsEq, MacDelimiter, Mutability, StrLit};
use rustc_ast::{HasAttrs, HasTokens, Unsafe, Visibility, VisibilityKind};
use rustc_ast_pretty::pprust;
use rustc_data_structures::fx::FxHashMap;
use rustc_errors::PResult;
use rustc_errors::{
struct_span_err, Applicability, DiagnosticBuilder, ErrorGuaranteed, FatalError, MultiSpan,
};
use rustc_session::parse::ParseSess;
use rustc_span::source_map::{Span, DUMMY_SP};
use rustc_span::symbol::{kw, sym, Ident, Symbol};
use tracing::debug;
use std::ops::Range;
use std::{cmp, mem, slice};
bitflags::bitflags! {
struct Restrictions: u8 {
const STMT_EXPR = 1 << 0;
const NO_STRUCT_LITERAL = 1 << 1;
const CONST_EXPR = 1 << 2;
}
}
#[derive(Clone, Copy, PartialEq, Debug)]
enum SemiColonMode {
Break,
Ignore,
Comma,
}
#[derive(Clone, Copy, PartialEq, Debug)]
enum BlockMode {
Break,
Ignore,
}
/// Whether or not we should force collection of tokens for an AST node,
/// regardless of whether or not it has attributes
#[derive(Clone, Copy, PartialEq)]
pub enum ForceCollect {
Yes,
No,
}
#[derive(Debug, Eq, PartialEq)]
pub enum TrailingToken {
None,
Semi,
/// If the trailing token is a comma, then capture it
/// Otherwise, ignore the trailing token
MaybeComma,
}
/// Like `maybe_whole_expr`, but for things other than expressions.
#[macro_export]
macro_rules! maybe_whole {
($p:expr, $constructor:ident, |$x:ident| $e:expr) => {
if let token::Interpolated(nt) = &$p.token.kind {
if let token::$constructor(x) = &**nt {
let $x = x.clone();
$p.bump();
return Ok($e);
}
}
};
}
/// If the next tokens are ill-formed `$ty::` recover them as `<$ty>::`.
#[macro_export]
macro_rules! maybe_recover_from_interpolated_ty_qpath {
($self: expr, $allow_qpath_recovery: expr) => {
if $allow_qpath_recovery
&& $self.look_ahead(1, |t| t == &token::ModSep)
&& let token::Interpolated(nt) = &$self.token.kind
&& let token::NtTy(ty) = &**nt
{
let ty = ty.clone();
$self.bump();
return $self.maybe_recover_from_bad_qpath_stage_2($self.prev_token.span, ty);
}
};
}
#[derive(Clone)]
pub struct Parser<'a> {
pub sess: &'a ParseSess,
/// The current token.
pub token: Token,
/// The spacing for the current token
pub token_spacing: Spacing,
/// The previous token.
pub prev_token: Token,
pub capture_cfg: bool,
restrictions: Restrictions,
expected_tokens: Vec<TokenType>,
// Important: This must only be advanced from `bump` to ensure that
// `token_cursor.num_next_calls` is updated properly.
token_cursor: TokenCursor,
desugar_doc_comments: bool,
/// This field is used to keep track of how many left angle brackets we have seen. This is
/// required in order to detect extra leading left angle brackets (`<` characters) and error
/// appropriately.
///
/// See the comments in the `parse_path_segment` function for more details.
unmatched_angle_bracket_count: u32,
max_angle_bracket_count: u32,
/// A list of all unclosed delimiters found by the lexer. If an entry is used for error recovery
/// it gets removed from here. Every entry left at the end gets emitted as an independent
/// error.
pub(super) unclosed_delims: Vec<UnmatchedBrace>,
last_unexpected_token_span: Option<Span>,
/// Span pointing at the `:` for the last type ascription the parser has seen, and whether it
/// looked like it could have been a mistyped path or literal `Option:Some(42)`).
pub last_type_ascription: Option<(Span, bool /* likely path typo */)>,
/// If present, this `Parser` is not parsing Rust code but rather a macro call.
subparser_name: Option<&'static str>,
capture_state: CaptureState,
/// This allows us to recover when the user forget to add braces around
/// multiple statements in the closure body.
pub current_closure: Option<ClosureSpans>,
}
// This type is used a lot, e.g. it's cloned when matching many declarative macro rules. Make sure
// it doesn't unintentionally get bigger.
#[cfg(all(target_arch = "x86_64", target_pointer_width = "64"))]
rustc_data_structures::static_assert_size!(Parser<'_>, 328);
/// Stores span information about a closure.
#[derive(Clone)]
pub struct ClosureSpans {
pub whole_closure: Span,
pub closing_pipe: Span,
pub body: Span,
}
/// Indicates a range of tokens that should be replaced by
/// the tokens in the provided vector. This is used in two
/// places during token collection:
///
/// 1. During the parsing of an AST node that may have a `#[derive]`
/// attribute, we parse a nested AST node that has `#[cfg]` or `#[cfg_attr]`
/// In this case, we use a `ReplaceRange` to replace the entire inner AST node
/// with `FlatToken::AttrTarget`, allowing us to perform eager cfg-expansion
/// on an `AttrAnnotatedTokenStream`
///
/// 2. When we parse an inner attribute while collecting tokens. We
/// remove inner attributes from the token stream entirely, and
/// instead track them through the `attrs` field on the AST node.
/// This allows us to easily manipulate them (for example, removing
/// the first macro inner attribute to invoke a proc-macro).
/// When create a `TokenStream`, the inner attributes get inserted
/// into the proper place in the token stream.
pub type ReplaceRange = (Range<u32>, Vec<(FlatToken, Spacing)>);
/// Controls how we capture tokens. Capturing can be expensive,
/// so we try to avoid performing capturing in cases where
/// we will never need an `AttrAnnotatedTokenStream`
#[derive(Copy, Clone)]
pub enum Capturing {
/// We aren't performing any capturing - this is the default mode.
No,
/// We are capturing tokens
Yes,
}
#[derive(Clone)]
struct CaptureState {
capturing: Capturing,
replace_ranges: Vec<ReplaceRange>,
inner_attr_ranges: FxHashMap<AttrId, ReplaceRange>,
}
impl<'a> Drop for Parser<'a> {
fn drop(&mut self) {
emit_unclosed_delims(&mut self.unclosed_delims, &self.sess);
}
}
#[derive(Clone)]
struct TokenCursor {
// The current (innermost) frame. `frame` and `stack` could be combined,
// but it's faster to have them separately to access `frame` directly
// rather than via something like `stack.last().unwrap()` or
// `stack[stack.len() - 1]`.
frame: TokenCursorFrame,
// Additional frames that enclose `frame`.
stack: Vec<TokenCursorFrame>,
desugar_doc_comments: bool,
// Counts the number of calls to `{,inlined_}next`.
num_next_calls: usize,
// During parsing, we may sometimes need to 'unglue' a
// glued token into two component tokens
// (e.g. '>>' into '>' and '>), so that the parser
// can consume them one at a time. This process
// bypasses the normal capturing mechanism
// (e.g. `num_next_calls` will not be incremented),
// since the 'unglued' tokens due not exist in
// the original `TokenStream`.
//
// If we end up consuming both unglued tokens,
// then this is not an issue - we'll end up
// capturing the single 'glued' token.
//
// However, in certain circumstances, we may
// want to capture just the first 'unglued' token.
// For example, capturing the `Vec<u8>`
// in `Option<Vec<u8>>` requires us to unglue
// the trailing `>>` token. The `break_last_token`
// field is used to track this token - it gets
// appended to the captured stream when
// we evaluate a `LazyTokenStream`
break_last_token: bool,
}
#[derive(Clone)]
struct TokenCursorFrame {
delim_sp: Option<(Delimiter, DelimSpan)>,
tree_cursor: tokenstream::Cursor,
}
impl TokenCursorFrame {
fn new(delim_sp: Option<(Delimiter, DelimSpan)>, tts: TokenStream) -> Self {
TokenCursorFrame { delim_sp, tree_cursor: tts.into_trees() }
}
}
impl TokenCursor {
fn next(&mut self, desugar_doc_comments: bool) -> (Token, Spacing) {
self.inlined_next(desugar_doc_comments)
}
/// This always-inlined version should only be used on hot code paths.
#[inline(always)]
fn inlined_next(&mut self, desugar_doc_comments: bool) -> (Token, Spacing) {
loop {
// FIXME: we currently don't return `Delimiter` open/close delims. To fix #67062 we will
// need to, whereupon the `delim != Delimiter::Invisible` conditions below can be
// removed.
if let Some((tree, spacing)) = self.frame.tree_cursor.next_with_spacing_ref() {
match tree {
&TokenTree::Token(ref token) => match (desugar_doc_comments, token) {
(true, &Token { kind: token::DocComment(_, attr_style, data), span }) => {
return self.desugar(attr_style, data, span);
}
_ => return (token.clone(), *spacing),
},
&TokenTree::Delimited(sp, delim, ref tts) => {
// Set `open_delim` to true here because we deal with it immediately.
let frame = TokenCursorFrame::new(Some((delim, sp)), tts.clone());
self.stack.push(mem::replace(&mut self.frame, frame));
if delim != Delimiter::Invisible {
return (Token::new(token::OpenDelim(delim), sp.open), Spacing::Alone);
}
// No open delimeter to return; continue on to the next iteration.
}
};
} else if let Some(frame) = self.stack.pop() {
if let Some((delim, span)) = self.frame.delim_sp && delim != Delimiter::Invisible {
self.frame = frame;
return (Token::new(token::CloseDelim(delim), span.close), Spacing::Alone);
}
self.frame = frame;
// No close delimiter to return; continue on to the next iteration.
} else {
return (Token::new(token::Eof, DUMMY_SP), Spacing::Alone);
}
}
}
fn desugar(&mut self, attr_style: AttrStyle, data: Symbol, span: Span) -> (Token, Spacing) {
// Searches for the occurrences of `"#*` and returns the minimum number of `#`s
// required to wrap the text.
let mut num_of_hashes = 0;
let mut count = 0;
for ch in data.as_str().chars() {
count = match ch {
'"' => 1,
'#' if count > 0 => count + 1,
_ => 0,
};
num_of_hashes = cmp::max(num_of_hashes, count);
}
let delim_span = DelimSpan::from_single(span);
let body = TokenTree::Delimited(
delim_span,
Delimiter::Bracket,
[
TokenTree::token(token::Ident(sym::doc, false), span),
TokenTree::token(token::Eq, span),
TokenTree::token(TokenKind::lit(token::StrRaw(num_of_hashes), data, None), span),
]
.iter()
.cloned()
.collect::<TokenStream>(),
);
self.stack.push(mem::replace(
&mut self.frame,
TokenCursorFrame::new(
None,
if attr_style == AttrStyle::Inner {
[TokenTree::token(token::Pound, span), TokenTree::token(token::Not, span), body]
.iter()
.cloned()
.collect::<TokenStream>()
} else {
[TokenTree::token(token::Pound, span), body]
.iter()
.cloned()
.collect::<TokenStream>()
},
),
));
self.next(/* desugar_doc_comments */ false)
}
}
#[derive(Debug, Clone, PartialEq)]
enum TokenType {
Token(TokenKind),
Keyword(Symbol),
Operator,
Lifetime,
Ident,
Path,
Type,
Const,
}
impl TokenType {
fn to_string(&self) -> String {
match *self {
TokenType::Token(ref t) => format!("`{}`", pprust::token_kind_to_string(t)),
TokenType::Keyword(kw) => format!("`{}`", kw),
TokenType::Operator => "an operator".to_string(),
TokenType::Lifetime => "lifetime".to_string(),
TokenType::Ident => "identifier".to_string(),
TokenType::Path => "path".to_string(),
TokenType::Type => "type".to_string(),
TokenType::Const => "a const expression".to_string(),
}
}
}
#[derive(Copy, Clone, Debug)]
enum TokenExpectType {
Expect,
NoExpect,
}
/// A sequence separator.
struct SeqSep {
/// The separator token.
sep: Option<TokenKind>,
/// `true` if a trailing separator is allowed.
trailing_sep_allowed: bool,
}
impl SeqSep {
fn trailing_allowed(t: TokenKind) -> SeqSep {
SeqSep { sep: Some(t), trailing_sep_allowed: true }
}
fn none() -> SeqSep {
SeqSep { sep: None, trailing_sep_allowed: false }
}
}
pub enum FollowedByType {
Yes,
No,
}
fn token_descr_opt(token: &Token) -> Option<&'static str> {
Some(match token.kind {
_ if token.is_special_ident() => "reserved identifier",
_ if token.is_used_keyword() => "keyword",
_ if token.is_unused_keyword() => "reserved keyword",
token::DocComment(..) => "doc comment",
_ => return None,
})
}
pub(super) fn token_descr(token: &Token) -> String {
let token_str = pprust::token_to_string(token);
match token_descr_opt(token) {
Some(prefix) => format!("{} `{}`", prefix, token_str),
_ => format!("`{}`", token_str),
}
}
impl<'a> Parser<'a> {
pub fn new(
sess: &'a ParseSess,
tokens: TokenStream,
desugar_doc_comments: bool,
subparser_name: Option<&'static str>,
) -> Self {
let mut parser = Parser {
sess,
token: Token::dummy(),
token_spacing: Spacing::Alone,
prev_token: Token::dummy(),
capture_cfg: false,
restrictions: Restrictions::empty(),
expected_tokens: Vec::new(),
token_cursor: TokenCursor {
frame: TokenCursorFrame::new(None, tokens),
stack: Vec::new(),
num_next_calls: 0,
desugar_doc_comments,
break_last_token: false,
},
desugar_doc_comments,
unmatched_angle_bracket_count: 0,
max_angle_bracket_count: 0,
unclosed_delims: Vec::new(),
last_unexpected_token_span: None,
last_type_ascription: None,
subparser_name,
capture_state: CaptureState {
capturing: Capturing::No,
replace_ranges: Vec::new(),
inner_attr_ranges: Default::default(),
},
current_closure: None,
};
// Make parser point to the first token.
parser.bump();
parser
}
pub fn unexpected<T>(&mut self) -> PResult<'a, T> {
match self.expect_one_of(&[], &[]) {
Err(e) => Err(e),
// We can get `Ok(true)` from `recover_closing_delimiter`
// which is called in `expected_one_of_not_found`.
Ok(_) => FatalError.raise(),
}
}
/// Expects and consumes the token `t`. Signals an error if the next token is not `t`.
pub fn expect(&mut self, t: &TokenKind) -> PResult<'a, bool /* recovered */> {
if self.expected_tokens.is_empty() {
if self.token == *t {
self.bump();
Ok(false)
} else {
self.unexpected_try_recover(t)
}
} else {
self.expect_one_of(slice::from_ref(t), &[])
}
}
/// Expect next token to be edible or inedible token. If edible,
/// then consume it; if inedible, then return without consuming
/// anything. Signal a fatal error if next token is unexpected.
pub fn expect_one_of(
&mut self,
edible: &[TokenKind],
inedible: &[TokenKind],
) -> PResult<'a, bool /* recovered */> {
if edible.contains(&self.token.kind) {
self.bump();
Ok(false)
} else if inedible.contains(&self.token.kind) {
// leave it in the input
Ok(false)
} else if self.last_unexpected_token_span == Some(self.token.span) {
FatalError.raise();
} else {
self.expected_one_of_not_found(edible, inedible)
}
}
// Public for rustfmt usage.
pub fn parse_ident(&mut self) -> PResult<'a, Ident> {
self.parse_ident_common(true)
}
fn ident_or_err(&mut self) -> PResult<'a, (Ident, /* is_raw */ bool)> {
self.token.ident().ok_or_else(|| match self.prev_token.kind {
TokenKind::DocComment(..) => {
self.span_err(self.prev_token.span, Error::UselessDocComment)
}
_ => self.expected_ident_found(),
})
}
fn parse_ident_common(&mut self, recover: bool) -> PResult<'a, Ident> {
let (ident, is_raw) = self.ident_or_err()?;
if !is_raw && ident.is_reserved() {
let mut err = self.expected_ident_found();
if recover {
err.emit();
} else {
return Err(err);
}
}
self.bump();
Ok(ident)
}
/// Checks if the next token is `tok`, and returns `true` if so.
///
/// This method will automatically add `tok` to `expected_tokens` if `tok` is not
/// encountered.
fn check(&mut self, tok: &TokenKind) -> bool {
let is_present = self.token == *tok;
if !is_present {
self.expected_tokens.push(TokenType::Token(tok.clone()));
}
is_present
}
/// Consumes a token 'tok' if it exists. Returns whether the given token was present.
pub fn eat(&mut self, tok: &TokenKind) -> bool {
let is_present = self.check(tok);
if is_present {
self.bump()
}
is_present
}
/// If the next token is the given keyword, returns `true` without eating it.
/// An expectation is also added for diagnostics purposes.
fn check_keyword(&mut self, kw: Symbol) -> bool {
self.expected_tokens.push(TokenType::Keyword(kw));
self.token.is_keyword(kw)
}
/// If the next token is the given keyword, eats it and returns `true`.
/// Otherwise, returns `false`. An expectation is also added for diagnostics purposes.
// Public for rustfmt usage.
pub fn eat_keyword(&mut self, kw: Symbol) -> bool {
if self.check_keyword(kw) {
self.bump();
true
} else {
false
}
}
fn eat_keyword_noexpect(&mut self, kw: Symbol) -> bool {
if self.token.is_keyword(kw) {
self.bump();
true
} else {
false
}
}
/// If the given word is not a keyword, signals an error.
/// If the next token is not the given word, signals an error.
/// Otherwise, eats it.
fn expect_keyword(&mut self, kw: Symbol) -> PResult<'a, ()> {
if !self.eat_keyword(kw) { self.unexpected() } else { Ok(()) }
}
/// Is the given keyword `kw` followed by a non-reserved identifier?
fn is_kw_followed_by_ident(&self, kw: Symbol) -> bool {
self.token.is_keyword(kw) && self.look_ahead(1, |t| t.is_ident() && !t.is_reserved_ident())
}
fn check_or_expected(&mut self, ok: bool, typ: TokenType) -> bool {
if ok {
true
} else {
self.expected_tokens.push(typ);
false
}
}
fn check_ident(&mut self) -> bool {
self.check_or_expected(self.token.is_ident(), TokenType::Ident)
}
fn check_path(&mut self) -> bool {
self.check_or_expected(self.token.is_path_start(), TokenType::Path)
}
fn check_type(&mut self) -> bool {
self.check_or_expected(self.token.can_begin_type(), TokenType::Type)
}
fn check_const_arg(&mut self) -> bool {
self.check_or_expected(self.token.can_begin_const_arg(), TokenType::Const)
}
fn check_inline_const(&self, dist: usize) -> bool {
self.is_keyword_ahead(dist, &[kw::Const])
&& self.look_ahead(dist + 1, |t| match t.kind {
token::Interpolated(ref nt) => matches!(**nt, token::NtBlock(..)),
token::OpenDelim(Delimiter::Brace) => true,
_ => false,
})
}
/// Checks to see if the next token is either `+` or `+=`.
/// Otherwise returns `false`.
fn check_plus(&mut self) -> bool {
self.check_or_expected(
self.token.is_like_plus(),
TokenType::Token(token::BinOp(token::Plus)),
)
}
/// Eats the expected token if it's present possibly breaking
/// compound tokens like multi-character operators in process.
/// Returns `true` if the token was eaten.
fn break_and_eat(&mut self, expected: TokenKind) -> bool {
if self.token.kind == expected {
self.bump();
return true;
}
match self.token.kind.break_two_token_op() {
Some((first, second)) if first == expected => {
let first_span = self.sess.source_map().start_point(self.token.span);
let second_span = self.token.span.with_lo(first_span.hi());
self.token = Token::new(first, first_span);
// Keep track of this token - if we end token capturing now,
// we'll want to append this token to the captured stream.
//
// If we consume any additional tokens, then this token
// is not needed (we'll capture the entire 'glued' token),
// and `bump` will set this field to `None`
self.token_cursor.break_last_token = true;
// Use the spacing of the glued token as the spacing
// of the unglued second token.
self.bump_with((Token::new(second, second_span), self.token_spacing));
true
}
_ => {
self.expected_tokens.push(TokenType::Token(expected));
false
}
}
}
/// Eats `+` possibly breaking tokens like `+=` in process.
fn eat_plus(&mut self) -> bool {
self.break_and_eat(token::BinOp(token::Plus))
}
/// Eats `&` possibly breaking tokens like `&&` in process.
/// Signals an error if `&` is not eaten.
fn expect_and(&mut self) -> PResult<'a, ()> {
if self.break_and_eat(token::BinOp(token::And)) { Ok(()) } else { self.unexpected() }
}
/// Eats `|` possibly breaking tokens like `||` in process.
/// Signals an error if `|` was not eaten.
fn expect_or(&mut self) -> PResult<'a, ()> {
if self.break_and_eat(token::BinOp(token::Or)) { Ok(()) } else { self.unexpected() }
}
/// Eats `<` possibly breaking tokens like `<<` in process.
fn eat_lt(&mut self) -> bool {
let ate = self.break_and_eat(token::Lt);
if ate {
// See doc comment for `unmatched_angle_bracket_count`.
self.unmatched_angle_bracket_count += 1;
self.max_angle_bracket_count += 1;
debug!("eat_lt: (increment) count={:?}", self.unmatched_angle_bracket_count);
}
ate
}
/// Eats `<` possibly breaking tokens like `<<` in process.
/// Signals an error if `<` was not eaten.
fn expect_lt(&mut self) -> PResult<'a, ()> {
if self.eat_lt() { Ok(()) } else { self.unexpected() }
}
/// Eats `>` possibly breaking tokens like `>>` in process.
/// Signals an error if `>` was not eaten.
fn expect_gt(&mut self) -> PResult<'a, ()> {
if self.break_and_eat(token::Gt) {
// See doc comment for `unmatched_angle_bracket_count`.
if self.unmatched_angle_bracket_count > 0 {
self.unmatched_angle_bracket_count -= 1;
debug!("expect_gt: (decrement) count={:?}", self.unmatched_angle_bracket_count);
}
Ok(())
} else {
self.unexpected()
}
}
fn expect_any_with_type(&mut self, kets: &[&TokenKind], expect: TokenExpectType) -> bool {
kets.iter().any(|k| match expect {
TokenExpectType::Expect => self.check(k),
TokenExpectType::NoExpect => self.token == **k,
})
}
fn parse_seq_to_before_tokens<T>(
&mut self,
kets: &[&TokenKind],
sep: SeqSep,
expect: TokenExpectType,
mut f: impl FnMut(&mut Parser<'a>) -> PResult<'a, T>,
) -> PResult<'a, (Vec<T>, bool /* trailing */, bool /* recovered */)> {
let mut first = true;
let mut recovered = false;
let mut trailing = false;
let mut v = vec![];
let unclosed_delims = !self.unclosed_delims.is_empty();
while !self.expect_any_with_type(kets, expect) {
if let token::CloseDelim(..) | token::Eof = self.token.kind {
break;
}
if let Some(ref t) = sep.sep {
if first {
first = false;
} else {
match self.expect(t) {
Ok(false) => {
self.current_closure.take();
}
Ok(true) => {
self.current_closure.take();
recovered = true;
break;
}
Err(mut expect_err) => {
let sp = self.prev_token.span.shrink_to_hi();
let token_str = pprust::token_kind_to_string(t);
match self.current_closure.take() {
Some(closure_spans) if self.token.kind == TokenKind::Semi => {
// Finding a semicolon instead of a comma
// after a closure body indicates that the
// closure body may be a block but the user
// forgot to put braces around its
// statements.
self.recover_missing_braces_around_closure_body(
closure_spans,
expect_err,
)?;
continue;
}
_ => {
// Attempt to keep parsing if it was a similar separator.
if let Some(ref tokens) = t.similar_tokens() {
if tokens.contains(&self.token.kind) && !unclosed_delims {
self.bump();
}
}
}
}
// If this was a missing `@` in a binding pattern
// bail with a suggestion
// https://github.com/rust-lang/rust/issues/72373
if self.prev_token.is_ident() && self.token.kind == token::DotDot {
let msg = format!(
"if you meant to bind the contents of \
the rest of the array pattern into `{}`, use `@`",
pprust::token_to_string(&self.prev_token)
);
expect_err
.span_suggestion_verbose(
self.prev_token.span.shrink_to_hi().until(self.token.span),
&msg,
" @ ",
Applicability::MaybeIncorrect,
)
.emit();
break;
}
// Attempt to keep parsing if it was an omitted separator.
match f(self) {
Ok(t) => {
// Parsed successfully, therefore most probably the code only
// misses a separator.
expect_err
.span_suggestion_short(
sp,
&format!("missing `{}`", token_str),
token_str,
Applicability::MaybeIncorrect,
)
.emit();
v.push(t);
continue;
}
Err(e) => {
// Parsing failed, therefore it must be something more serious
// than just a missing separator.
expect_err.emit();
e.cancel();
break;
}
}
}
}
}
}
if sep.trailing_sep_allowed && self.expect_any_with_type(kets, expect) {
trailing = true;
break;
}
let t = f(self)?;
v.push(t);
}
Ok((v, trailing, recovered))
}
fn recover_missing_braces_around_closure_body(
&mut self,
closure_spans: ClosureSpans,
mut expect_err: DiagnosticBuilder<'_, ErrorGuaranteed>,
) -> PResult<'a, ()> {
let initial_semicolon = self.token.span;
while self.eat(&TokenKind::Semi) {
let _ = self.parse_stmt(ForceCollect::Yes)?;
}
expect_err.set_primary_message(
"closure bodies that contain statements must be surrounded by braces",
);
let preceding_pipe_span = closure_spans.closing_pipe;
let following_token_span = self.token.span;
let mut first_note = MultiSpan::from(vec![initial_semicolon]);
first_note.push_span_label(
initial_semicolon,
"this `;` turns the preceding closure into a statement".to_string(),
);
first_note.push_span_label(
closure_spans.body,
"this expression is a statement because of the trailing semicolon".to_string(),
);
expect_err.span_note(first_note, "statement found outside of a block");
let mut second_note = MultiSpan::from(vec![closure_spans.whole_closure]);
second_note.push_span_label(
closure_spans.whole_closure,
"this is the parsed closure...".to_string(),
);
second_note.push_span_label(
following_token_span,
"...but likely you meant the closure to end here".to_string(),
);
expect_err.span_note(second_note, "the closure body may be incorrectly delimited");
expect_err.set_span(vec![preceding_pipe_span, following_token_span]);
let opening_suggestion_str = " {".to_string();
let closing_suggestion_str = "}".to_string();
expect_err.multipart_suggestion(
"try adding braces",
vec![
(preceding_pipe_span.shrink_to_hi(), opening_suggestion_str),
(following_token_span.shrink_to_lo(), closing_suggestion_str),
],
Applicability::MaybeIncorrect,
);
expect_err.emit();
Ok(())
}
/// Parses a sequence, not including the closing delimiter. The function
/// `f` must consume tokens until reaching the next separator or
/// closing bracket.
fn parse_seq_to_before_end<T>(
&mut self,
ket: &TokenKind,
sep: SeqSep,
f: impl FnMut(&mut Parser<'a>) -> PResult<'a, T>,
) -> PResult<'a, (Vec<T>, bool, bool)> {
self.parse_seq_to_before_tokens(&[ket], sep, TokenExpectType::Expect, f)
}
/// Parses a sequence, including the closing delimiter. The function
/// `f` must consume tokens until reaching the next separator or
/// closing bracket.
fn parse_seq_to_end<T>(
&mut self,
ket: &TokenKind,
sep: SeqSep,
f: impl FnMut(&mut Parser<'a>) -> PResult<'a, T>,
) -> PResult<'a, (Vec<T>, bool /* trailing */)> {
let (val, trailing, recovered) = self.parse_seq_to_before_end(ket, sep, f)?;
if !recovered {
self.eat(ket);
}
Ok((val, trailing))
}
/// Parses a sequence, including the closing delimiter. The function
/// `f` must consume tokens until reaching the next separator or
/// closing bracket.
fn parse_unspanned_seq<T>(
&mut self,
bra: &TokenKind,
ket: &TokenKind,
sep: SeqSep,
f: impl FnMut(&mut Parser<'a>) -> PResult<'a, T>,
) -> PResult<'a, (Vec<T>, bool)> {
self.expect(bra)?;
self.parse_seq_to_end(ket, sep, f)
}
fn parse_delim_comma_seq<T>(
&mut self,
delim: Delimiter,
f: impl FnMut(&mut Parser<'a>) -> PResult<'a, T>,
) -> PResult<'a, (Vec<T>, bool)> {
self.parse_unspanned_seq(
&token::OpenDelim(delim),
&token::CloseDelim(delim),
SeqSep::trailing_allowed(token::Comma),
f,
)
}
fn parse_paren_comma_seq<T>(
&mut self,
f: impl FnMut(&mut Parser<'a>) -> PResult<'a, T>,
) -> PResult<'a, (Vec<T>, bool)> {
self.parse_delim_comma_seq(Delimiter::Parenthesis, f)
}
/// Advance the parser by one token using provided token as the next one.
fn bump_with(&mut self, next: (Token, Spacing)) {
self.inlined_bump_with(next)
}
/// This always-inlined version should only be used on hot code paths.
#[inline(always)]
fn inlined_bump_with(&mut self, (next_token, next_spacing): (Token, Spacing)) {
// Update the current and previous tokens.
self.prev_token = mem::replace(&mut self.token, next_token);
self.token_spacing = next_spacing;
// Diagnostics.
self.expected_tokens.clear();
}
/// Advance the parser by one token.
pub fn bump(&mut self) {
// Note: destructuring here would give nicer code, but it was found in #96210 to be slower
// than `.0`/`.1` access.
let mut next = self.token_cursor.inlined_next(self.desugar_doc_comments);
self.token_cursor.num_next_calls += 1;
// We've retrieved an token from the underlying
// cursor, so we no longer need to worry about
// an unglued token. See `break_and_eat` for more details
self.token_cursor.break_last_token = false;
if next.0.span.is_dummy() {
// Tweak the location for better diagnostics, but keep syntactic context intact.
let fallback_span = self.token.span;
next.0.span = fallback_span.with_ctxt(next.0.span.ctxt());
}
debug_assert!(!matches!(
next.0.kind,
token::OpenDelim(Delimiter::Invisible) | token::CloseDelim(Delimiter::Invisible)
));
self.inlined_bump_with(next)
}
/// Look-ahead `dist` tokens of `self.token` and get access to that token there.
/// When `dist == 0` then the current token is looked at.
pub fn look_ahead<R>(&self, dist: usize, looker: impl FnOnce(&Token) -> R) -> R {
if dist == 0 {
return looker(&self.token);
}
let frame = &self.token_cursor.frame;
if let Some((delim, span)) = frame.delim_sp && delim != Delimiter::Invisible {
let all_normal = (0..dist).all(|i| {
let token = frame.tree_cursor.look_ahead(i);
!matches!(token, Some(TokenTree::Delimited(_, Delimiter::Invisible, _)))
});
if all_normal {
return match frame.tree_cursor.look_ahead(dist - 1) {
Some(tree) => match tree {
TokenTree::Token(token) => looker(token),
TokenTree::Delimited(dspan, delim, _) => {
looker(&Token::new(token::OpenDelim(*delim), dspan.open))
}
},
None => looker(&Token::new(token::CloseDelim(delim), span.close)),
};
}
}
let mut cursor = self.token_cursor.clone();
let mut i = 0;
let mut token = Token::dummy();
while i < dist {
token = cursor.next(/* desugar_doc_comments */ false).0;
if matches!(
token.kind,
token::OpenDelim(Delimiter::Invisible) | token::CloseDelim(Delimiter::Invisible)
) {
continue;
}
i += 1;
}
return looker(&token);
}
/// Returns whether any of the given keywords are `dist` tokens ahead of the current one.
fn is_keyword_ahead(&self, dist: usize, kws: &[Symbol]) -> bool {
self.look_ahead(dist, |t| kws.iter().any(|&kw| t.is_keyword(kw)))
}
/// Parses asyncness: `async` or nothing.
fn parse_asyncness(&mut self) -> Async {
if self.eat_keyword(kw::Async) {
let span = self.prev_token.uninterpolated_span();
Async::Yes { span, closure_id: DUMMY_NODE_ID, return_impl_trait_id: DUMMY_NODE_ID }
} else {
Async::No
}
}
/// Parses unsafety: `unsafe` or nothing.
fn parse_unsafety(&mut self) -> Unsafe {
if self.eat_keyword(kw::Unsafe) {
Unsafe::Yes(self.prev_token.uninterpolated_span())
} else {
Unsafe::No
}
}
/// Parses constness: `const` or nothing.
fn parse_constness(&mut self) -> Const {
// Avoid const blocks to be parsed as const items
if self.look_ahead(1, |t| t != &token::OpenDelim(Delimiter::Brace))
&& self.eat_keyword(kw::Const)
{
Const::Yes(self.prev_token.uninterpolated_span())
} else {
Const::No
}
}
/// Parses inline const expressions.
fn parse_const_block(&mut self, span: Span, pat: bool) -> PResult<'a, P<Expr>> {
if pat {
self.sess.gated_spans.gate(sym::inline_const_pat, span);
} else {
self.sess.gated_spans.gate(sym::inline_const, span);
}
self.eat_keyword(kw::Const);
let (attrs, blk) = self.parse_inner_attrs_and_block()?;
let anon_const = AnonConst {
id: DUMMY_NODE_ID,
value: self.mk_expr(blk.span, ExprKind::Block(blk, None), AttrVec::new()),
};
let blk_span = anon_const.value.span;
Ok(self.mk_expr(span.to(blk_span), ExprKind::ConstBlock(anon_const), AttrVec::from(attrs)))
}
/// Parses mutability (`mut` or nothing).
fn parse_mutability(&mut self) -> Mutability {
if self.eat_keyword(kw::Mut) { Mutability::Mut } else { Mutability::Not }
}
/// Possibly parses mutability (`const` or `mut`).
fn parse_const_or_mut(&mut self) -> Option<Mutability> {
if self.eat_keyword(kw::Mut) {
Some(Mutability::Mut)
} else if self.eat_keyword(kw::Const) {
Some(Mutability::Not)
} else {
None
}
}
fn parse_field_name(&mut self) -> PResult<'a, Ident> {
if let token::Literal(token::Lit { kind: token::Integer, symbol, suffix }) = self.token.kind
{
self.expect_no_suffix(self.token.span, "a tuple index", suffix);
self.bump();
Ok(Ident::new(symbol, self.prev_token.span))
} else {
self.parse_ident_common(true)
}
}
fn parse_mac_args(&mut self) -> PResult<'a, P<MacArgs>> {
self.parse_mac_args_common(true).map(P)
}
fn parse_attr_args(&mut self) -> PResult<'a, MacArgs> {
self.parse_mac_args_common(false)
}
fn parse_mac_args_common(&mut self, delimited_only: bool) -> PResult<'a, MacArgs> {
Ok(
if self.check(&token::OpenDelim(Delimiter::Parenthesis))
|| self.check(&token::OpenDelim(Delimiter::Bracket))
|| self.check(&token::OpenDelim(Delimiter::Brace))
{
match self.parse_token_tree() {
TokenTree::Delimited(dspan, delim, tokens) =>
// We've confirmed above that there is a delimiter so unwrapping is OK.
{
MacArgs::Delimited(dspan, MacDelimiter::from_token(delim).unwrap(), tokens)
}
_ => unreachable!(),
}
} else if !delimited_only {
if self.eat(&token::Eq) {
let eq_span = self.prev_token.span;
MacArgs::Eq(eq_span, MacArgsEq::Ast(self.parse_expr_force_collect()?))
} else {
MacArgs::Empty
}
} else {
return self.unexpected();
},
)
}
fn parse_or_use_outer_attributes(
&mut self,
already_parsed_attrs: Option<AttrWrapper>,
) -> PResult<'a, AttrWrapper> {
if let Some(attrs) = already_parsed_attrs {
Ok(attrs)
} else {
self.parse_outer_attributes()
}
}
/// Parses a single token tree from the input.
pub(crate) fn parse_token_tree(&mut self) -> TokenTree {
match self.token.kind {
token::OpenDelim(..) => {
// Grab the tokens from this frame.
let frame = &self.token_cursor.frame;
let stream = frame.tree_cursor.stream.clone();
let (delim, span) = frame.delim_sp.unwrap();
// Advance the token cursor through the entire delimited
// sequence. After getting the `OpenDelim` we are *within* the
// delimited sequence, i.e. at depth `d`. After getting the
// matching `CloseDelim` we are *after* the delimited sequence,
// i.e. at depth `d - 1`.
let target_depth = self.token_cursor.stack.len() - 1;
loop {
// Advance one token at a time, so `TokenCursor::next()`
// can capture these tokens if necessary.
self.bump();
if self.token_cursor.stack.len() == target_depth {
debug_assert!(matches!(self.token.kind, token::CloseDelim(_)));
break;
}
}
// Consume close delimiter
self.bump();
TokenTree::Delimited(span, delim, stream)
}
token::CloseDelim(_) | token::Eof => unreachable!(),
_ => {
self.bump();
TokenTree::Token(self.prev_token.clone())
}
}
}
/// Parses a stream of tokens into a list of `TokenTree`s, up to EOF.
pub fn parse_all_token_trees(&mut self) -> PResult<'a, Vec<TokenTree>> {
let mut tts = Vec::new();
while self.token != token::Eof {
tts.push(self.parse_token_tree());
}
Ok(tts)
}
pub fn parse_tokens(&mut self) -> TokenStream {
let mut result = Vec::new();
loop {
match self.token.kind {
token::Eof | token::CloseDelim(..) => break,
_ => result.push(self.parse_token_tree().into()),
}
}
TokenStream::new(result)
}
/// Evaluates the closure with restrictions in place.
///
/// Afters the closure is evaluated, restrictions are reset.
fn with_res<T>(&mut self, res: Restrictions, f: impl FnOnce(&mut Self) -> T) -> T {
let old = self.restrictions;
self.restrictions = res;
let res = f(self);
self.restrictions = old;
res
}
fn is_crate_vis(&self) -> bool {
self.token.is_keyword(kw::Crate) && self.look_ahead(1, |t| t != &token::ModSep)
}
/// Parses `pub`, `pub(crate)` and `pub(in path)` plus shortcuts `crate` for `pub(crate)`,
/// `pub(self)` for `pub(in self)` and `pub(super)` for `pub(in super)`.
/// If the following element can't be a tuple (i.e., it's a function definition), then
/// it's not a tuple struct field), and the contents within the parentheses aren't valid,
/// so emit a proper diagnostic.
// Public for rustfmt usage.
pub fn parse_visibility(&mut self, fbt: FollowedByType) -> PResult<'a, Visibility> {
maybe_whole!(self, NtVis, |x| x.into_inner());
self.expected_tokens.push(TokenType::Keyword(kw::Crate));
if self.is_crate_vis() {
self.bump(); // `crate`
self.sess.gated_spans.gate(sym::crate_visibility_modifier, self.prev_token.span);
return Ok(Visibility {
span: self.prev_token.span,
kind: VisibilityKind::Crate(CrateSugar::JustCrate),
tokens: None,
});
}
if !self.eat_keyword(kw::Pub) {
// We need a span for our `Spanned<VisibilityKind>`, but there's inherently no
// keyword to grab a span from for inherited visibility; an empty span at the
// beginning of the current token would seem to be the "Schelling span".
return Ok(Visibility {
span: self.token.span.shrink_to_lo(),
kind: VisibilityKind::Inherited,
tokens: None,
});
}
let lo = self.prev_token.span;
if self.check(&token::OpenDelim(Delimiter::Parenthesis)) {
// We don't `self.bump()` the `(` yet because this might be a struct definition where
// `()` or a tuple might be allowed. For example, `struct Struct(pub (), pub (usize));`.
// Because of this, we only `bump` the `(` if we're assured it is appropriate to do so
// by the following tokens.
if self.is_keyword_ahead(1, &[kw::Crate]) && self.look_ahead(2, |t| t != &token::ModSep)
// account for `pub(crate::foo)`
{
// Parse `pub(crate)`.
self.bump(); // `(`
self.bump(); // `crate`
self.expect(&token::CloseDelim(Delimiter::Parenthesis))?; // `)`
let vis = VisibilityKind::Crate(CrateSugar::PubCrate);
return Ok(Visibility {
span: lo.to(self.prev_token.span),
kind: vis,
tokens: None,
});
} else if self.is_keyword_ahead(1, &[kw::In]) {
// Parse `pub(in path)`.
self.bump(); // `(`
self.bump(); // `in`
let path = self.parse_path(PathStyle::Mod)?; // `path`
self.expect(&token::CloseDelim(Delimiter::Parenthesis))?; // `)`
let vis = VisibilityKind::Restricted { path: P(path), id: ast::DUMMY_NODE_ID };
return Ok(Visibility {
span: lo.to(self.prev_token.span),
kind: vis,
tokens: None,
});
} else if self.look_ahead(2, |t| t == &token::CloseDelim(Delimiter::Parenthesis))
&& self.is_keyword_ahead(1, &[kw::Super, kw::SelfLower])
{
// Parse `pub(self)` or `pub(super)`.
self.bump(); // `(`
let path = self.parse_path(PathStyle::Mod)?; // `super`/`self`
self.expect(&token::CloseDelim(Delimiter::Parenthesis))?; // `)`
let vis = VisibilityKind::Restricted { path: P(path), id: ast::DUMMY_NODE_ID };
return Ok(Visibility {
span: lo.to(self.prev_token.span),
kind: vis,
tokens: None,
});
} else if let FollowedByType::No = fbt {
// Provide this diagnostic if a type cannot follow;
// in particular, if this is not a tuple struct.
self.recover_incorrect_vis_restriction()?;
// Emit diagnostic, but continue with public visibility.
}
}
Ok(Visibility { span: lo, kind: VisibilityKind::Public, tokens: None })
}
/// Recovery for e.g. `pub(something) fn ...` or `struct X { pub(something) y: Z }`
fn recover_incorrect_vis_restriction(&mut self) -> PResult<'a, ()> {
self.bump(); // `(`
let path = self.parse_path(PathStyle::Mod)?;
self.expect(&token::CloseDelim(Delimiter::Parenthesis))?; // `)`
let msg = "incorrect visibility restriction";
let suggestion = r##"some possible visibility restrictions are:
`pub(crate)`: visible only on the current crate
`pub(super)`: visible only in the current module's parent
`pub(in path::to::module)`: visible only on the specified path"##;
let path_str = pprust::path_to_string(&path);
struct_span_err!(self.sess.span_diagnostic, path.span, E0704, "{}", msg)
.help(suggestion)
.span_suggestion(
path.span,
&format!("make this visible only to module `{}` with `in`", path_str),
format!("in {}", path_str),
Applicability::MachineApplicable,
)
.emit();
Ok(())
}
/// Parses `extern string_literal?`.
fn parse_extern(&mut self) -> Extern {
if self.eat_keyword(kw::Extern) { Extern::from_abi(self.parse_abi()) } else { Extern::None }
}
/// Parses a string literal as an ABI spec.
fn parse_abi(&mut self) -> Option<StrLit> {
match self.parse_str_lit() {
Ok(str_lit) => Some(str_lit),
Err(Some(lit)) => match lit.kind {
ast::LitKind::Err(_) => None,
_ => {
self.struct_span_err(lit.span, "non-string ABI literal")
.span_suggestion(
lit.span,
"specify the ABI with a string literal",
"\"C\"".to_string(),
Applicability::MaybeIncorrect,
)
.emit();
None
}
},
Err(None) => None,
}
}
pub fn collect_tokens_no_attrs<R: HasAttrs + HasTokens>(
&mut self,
f: impl FnOnce(&mut Self) -> PResult<'a, R>,
) -> PResult<'a, R> {
// The only reason to call `collect_tokens_no_attrs` is if you want tokens, so use
// `ForceCollect::Yes`
self.collect_tokens_trailing_token(
AttrWrapper::empty(),
ForceCollect::Yes,
|this, _attrs| Ok((f(this)?, TrailingToken::None)),
)
}
/// `::{` or `::*`
fn is_import_coupler(&mut self) -> bool {
self.check(&token::ModSep)
&& self.look_ahead(1, |t| {
*t == token::OpenDelim(Delimiter::Brace) || *t == token::BinOp(token::Star)
})
}
pub fn clear_expected_tokens(&mut self) {
self.expected_tokens.clear();
}
}
crate fn make_unclosed_delims_error(
unmatched: UnmatchedBrace,
sess: &ParseSess,
) -> Option<DiagnosticBuilder<'_, ErrorGuaranteed>> {
// `None` here means an `Eof` was found. We already emit those errors elsewhere, we add them to
// `unmatched_braces` only for error recovery in the `Parser`.
let found_delim = unmatched.found_delim?;
let span: MultiSpan = if let Some(sp) = unmatched.unclosed_span {
vec![unmatched.found_span, sp].into()
} else {
unmatched.found_span.into()
};
let mut err = sess.span_diagnostic.struct_span_err(
span,
&format!(
"mismatched closing delimiter: `{}`",
pprust::token_kind_to_string(&token::CloseDelim(found_delim)),
),
);
err.span_label(unmatched.found_span, "mismatched closing delimiter");
if let Some(sp) = unmatched.candidate_span {
err.span_label(sp, "closing delimiter possibly meant for this");
}
if let Some(sp) = unmatched.unclosed_span {
err.span_label(sp, "unclosed delimiter");
}
Some(err)
}
pub fn emit_unclosed_delims(unclosed_delims: &mut Vec<UnmatchedBrace>, sess: &ParseSess) {
*sess.reached_eof.borrow_mut() |=
unclosed_delims.iter().any(|unmatched_delim| unmatched_delim.found_delim.is_none());
for unmatched in unclosed_delims.drain(..) {
if let Some(mut e) = make_unclosed_delims_error(unmatched, sess) {
e.emit();
}
}
}
/// A helper struct used when building an `AttrAnnotatedTokenStream` from
/// a `LazyTokenStream`. Both delimiter and non-delimited tokens
/// are stored as `FlatToken::Token`. A vector of `FlatToken`s
/// is then 'parsed' to build up an `AttrAnnotatedTokenStream` with nested
/// `AttrAnnotatedTokenTree::Delimited` tokens
#[derive(Debug, Clone)]
pub enum FlatToken {
/// A token - this holds both delimiter (e.g. '{' and '}')
/// and non-delimiter tokens
Token(Token),
/// Holds the `AttributesData` for an AST node. The
/// `AttributesData` is inserted directly into the
/// constructed `AttrAnnotatedTokenStream` as
/// an `AttrAnnotatedTokenTree::Attributes`
AttrTarget(AttributesData),
/// A special 'empty' token that is ignored during the conversion
/// to an `AttrAnnotatedTokenStream`. This is used to simplify the
/// handling of replace ranges.
Empty,
}
#[derive(Debug)]
pub enum NtOrTt {
Nt(Nonterminal),
Tt(TokenTree),
}