rust/src/librustc_trans/adt.rs

938 lines
37 KiB
Rust

// Copyright 2013 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! # Representation of Algebraic Data Types
//!
//! This module determines how to represent enums, structs, and tuples
//! based on their monomorphized types; it is responsible both for
//! choosing a representation and translating basic operations on
//! values of those types. (Note: exporting the representations for
//! debuggers is handled in debuginfo.rs, not here.)
//!
//! Note that the interface treats everything as a general case of an
//! enum, so structs/tuples/etc. have one pseudo-variant with
//! discriminant 0; i.e., as if they were a univariant enum.
//!
//! Having everything in one place will enable improvements to data
//! structure representation; possibilities include:
//!
//! - User-specified alignment (e.g., cacheline-aligning parts of
//! concurrently accessed data structures); LLVM can't represent this
//! directly, so we'd have to insert padding fields in any structure
//! that might contain one and adjust GEP indices accordingly. See
//! issue #4578.
//!
//! - Store nested enums' discriminants in the same word. Rather, if
//! some variants start with enums, and those enums representations
//! have unused alignment padding between discriminant and body, the
//! outer enum's discriminant can be stored there and those variants
//! can start at offset 0. Kind of fancy, and might need work to
//! make copies of the inner enum type cooperate, but it could help
//! with `Option` or `Result` wrapped around another enum.
//!
//! - Tagged pointers would be neat, but given that any type can be
//! used unboxed and any field can have pointers (including mutable)
//! taken to it, implementing them for Rust seems difficult.
pub use self::Repr::*;
use super::Disr;
use std;
use llvm::{ValueRef, True, IntEQ, IntNE};
use rustc::ty::layout;
use rustc::ty::{self, Ty, AdtKind};
use syntax::attr;
use syntax::attr::IntType;
use build::*;
use common::*;
use debuginfo::DebugLoc;
use glue;
use base;
use machine;
use monomorphize;
use type_::Type;
use type_of;
use value::Value;
#[derive(Copy, Clone, PartialEq)]
pub enum BranchKind {
Switch,
Single
}
type Hint = attr::ReprAttr;
/// Representations.
#[derive(Eq, PartialEq, Debug)]
pub enum Repr<'tcx> {
/// C-like enums; basically an int.
CEnum(IntType, Disr, Disr), // discriminant range (signedness based on the IntType)
/// Single-case variants, and structs/tuples/records.
Univariant(Struct<'tcx>),
/// Untagged unions.
UntaggedUnion(Union<'tcx>),
/// General-case enums: for each case there is a struct, and they
/// all start with a field for the discriminant.
General(IntType, Vec<Struct<'tcx>>),
/// Two cases distinguished by a nullable pointer: the case with discriminant
/// `nndiscr` must have single field which is known to be nonnull due to its type.
/// The other case is known to be zero sized. Hence we represent the enum
/// as simply a nullable pointer: if not null it indicates the `nndiscr` variant,
/// otherwise it indicates the other case.
RawNullablePointer {
nndiscr: Disr,
nnty: Ty<'tcx>,
nullfields: Vec<Ty<'tcx>>
},
/// Two cases distinguished by a nullable pointer: the case with discriminant
/// `nndiscr` is represented by the struct `nonnull`, where the `discrfield`th
/// field is known to be nonnull due to its type; if that field is null, then
/// it represents the other case, which is inhabited by at most one value
/// (and all other fields are undefined/unused).
///
/// For example, `std::option::Option` instantiated at a safe pointer type
/// is represented such that `None` is a null pointer and `Some` is the
/// identity function.
StructWrappedNullablePointer {
nonnull: Struct<'tcx>,
nndiscr: Disr,
discrfield: DiscrField,
nullfields: Vec<Ty<'tcx>>,
}
}
/// For structs, and struct-like parts of anything fancier.
#[derive(Eq, PartialEq, Debug)]
pub struct Struct<'tcx> {
// If the struct is DST, then the size and alignment do not take into
// account the unsized fields of the struct.
pub size: u64,
pub align: u32,
pub sized: bool,
pub packed: bool,
pub fields: Vec<Ty<'tcx>>,
}
/// For untagged unions.
#[derive(Eq, PartialEq, Debug)]
pub struct Union<'tcx> {
pub min_size: u64,
pub align: u32,
pub packed: bool,
pub fields: Vec<Ty<'tcx>>,
}
#[derive(Copy, Clone)]
pub struct MaybeSizedValue {
pub value: ValueRef,
pub meta: ValueRef,
}
impl MaybeSizedValue {
pub fn sized(value: ValueRef) -> MaybeSizedValue {
MaybeSizedValue {
value: value,
meta: std::ptr::null_mut()
}
}
pub fn unsized_(value: ValueRef, meta: ValueRef) -> MaybeSizedValue {
MaybeSizedValue {
value: value,
meta: meta
}
}
pub fn has_meta(&self) -> bool {
!self.meta.is_null()
}
}
//Given an enum, struct, closure, or tuple, extracts fields.
//treats closures as a struct with one variant.
//`empty_if_no_variants` is a switch to deal with empty enums.
//if true, `variant_index` is disregarded and an empty Vec returned in this case.
fn compute_fields<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>, t: Ty<'tcx>,
variant_index: usize,
empty_if_no_variants: bool) -> Vec<Ty<'tcx>> {
match t.sty {
ty::TyAdt(ref def, _) if def.variants.len() == 0 && empty_if_no_variants => {
Vec::default()
},
ty::TyAdt(ref def, ref substs) => {
def.variants[variant_index].fields.iter().map(|f| {
monomorphize::field_ty(cx.tcx(), substs, f)
}).collect::<Vec<_>>()
},
ty::TyTuple(fields) => fields.to_vec(),
ty::TyClosure(_, substs) => {
if variant_index > 0 { bug!("{} is a closure, which only has one variant", t);}
substs.upvar_tys.to_vec()
},
_ => bug!("{} is not a type that can have fields.", t)
}
}
/// This represents the (GEP) indices to follow to get to the discriminant field
pub type DiscrField = Vec<usize>;
/// LLVM-level types are a little complicated.
///
/// C-like enums need to be actual ints, not wrapped in a struct,
/// because that changes the ABI on some platforms (see issue #10308).
///
/// For nominal types, in some cases, we need to use LLVM named structs
/// and fill in the actual contents in a second pass to prevent
/// unbounded recursion; see also the comments in `trans::type_of`.
pub fn type_of<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>, t: Ty<'tcx>) -> Type {
generic_type_of(cx, t, None, false, false)
}
// Pass dst=true if the type you are passing is a DST. Yes, we could figure
// this out, but if you call this on an unsized type without realising it, you
// are going to get the wrong type (it will not include the unsized parts of it).
pub fn sizing_type_of<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>,
t: Ty<'tcx>, dst: bool) -> Type {
generic_type_of(cx, t, None, true, dst)
}
pub fn incomplete_type_of<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>,
t: Ty<'tcx>, name: &str) -> Type {
generic_type_of(cx, t, Some(name), false, false)
}
pub fn finish_type_of<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>,
t: Ty<'tcx>, llty: &mut Type) {
let l = cx.layout_of(t);
debug!("finish_type_of: {} with layout {:#?}", t, l);
match *l {
layout::CEnum { .. } | layout::General { .. }
| layout::UntaggedUnion { .. } | layout::RawNullablePointer { .. } => { }
layout::Univariant { ..}
| layout::StructWrappedNullablePointer { .. }
| layout::Vector { .. } => {
let (nonnull_variant, packed) = match *l {
layout::Univariant { ref variant, .. } => (0, variant.packed),
layout::Vector { .. } => (0, true),
layout::StructWrappedNullablePointer { nndiscr, ref nonnull, .. } =>
(nndiscr, nonnull.packed),
_ => unreachable!()
};
let fields = compute_fields(cx, t, nonnull_variant as usize, true);
llty.set_struct_body(&struct_llfields(cx, &fields, false, false),
packed)
},
_ => bug!("This function cannot handle {} with layout {:#?}", t, l)
}
}
fn generic_type_of<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>,
t: Ty<'tcx>,
name: Option<&str>,
sizing: bool,
dst: bool) -> Type {
let l = cx.layout_of(t);
debug!("adt::generic_type_of t: {:?} name: {:?} sizing: {} dst: {}",
t, name, sizing, dst);
match *l {
layout::CEnum { discr, .. } => Type::from_integer(cx, discr),
layout::RawNullablePointer { nndiscr, .. } => {
let (def, substs) = match t.sty {
ty::TyAdt(d, s) => (d, s),
_ => bug!("{} is not an ADT", t)
};
let nnty = monomorphize::field_ty(cx.tcx(), substs,
&def.variants[nndiscr as usize].fields[0]);
type_of::sizing_type_of(cx, nnty)
}
layout::StructWrappedNullablePointer { nndiscr, ref nonnull, .. } => {
let fields = compute_fields(cx, t, nndiscr as usize, false);
match name {
None => {
Type::struct_(cx, &struct_llfields(cx, &fields, sizing, dst),
nonnull.packed)
}
Some(name) => {
assert_eq!(sizing, false);
Type::named_struct(cx, name)
}
}
}
layout::Univariant { ref variant, .. } => {
//note that this case also handles empty enums.
//Thus the true as the final parameter here.
let fields = compute_fields(cx, t, 0, true);
match name {
None => {
let fields = struct_llfields(cx, &fields, sizing, dst);
Type::struct_(cx, &fields, variant.packed)
}
Some(name) => {
// Hypothesis: named_struct's can never need a
// drop flag. (... needs validation.)
assert_eq!(sizing, false);
Type::named_struct(cx, name)
}
}
}
layout::Vector { element, count } => {
let elem_ty = Type::from_primitive(cx, element);
Type::vector(&elem_ty, count)
}
layout::UntaggedUnion { ref variants, .. }=> {
// Use alignment-sized ints to fill all the union storage.
let size = variants.stride().bytes();
let align = variants.align.abi();
let fill = union_fill(cx, size, align);
match name {
None => {
Type::struct_(cx, &[fill], variants.packed)
}
Some(name) => {
let mut llty = Type::named_struct(cx, name);
llty.set_struct_body(&[fill], variants.packed);
llty
}
}
}
layout::General { discr, size, align, .. } => {
// We need a representation that has:
// * The alignment of the most-aligned field
// * The size of the largest variant (rounded up to that alignment)
// * No alignment padding anywhere any variant has actual data
// (currently matters only for enums small enough to be immediate)
// * The discriminant in an obvious place.
//
// So we start with the discriminant, pad it up to the alignment with
// more of its own type, then use alignment-sized ints to get the rest
// of the size.
//
// FIXME #10604: this breaks when vector types are present.
let size = size.bytes();
let align = align.abi();
let discr_ty = Type::from_integer(cx, discr);
let discr_size = discr.size().bytes();
let padded_discr_size = roundup(discr_size, align as u32);
let variant_part_size = size-padded_discr_size;
let variant_fill = union_fill(cx, variant_part_size, align);
assert_eq!(machine::llalign_of_min(cx, variant_fill), align as u32);
assert_eq!(padded_discr_size % discr_size, 0); // Ensure discr_ty can fill pad evenly
let fields: Vec<Type> =
[discr_ty,
Type::array(&discr_ty, (padded_discr_size - discr_size)/discr_size),
variant_fill].iter().cloned().collect();
match name {
None => {
Type::struct_(cx, &fields[..], false)
}
Some(name) => {
let mut llty = Type::named_struct(cx, name);
llty.set_struct_body(&fields[..], false);
llty
}
}
}
_ => bug!("Unsupported type {} represented as {:#?}", t, l)
}
}
fn union_fill(cx: &CrateContext, size: u64, align: u64) -> Type {
assert_eq!(size%align, 0);
let align_units = size/align;
match align {
1 => Type::array(&Type::i8(cx), align_units),
2 => Type::array(&Type::i16(cx), align_units),
4 => Type::array(&Type::i32(cx), align_units),
8 if machine::llalign_of_min(cx, Type::i64(cx)) == 8 =>
Type::array(&Type::i64(cx), align_units),
a if a.count_ones() == 1 => Type::array(&Type::vector(&Type::i32(cx), a / 4),
align_units),
_ => bug!("unsupported union alignment: {}", align)
}
}
fn struct_llfields<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>, fields: &Vec<Ty<'tcx>>,
sizing: bool, dst: bool) -> Vec<Type> {
if sizing {
fields.iter().filter(|&ty| !dst || type_is_sized(cx.tcx(), *ty))
.map(|&ty| type_of::sizing_type_of(cx, ty)).collect()
} else {
fields.iter().map(|&ty| type_of::in_memory_type_of(cx, ty)).collect()
}
}
/// Obtain a representation of the discriminant sufficient to translate
/// destructuring; this may or may not involve the actual discriminant.
pub fn trans_switch<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
t: Ty<'tcx>,
scrutinee: ValueRef,
range_assert: bool)
-> (BranchKind, Option<ValueRef>) {
let l = bcx.ccx().layout_of(t);
match *l {
layout::CEnum { .. } | layout::General { .. } |
layout::RawNullablePointer { .. } | layout::StructWrappedNullablePointer { .. } => {
(BranchKind::Switch, Some(trans_get_discr(bcx, t, scrutinee, None, range_assert)))
}
layout::Univariant { .. } | layout::UntaggedUnion { .. } => {
// N.B.: Univariant means <= 1 enum variants (*not* == 1 variants).
(BranchKind::Single, None)
},
_ => bug!("{} is not an enum.", t)
}
}
pub fn is_discr_signed<'tcx>(l: &layout::Layout) -> bool {
match *l {
layout::CEnum { signed, .. }=> signed,
_ => false,
}
}
/// Obtain the actual discriminant of a value.
pub fn trans_get_discr<'blk, 'tcx>(bcx: Block<'blk, 'tcx>, t: Ty<'tcx>,
scrutinee: ValueRef, cast_to: Option<Type>,
range_assert: bool)
-> ValueRef {
let (def, substs) = match t.sty {
ty::TyAdt(ref def, substs) if def.adt_kind() == AdtKind::Enum => (def, substs),
_ => bug!("{} is not an enum", t)
};
debug!("trans_get_discr t: {:?}", t);
let l = bcx.ccx().layout_of(t);
let val = match *l {
layout::CEnum { discr, min, max, .. } => {
load_discr(bcx, discr, scrutinee, min, max, range_assert)
}
layout::General { discr, .. } => {
let ptr = StructGEP(bcx, scrutinee, 0);
load_discr(bcx, discr, ptr, 0, def.variants.len() as u64 - 1,
range_assert)
}
layout::Univariant { .. } | layout::UntaggedUnion { .. } => C_u8(bcx.ccx(), 0),
layout::RawNullablePointer { nndiscr, .. } => {
let cmp = if nndiscr == 0 { IntEQ } else { IntNE };
let llptrty = type_of::sizing_type_of(bcx.ccx(),
monomorphize::field_ty(bcx.ccx().tcx(), substs,
&def.variants[nndiscr as usize].fields[0]));
ICmp(bcx, cmp, Load(bcx, scrutinee), C_null(llptrty), DebugLoc::None)
}
layout::StructWrappedNullablePointer { nndiscr, ref discrfield, .. } => {
struct_wrapped_nullable_bitdiscr(bcx, nndiscr, discrfield, scrutinee)
},
_ => bug!("{} is not an enum", t)
};
match cast_to {
None => val,
Some(llty) => if is_discr_signed(&l) { SExt(bcx, val, llty) } else { ZExt(bcx, val, llty) }
}
}
fn struct_wrapped_nullable_bitdiscr(bcx: Block, nndiscr: u64, discrfield: &layout::FieldPath,
scrutinee: ValueRef) -> ValueRef {
let llptrptr = GEPi(bcx, scrutinee,
&discrfield.iter().map(|f| *f as usize).collect::<Vec<_>>()[..]);
let llptr = Load(bcx, llptrptr);
let cmp = if nndiscr == 0 { IntEQ } else { IntNE };
ICmp(bcx, cmp, llptr, C_null(val_ty(llptr)), DebugLoc::None)
}
/// Helper for cases where the discriminant is simply loaded.
fn load_discr(bcx: Block, ity: layout::Integer, ptr: ValueRef, min: u64, max: u64,
range_assert: bool)
-> ValueRef {
let llty = Type::from_integer(bcx.ccx(), ity);
assert_eq!(val_ty(ptr), llty.ptr_to());
let bits = ity.size().bits();
assert!(bits <= 64);
let bits = bits as usize;
let mask = !0u64 >> (64 - bits);
// For a (max) discr of -1, max will be `-1 as usize`, which overflows.
// However, that is fine here (it would still represent the full range),
if max.wrapping_add(1) & mask == min & mask || !range_assert {
// i.e., if the range is everything. The lo==hi case would be
// rejected by the LLVM verifier (it would mean either an
// empty set, which is impossible, or the entire range of the
// type, which is pointless).
Load(bcx, ptr)
} else {
// llvm::ConstantRange can deal with ranges that wrap around,
// so an overflow on (max + 1) is fine.
LoadRangeAssert(bcx, ptr, min, max.wrapping_add(1), /* signed: */ True)
}
}
/// Yield information about how to dispatch a case of the
/// discriminant-like value returned by `trans_switch`.
///
/// This should ideally be less tightly tied to `_match`.
pub fn trans_case<'blk, 'tcx>(bcx: Block<'blk, 'tcx>, t: Ty<'tcx>, value: Disr)
-> ValueRef {
let l = bcx.ccx().layout_of(t);
match *l {
layout::CEnum { discr, .. }
| layout::General { discr, .. }=> {
C_integral(Type::from_integer(bcx.ccx(), discr), value.0, true)
}
layout::RawNullablePointer { .. } |
layout::StructWrappedNullablePointer { .. } => {
assert!(value == Disr(0) || value == Disr(1));
C_bool(bcx.ccx(), value != Disr(0))
}
_ => {
bug!("{} does not have a discriminant. Represented as {:#?}", t, l);
}
}
}
/// Set the discriminant for a new value of the given case of the given
/// representation.
pub fn trans_set_discr<'blk, 'tcx>(bcx: Block<'blk, 'tcx>, t: Ty<'tcx>,
val: ValueRef, to: Disr) {
let l = bcx.ccx().layout_of(t);
match *l {
layout::CEnum{ discr, min, max, .. } => {
assert_discr_in_range(Disr(min), Disr(max), to);
Store(bcx, C_integral(Type::from_integer(bcx.ccx(), discr), to.0, true),
val);
}
layout::General{ discr, .. } => {
Store(bcx, C_integral(Type::from_integer(bcx.ccx(), discr), to.0, true),
StructGEP(bcx, val, 0));
}
layout::Univariant { .. }
| layout::UntaggedUnion { .. }
| layout::Vector { .. } => {
assert_eq!(to, Disr(0));
}
layout::RawNullablePointer { nndiscr, .. } => {
let nnty = compute_fields(bcx.ccx(), t, nndiscr as usize, false)[0];
if to.0 != nndiscr {
let llptrty = type_of::sizing_type_of(bcx.ccx(), nnty);
Store(bcx, C_null(llptrty), val);
}
}
layout::StructWrappedNullablePointer { nndiscr, ref discrfield, ref nonnull, .. } => {
if to.0 != nndiscr {
if target_sets_discr_via_memset(bcx) {
// Issue #34427: As workaround for LLVM bug on
// ARM, use memset of 0 on whole struct rather
// than storing null to single target field.
let b = B(bcx);
let llptr = b.pointercast(val, Type::i8(b.ccx).ptr_to());
let fill_byte = C_u8(b.ccx, 0);
let size = C_uint(b.ccx, nonnull.stride().bytes());
let align = C_i32(b.ccx, nonnull.align.abi() as i32);
base::call_memset(&b, llptr, fill_byte, size, align, false);
} else {
let path = discrfield.iter().map(|&i| i as usize).collect::<Vec<_>>();
let llptrptr = GEPi(bcx, val, &path[..]);
let llptrty = val_ty(llptrptr).element_type();
Store(bcx, C_null(llptrty), llptrptr);
}
}
}
_ => bug!("Cannot handle {} represented as {:#?}", t, l)
}
}
fn target_sets_discr_via_memset<'blk, 'tcx>(bcx: Block<'blk, 'tcx>) -> bool {
bcx.sess().target.target.arch == "arm" || bcx.sess().target.target.arch == "aarch64"
}
fn assert_discr_in_range(min: Disr, max: Disr, discr: Disr) {
if min <= max {
assert!(min <= discr && discr <= max)
} else {
assert!(min <= discr || discr <= max)
}
}
/// Access a field, at a point when the value's case is known.
pub fn trans_field_ptr<'blk, 'tcx>(bcx: Block<'blk, 'tcx>, t: Ty<'tcx>,
val: MaybeSizedValue, discr: Disr, ix: usize) -> ValueRef {
trans_field_ptr_builder(&bcx.build(), t, val, discr, ix)
}
/// Access a field, at a point when the value's case is known.
pub fn trans_field_ptr_builder<'blk, 'tcx>(bcx: &BlockAndBuilder<'blk, 'tcx>,
t: Ty<'tcx>,
val: MaybeSizedValue,
discr: Disr, ix: usize)
-> ValueRef {
let l = bcx.ccx().layout_of(t);
debug!("trans_field_ptr_builder on {} represented as {:#?}", t, l);
// Note: if this ever needs to generate conditionals (e.g., if we
// decide to do some kind of cdr-coding-like non-unique repr
// someday), it will need to return a possibly-new bcx as well.
match *l {
layout::Univariant { ref variant, .. } => {
assert_eq!(discr, Disr(0));
struct_field_ptr(bcx, &variant,
&compute_fields(bcx.ccx(), t, 0, false),
val, ix, false)
}
layout::Vector { count, .. } => {
assert_eq!(discr.0, 0);
assert!((ix as u64) < count);
bcx.struct_gep(val.value, ix)
}
layout::General { discr: d, ref variants, .. } => {
let mut fields = compute_fields(bcx.ccx(), t, discr.0 as usize, false);
fields.insert(0, d.to_ty(&bcx.ccx().tcx(), false));
struct_field_ptr(bcx, &variants[discr.0 as usize],
&fields,
val, ix + 1, true)
}
layout::UntaggedUnion { .. } => {
let fields = compute_fields(bcx.ccx(), t, 0, false);
let ty = type_of::in_memory_type_of(bcx.ccx(), fields[ix]);
if bcx.is_unreachable() { return C_undef(ty.ptr_to()); }
bcx.pointercast(val.value, ty.ptr_to())
}
layout::RawNullablePointer { nndiscr, .. } |
layout::StructWrappedNullablePointer { nndiscr, .. } if discr.0 != nndiscr => {
let nullfields = compute_fields(bcx.ccx(), t, (1-nndiscr) as usize, false);
// The unit-like case might have a nonzero number of unit-like fields.
// (e.d., Result of Either with (), as one side.)
let ty = type_of::type_of(bcx.ccx(), nullfields[ix]);
assert_eq!(machine::llsize_of_alloc(bcx.ccx(), ty), 0);
// The contents of memory at this pointer can't matter, but use
// the value that's "reasonable" in case of pointer comparison.
if bcx.is_unreachable() { return C_undef(ty.ptr_to()); }
bcx.pointercast(val.value, ty.ptr_to())
}
layout::RawNullablePointer { nndiscr, .. } => {
let nnty = compute_fields(bcx.ccx(), t, nndiscr as usize, false)[0];
assert_eq!(ix, 0);
assert_eq!(discr.0, nndiscr);
let ty = type_of::type_of(bcx.ccx(), nnty);
if bcx.is_unreachable() { return C_undef(ty.ptr_to()); }
bcx.pointercast(val.value, ty.ptr_to())
}
layout::StructWrappedNullablePointer { ref nonnull, nndiscr, .. } => {
assert_eq!(discr.0, nndiscr);
struct_field_ptr(bcx, &nonnull,
&compute_fields(bcx.ccx(), t, discr.0 as usize, false),
val, ix, false)
}
_ => bug!("element access in type without elements: {} represented as {:#?}", t, l)
}
}
fn struct_field_ptr<'blk, 'tcx>(bcx: &BlockAndBuilder<'blk, 'tcx>,
st: &layout::Struct, fields: &Vec<Ty<'tcx>>, val: MaybeSizedValue,
ix: usize, needs_cast: bool) -> ValueRef {
let ccx = bcx.ccx();
let fty = fields[ix];
let ll_fty = type_of::in_memory_type_of(bcx.ccx(), fty);
if bcx.is_unreachable() {
return C_undef(ll_fty.ptr_to());
}
let ptr_val = if needs_cast {
let fields = fields.iter().map(|&ty| {
type_of::in_memory_type_of(ccx, ty)
}).collect::<Vec<_>>();
let real_ty = Type::struct_(ccx, &fields[..], st.packed);
bcx.pointercast(val.value, real_ty.ptr_to())
} else {
val.value
};
// Simple case - we can just GEP the field
// * First field - Always aligned properly
// * Packed struct - There is no alignment padding
// * Field is sized - pointer is properly aligned already
if ix == 0 || st.packed || type_is_sized(bcx.tcx(), fty) {
return bcx.struct_gep(ptr_val, ix);
}
// If the type of the last field is [T] or str, then we don't need to do
// any adjusments
match fty.sty {
ty::TySlice(..) | ty::TyStr => {
return bcx.struct_gep(ptr_val, ix);
}
_ => ()
}
// There's no metadata available, log the case and just do the GEP.
if !val.has_meta() {
debug!("Unsized field `{}`, of `{:?}` has no metadata for adjustment",
ix, Value(ptr_val));
return bcx.struct_gep(ptr_val, ix);
}
let dbloc = DebugLoc::None;
// We need to get the pointer manually now.
// We do this by casting to a *i8, then offsetting it by the appropriate amount.
// We do this instead of, say, simply adjusting the pointer from the result of a GEP
// because the field may have an arbitrary alignment in the LLVM representation
// anyway.
//
// To demonstrate:
// struct Foo<T: ?Sized> {
// x: u16,
// y: T
// }
//
// The type Foo<Foo<Trait>> is represented in LLVM as { u16, { u16, u8 }}, meaning that
// the `y` field has 16-bit alignment.
let meta = val.meta;
// Calculate the unaligned offset of the unsized field.
let mut offset = 0;
for &ty in &fields[0..ix] {
let llty = type_of::sizing_type_of(ccx, ty);
let type_align = type_of::align_of(ccx, ty);
offset = roundup(offset, type_align);
offset += machine::llsize_of_alloc(ccx, llty);
}
let unaligned_offset = C_uint(bcx.ccx(), offset);
// Get the alignment of the field
let (_, align) = glue::size_and_align_of_dst(bcx, fty, meta);
// Bump the unaligned offset up to the appropriate alignment using the
// following expression:
//
// (unaligned offset + (align - 1)) & -align
// Calculate offset
dbloc.apply(bcx.fcx());
let align_sub_1 = bcx.sub(align, C_uint(bcx.ccx(), 1u64));
let offset = bcx.and(bcx.add(unaligned_offset, align_sub_1),
bcx.neg(align));
debug!("struct_field_ptr: DST field offset: {:?}", Value(offset));
// Cast and adjust pointer
let byte_ptr = bcx.pointercast(ptr_val, Type::i8p(bcx.ccx()));
let byte_ptr = bcx.gep(byte_ptr, &[offset]);
// Finally, cast back to the type expected
let ll_fty = type_of::in_memory_type_of(bcx.ccx(), fty);
debug!("struct_field_ptr: Field type is {:?}", ll_fty);
bcx.pointercast(byte_ptr, ll_fty.ptr_to())
}
/// Construct a constant value, suitable for initializing a
/// GlobalVariable, given a case and constant values for its fields.
/// Note that this may have a different LLVM type (and different
/// alignment!) from the representation's `type_of`, so it needs a
/// pointer cast before use.
///
/// The LLVM type system does not directly support unions, and only
/// pointers can be bitcast, so a constant (and, by extension, the
/// GlobalVariable initialized by it) will have a type that can vary
/// depending on which case of an enum it is.
///
/// To understand the alignment situation, consider `enum E { V64(u64),
/// V32(u32, u32) }` on Windows. The type has 8-byte alignment to
/// accommodate the u64, but `V32(x, y)` would have LLVM type `{i32,
/// i32, i32}`, which is 4-byte aligned.
///
/// Currently the returned value has the same size as the type, but
/// this could be changed in the future to avoid allocating unnecessary
/// space after values of shorter-than-maximum cases.
pub fn trans_const<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>, t: Ty<'tcx>, discr: Disr,
vals: &[ValueRef]) -> ValueRef {
let l = ccx.layout_of(t);
let dl = &ccx.tcx().data_layout;
match *l {
layout::CEnum { discr: d, min, max, .. } => {
assert_eq!(vals.len(), 0);
assert_discr_in_range(Disr(min), Disr(max), discr);
C_integral(Type::from_integer(ccx, d), discr.0, true)
}
layout::General { discr: d, ref variants, .. } => {
let variant = &variants[discr.0 as usize];
let lldiscr = C_integral(Type::from_integer(ccx, d), discr.0 as u64, true);
let mut vals_with_discr = vec![lldiscr];
vals_with_discr.extend_from_slice(vals);
let mut contents = build_const_struct(ccx, &variant.offset_after_field[..],
&vals_with_discr[..], variant.packed);
let needed_padding = l.size(dl).bytes() - variant.min_size().bytes();
if needed_padding > 0 {
contents.push(padding(ccx, needed_padding));
}
C_struct(ccx, &contents[..], false)
}
layout::UntaggedUnion { ref variants, .. }=> {
assert_eq!(discr, Disr(0));
let contents = build_const_union(ccx, variants, vals[0]);
C_struct(ccx, &contents, variants.packed)
}
layout::Univariant { ref variant, .. } => {
assert_eq!(discr, Disr(0));
let contents = build_const_struct(ccx,
&variant.offset_after_field[..], vals, variant.packed);
C_struct(ccx, &contents[..], variant.packed)
}
layout::Vector { .. } => {
C_vector(vals)
}
layout::RawNullablePointer { nndiscr, .. } => {
let nnty = compute_fields(ccx, t, nndiscr as usize, false)[0];
if discr.0 == nndiscr {
assert_eq!(vals.len(), 1);
vals[0]
} else {
C_null(type_of::sizing_type_of(ccx, nnty))
}
}
layout::StructWrappedNullablePointer { ref nonnull, nndiscr, .. } => {
if discr.0 == nndiscr {
C_struct(ccx, &build_const_struct(ccx,
&nonnull.offset_after_field[..],
vals, nonnull.packed),
false)
} else {
let fields = compute_fields(ccx, t, nndiscr as usize, false);
let vals = fields.iter().map(|&ty| {
// Always use null even if it's not the `discrfield`th
// field; see #8506.
C_null(type_of::sizing_type_of(ccx, ty))
}).collect::<Vec<ValueRef>>();
C_struct(ccx, &build_const_struct(ccx,
&nonnull.offset_after_field[..],
&vals[..],
false),
false)
}
}
_ => bug!("trans_const: cannot handle type {} repreented as {:#?}", t, l)
}
}
/// Building structs is a little complicated, because we might need to
/// insert padding if a field's value is less aligned than its type.
///
/// Continuing the example from `trans_const`, a value of type `(u32,
/// E)` should have the `E` at offset 8, but if that field's
/// initializer is 4-byte aligned then simply translating the tuple as
/// a two-element struct will locate it at offset 4, and accesses to it
/// will read the wrong memory.
fn build_const_struct<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>,
offset_after_field: &[layout::Size],
vals: &[ValueRef],
packed: bool)
-> Vec<ValueRef> {
assert_eq!(vals.len(), offset_after_field.len());
if vals.len() == 0 {
return Vec::new();
}
// offset of current value
let mut offset = 0;
let mut cfields = Vec::new();
for (&val, target_offset) in
vals.iter().zip(
offset_after_field.iter().map(|i| i.bytes())
) {
assert!(!is_undef(val));
cfields.push(val);
offset += machine::llsize_of_alloc(ccx, val_ty(val));
if !packed {
let val_align = machine::llalign_of_min(ccx, val_ty(val));
offset = roundup(offset, val_align);
}
if offset != target_offset {
cfields.push(padding(ccx, target_offset - offset));
offset = target_offset;
}
}
let size = offset_after_field.last().unwrap();
if offset < size.bytes() {
cfields.push(padding(ccx, size.bytes() - offset));
}
cfields
}
fn build_const_union<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>,
un: &layout::Union,
field_val: ValueRef)
-> Vec<ValueRef> {
let mut cfields = vec![field_val];
let offset = machine::llsize_of_alloc(ccx, val_ty(field_val));
let size = un.stride().bytes();
if offset != size {
cfields.push(padding(ccx, size - offset));
}
cfields
}
fn padding(ccx: &CrateContext, size: u64) -> ValueRef {
C_undef(Type::array(&Type::i8(ccx), size))
}
// FIXME this utility routine should be somewhere more general
#[inline]
fn roundup(x: u64, a: u32) -> u64 { let a = a as u64; ((x + (a - 1)) / a) * a }
/// Extract a field of a constant value, as appropriate for its
/// representation.
///
/// (Not to be confused with `common::const_get_elt`, which operates on
/// raw LLVM-level structs and arrays.)
pub fn const_get_field<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>, t: Ty<'tcx>,
val: ValueRef, _discr: Disr,
ix: usize) -> ValueRef {
let l = ccx.layout_of(t);
match *l {
layout::CEnum { .. } => bug!("element access in C-like enum const"),
layout::Univariant { .. } | layout::Vector { .. } => const_struct_field(val, ix),
layout::UntaggedUnion { .. } => const_struct_field(val, 0),
layout::General { .. } => const_struct_field(val, ix + 1),
layout::RawNullablePointer { .. } => {
assert_eq!(ix, 0);
val
},
layout::StructWrappedNullablePointer{ .. } => const_struct_field(val, ix),
_ => bug!("{} does not have fields.", t)
}
}
/// Extract field of struct-like const, skipping our alignment padding.
fn const_struct_field(val: ValueRef, ix: usize) -> ValueRef {
// Get the ix-th non-undef element of the struct.
let mut real_ix = 0; // actual position in the struct
let mut ix = ix; // logical index relative to real_ix
let mut field;
loop {
loop {
field = const_get_elt(val, &[real_ix]);
if !is_undef(field) {
break;
}
real_ix = real_ix + 1;
}
if ix == 0 {
return field;
}
ix = ix - 1;
real_ix = real_ix + 1;
}
}