1598 lines
62 KiB
Rust
1598 lines
62 KiB
Rust
// Copyright 2014 The Rust Project Developers. See the COPYRIGHT
|
|
// file at the top-level directory of this distribution and at
|
|
// http://rust-lang.org/COPYRIGHT.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
|
|
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
|
|
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
|
|
// option. This file may not be copied, modified, or distributed
|
|
// except according to those terms.
|
|
|
|
//! Translation Item Collection
|
|
//! ===========================
|
|
//!
|
|
//! This module is responsible for discovering all items that will contribute to
|
|
//! to code generation of the crate. The important part here is that it not only
|
|
//! needs to find syntax-level items (functions, structs, etc) but also all
|
|
//! their monomorphized instantiations. Every non-generic, non-const function
|
|
//! maps to one LLVM artifact. Every generic function can produce
|
|
//! from zero to N artifacts, depending on the sets of type arguments it
|
|
//! is instantiated with.
|
|
//! This also applies to generic items from other crates: A generic definition
|
|
//! in crate X might produce monomorphizations that are compiled into crate Y.
|
|
//! We also have to collect these here.
|
|
//!
|
|
//! The following kinds of "translation items" are handled here:
|
|
//!
|
|
//! - Functions
|
|
//! - Methods
|
|
//! - Closures
|
|
//! - Statics
|
|
//! - Drop glue
|
|
//!
|
|
//! The following things also result in LLVM artifacts, but are not collected
|
|
//! here, since we instantiate them locally on demand when needed in a given
|
|
//! codegen unit:
|
|
//!
|
|
//! - Constants
|
|
//! - Vtables
|
|
//! - Object Shims
|
|
//!
|
|
//!
|
|
//! General Algorithm
|
|
//! -----------------
|
|
//! Let's define some terms first:
|
|
//!
|
|
//! - A "translation item" is something that results in a function or global in
|
|
//! the LLVM IR of a codegen unit. Translation items do not stand on their
|
|
//! own, they can reference other translation items. For example, if function
|
|
//! `foo()` calls function `bar()` then the translation item for `foo()`
|
|
//! references the translation item for function `bar()`. In general, the
|
|
//! definition for translation item A referencing a translation item B is that
|
|
//! the LLVM artifact produced for A references the LLVM artifact produced
|
|
//! for B.
|
|
//!
|
|
//! - Translation items and the references between them for a directed graph,
|
|
//! where the translation items are the nodes and references form the edges.
|
|
//! Let's call this graph the "translation item graph".
|
|
//!
|
|
//! - The translation item graph for a program contains all translation items
|
|
//! that are needed in order to produce the complete LLVM IR of the program.
|
|
//!
|
|
//! The purpose of the algorithm implemented in this module is to build the
|
|
//! translation item graph for the current crate. It runs in two phases:
|
|
//!
|
|
//! 1. Discover the roots of the graph by traversing the HIR of the crate.
|
|
//! 2. Starting from the roots, find neighboring nodes by inspecting the MIR
|
|
//! representation of the item corresponding to a given node, until no more
|
|
//! new nodes are found.
|
|
//!
|
|
//! ### Discovering roots
|
|
//!
|
|
//! The roots of the translation item graph correspond to the non-generic
|
|
//! syntactic items in the source code. We find them by walking the HIR of the
|
|
//! crate, and whenever we hit upon a function, method, or static item, we
|
|
//! create a translation item consisting of the items DefId and, since we only
|
|
//! consider non-generic items, an empty type-substitution set.
|
|
//!
|
|
//! ### Finding neighbor nodes
|
|
//! Given a translation item node, we can discover neighbors by inspecting its
|
|
//! MIR. We walk the MIR and any time we hit upon something that signifies a
|
|
//! reference to another translation item, we have found a neighbor. Since the
|
|
//! translation item we are currently at is always monomorphic, we also know the
|
|
//! concrete type arguments of its neighbors, and so all neighbors again will be
|
|
//! monomorphic. The specific forms a reference to a neighboring node can take
|
|
//! in MIR are quite diverse. Here is an overview:
|
|
//!
|
|
//! #### Calling Functions/Methods
|
|
//! The most obvious form of one translation item referencing another is a
|
|
//! function or method call (represented by a CALL terminator in MIR). But
|
|
//! calls are not the only thing that might introduce a reference between two
|
|
//! function translation items, and as we will see below, they are just a
|
|
//! specialized of the form described next, and consequently will don't get any
|
|
//! special treatment in the algorithm.
|
|
//!
|
|
//! #### Taking a reference to a function or method
|
|
//! A function does not need to actually be called in order to be a neighbor of
|
|
//! another function. It suffices to just take a reference in order to introduce
|
|
//! an edge. Consider the following example:
|
|
//!
|
|
//! ```rust
|
|
//! fn print_val<T: Display>(x: T) {
|
|
//! println!("{}", x);
|
|
//! }
|
|
//!
|
|
//! fn call_fn(f: &Fn(i32), x: i32) {
|
|
//! f(x);
|
|
//! }
|
|
//!
|
|
//! fn main() {
|
|
//! let print_i32 = print_val::<i32>;
|
|
//! call_fn(&print_i32, 0);
|
|
//! }
|
|
//! ```
|
|
//! The MIR of none of these functions will contain an explicit call to
|
|
//! `print_val::<i32>`. Nonetheless, in order to translate this program, we need
|
|
//! an instance of this function. Thus, whenever we encounter a function or
|
|
//! method in operand position, we treat it as a neighbor of the current
|
|
//! translation item. Calls are just a special case of that.
|
|
//!
|
|
//! #### Closures
|
|
//! In a way, closures are a simple case. Since every closure object needs to be
|
|
//! constructed somewhere, we can reliably discover them by observing
|
|
//! `RValue::Aggregate` expressions with `AggregateKind::Closure`. This is also
|
|
//! true for closures inlined from other crates.
|
|
//!
|
|
//! #### Drop glue
|
|
//! Drop glue translation items are introduced by MIR drop-statements. The
|
|
//! generated translation item will again have drop-glue item neighbors if the
|
|
//! type to be dropped contains nested values that also need to be dropped. It
|
|
//! might also have a function item neighbor for the explicit `Drop::drop`
|
|
//! implementation of its type.
|
|
//!
|
|
//! #### Unsizing Casts
|
|
//! A subtle way of introducing neighbor edges is by casting to a trait object.
|
|
//! Since the resulting fat-pointer contains a reference to a vtable, we need to
|
|
//! instantiate all object-save methods of the trait, as we need to store
|
|
//! pointers to these functions even if they never get called anywhere. This can
|
|
//! be seen as a special case of taking a function reference.
|
|
//!
|
|
//! #### Boxes
|
|
//! Since `Box` expression have special compiler support, no explicit calls to
|
|
//! `exchange_malloc()` and `exchange_free()` may show up in MIR, even if the
|
|
//! compiler will generate them. We have to observe `Rvalue::Box` expressions
|
|
//! and Box-typed drop-statements for that purpose.
|
|
//!
|
|
//!
|
|
//! Interaction with Cross-Crate Inlining
|
|
//! -------------------------------------
|
|
//! The binary of a crate will not only contain machine code for the items
|
|
//! defined in the source code of that crate. It will also contain monomorphic
|
|
//! instantiations of any extern generic functions and of functions marked with
|
|
//! #[inline].
|
|
//! The collection algorithm handles this more or less transparently. If it is
|
|
//! about to create a translation item for something with an external `DefId`,
|
|
//! it will take a look if the MIR for that item is available, and if so just
|
|
//! proceed normally. If the MIR is not available, it assumes that that item is
|
|
//! just linked to and no node is created; which is exactly what we want, since
|
|
//! no machine code should be generated in the current crate for such an item.
|
|
//!
|
|
//! Eager and Lazy Collection Mode
|
|
//! ------------------------------
|
|
//! Translation item collection can be performed in one of two modes:
|
|
//!
|
|
//! - Lazy mode means that items will only be instantiated when actually
|
|
//! referenced. The goal is to produce the least amount of machine code
|
|
//! possible.
|
|
//!
|
|
//! - Eager mode is meant to be used in conjunction with incremental compilation
|
|
//! where a stable set of translation items is more important than a minimal
|
|
//! one. Thus, eager mode will instantiate drop-glue for every drop-able type
|
|
//! in the crate, even of no drop call for that type exists (yet). It will
|
|
//! also instantiate default implementations of trait methods, something that
|
|
//! otherwise is only done on demand.
|
|
//!
|
|
//!
|
|
//! Open Issues
|
|
//! -----------
|
|
//! Some things are not yet fully implemented in the current version of this
|
|
//! module.
|
|
//!
|
|
//! ### Initializers of Constants and Statics
|
|
//! Since no MIR is constructed yet for initializer expressions of constants and
|
|
//! statics we cannot inspect these properly.
|
|
//!
|
|
//! ### Const Fns
|
|
//! Ideally, no translation item should be generated for const fns unless there
|
|
//! is a call to them that cannot be evaluated at compile time. At the moment
|
|
//! this is not implemented however: a translation item will be produced
|
|
//! regardless of whether it is actually needed or not.
|
|
|
|
use rustc_front::hir;
|
|
use rustc_front::intravisit as hir_visit;
|
|
|
|
use rustc::front::map as hir_map;
|
|
use rustc::middle::def_id::DefId;
|
|
use rustc::middle::lang_items::{ExchangeFreeFnLangItem, ExchangeMallocFnLangItem};
|
|
use rustc::middle::{ty, traits};
|
|
use rustc::middle::subst::{self, Substs, Subst};
|
|
use rustc::middle::ty::adjustment::CustomCoerceUnsized;
|
|
use rustc::middle::ty::fold::TypeFoldable;
|
|
use rustc::mir::repr as mir;
|
|
use rustc::mir::visit as mir_visit;
|
|
use rustc::mir::visit::Visitor as MirVisitor;
|
|
|
|
use syntax::ast::{self, NodeId};
|
|
use syntax::codemap::DUMMY_SP;
|
|
use syntax::errors;
|
|
use syntax::parse::token;
|
|
|
|
use trans::base::custom_coerce_unsize_info;
|
|
use trans::context::CrateContext;
|
|
use trans::common::{fulfill_obligation, normalize_and_test_predicates,
|
|
type_is_sized};
|
|
use trans::glue;
|
|
use trans::meth;
|
|
use trans::monomorphize;
|
|
use util::nodemap::{FnvHashSet, FnvHashMap, DefIdMap};
|
|
|
|
use std::hash::{Hash, Hasher};
|
|
use std::rc::Rc;
|
|
|
|
#[derive(PartialEq, Eq, Hash, Clone, Copy, Debug)]
|
|
pub enum TransItemCollectionMode {
|
|
Eager,
|
|
Lazy
|
|
}
|
|
|
|
#[derive(Eq, Clone, Copy, Debug)]
|
|
pub enum TransItem<'tcx> {
|
|
DropGlue(ty::Ty<'tcx>),
|
|
Fn {
|
|
def_id: DefId,
|
|
substs: &'tcx Substs<'tcx>
|
|
},
|
|
Static(NodeId)
|
|
}
|
|
|
|
impl<'tcx> Hash for TransItem<'tcx> {
|
|
fn hash<H: Hasher>(&self, s: &mut H) {
|
|
match *self {
|
|
TransItem::DropGlue(t) => {
|
|
0u8.hash(s);
|
|
t.hash(s);
|
|
},
|
|
TransItem::Fn { def_id, substs } => {
|
|
1u8.hash(s);
|
|
def_id.hash(s);
|
|
(substs as *const Substs<'tcx> as usize).hash(s);
|
|
}
|
|
TransItem::Static(node_id) => {
|
|
3u8.hash(s);
|
|
node_id.hash(s);
|
|
}
|
|
};
|
|
}
|
|
}
|
|
|
|
impl<'tcx> PartialEq for TransItem<'tcx> {
|
|
fn eq(&self, other: &Self) -> bool {
|
|
match (*self, *other) {
|
|
(TransItem::DropGlue(t1), TransItem::DropGlue(t2)) => t1 == t2,
|
|
(TransItem::Fn { def_id: def_id1, substs: substs1 },
|
|
TransItem::Fn { def_id: def_id2, substs: substs2 }) => {
|
|
def_id1 == def_id2 && substs1 == substs2
|
|
},
|
|
(TransItem::Static(node_id1), TransItem::Static(node_id2)) => {
|
|
node_id1 == node_id2
|
|
},
|
|
_ => false
|
|
}
|
|
}
|
|
}
|
|
|
|
pub fn collect_crate_translation_items<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>,
|
|
mode: TransItemCollectionMode)
|
|
-> FnvHashSet<TransItem<'tcx>> {
|
|
// We are not tracking dependencies of this pass as it has to be re-executed
|
|
// every time no matter what.
|
|
ccx.tcx().dep_graph.with_ignore(|| {
|
|
let roots = collect_roots(ccx, mode);
|
|
|
|
debug!("Building translation item graph, beginning at roots");
|
|
let mut visited = FnvHashSet();
|
|
let mut recursion_depths = DefIdMap();
|
|
let mut mir_cache = DefIdMap();
|
|
|
|
for root in roots {
|
|
collect_items_rec(ccx,
|
|
root,
|
|
&mut visited,
|
|
&mut recursion_depths,
|
|
&mut mir_cache);
|
|
}
|
|
|
|
visited
|
|
})
|
|
}
|
|
|
|
// Find all non-generic items by walking the HIR. These items serve as roots to
|
|
// start monomorphizing from.
|
|
fn collect_roots<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>,
|
|
mode: TransItemCollectionMode)
|
|
-> Vec<TransItem<'tcx>> {
|
|
debug!("Collecting roots");
|
|
let mut roots = Vec::new();
|
|
|
|
{
|
|
let mut visitor = RootCollector {
|
|
ccx: ccx,
|
|
mode: mode,
|
|
output: &mut roots,
|
|
enclosing_item: None,
|
|
trans_empty_substs: ccx.tcx().mk_substs(Substs::trans_empty()),
|
|
};
|
|
|
|
ccx.tcx().map.krate().visit_all_items(&mut visitor);
|
|
}
|
|
|
|
roots
|
|
}
|
|
|
|
#[derive(Clone)]
|
|
enum CachedMir<'mir, 'tcx: 'mir> {
|
|
Ref(&'mir mir::Mir<'tcx>),
|
|
Owned(Rc<mir::Mir<'tcx>>)
|
|
}
|
|
|
|
impl<'mir, 'tcx: 'mir> CachedMir<'mir, 'tcx> {
|
|
fn get_ref<'a>(&'a self) -> &'a mir::Mir<'tcx> {
|
|
match *self {
|
|
CachedMir::Ref(r) => r,
|
|
CachedMir::Owned(ref rc) => &**rc,
|
|
}
|
|
}
|
|
}
|
|
|
|
// Collect all monomorphized translation items reachable from `starting_point`
|
|
fn collect_items_rec<'a, 'tcx: 'a>(ccx: &CrateContext<'a, 'tcx>,
|
|
starting_point: TransItem<'tcx>,
|
|
visited: &mut FnvHashSet<TransItem<'tcx>>,
|
|
recursion_depths: &mut DefIdMap<usize>,
|
|
mir_cache: &mut DefIdMap<CachedMir<'a, 'tcx>>) {
|
|
if !visited.insert(starting_point.clone()) {
|
|
// We've been here already, no need to search again.
|
|
return;
|
|
}
|
|
debug!("BEGIN collect_items_rec({})", starting_point.to_string(ccx));
|
|
|
|
let mut neighbors = Vec::new();
|
|
let recursion_depth_reset;
|
|
|
|
match starting_point {
|
|
TransItem::DropGlue(t) => {
|
|
find_drop_glue_neighbors(ccx, t, &mut neighbors);
|
|
recursion_depth_reset = None;
|
|
}
|
|
TransItem::Static(_) => {
|
|
recursion_depth_reset = None;
|
|
}
|
|
TransItem::Fn { def_id, substs: ref param_substs } => {
|
|
// Keep track of the monomorphization recursion depth
|
|
recursion_depth_reset = Some(check_recursion_limit(ccx,
|
|
def_id,
|
|
recursion_depths));
|
|
|
|
// Scan the MIR in order to find function calls, closures, and
|
|
// drop-glue
|
|
let mir = load_mir(ccx, def_id, mir_cache);
|
|
|
|
let mut visitor = MirNeighborCollector {
|
|
ccx: ccx,
|
|
mir: mir.get_ref(),
|
|
output: &mut neighbors,
|
|
param_substs: param_substs
|
|
};
|
|
|
|
visitor.visit_mir(mir.get_ref());
|
|
}
|
|
}
|
|
|
|
for neighbour in neighbors {
|
|
collect_items_rec(ccx, neighbour, visited, recursion_depths, mir_cache);
|
|
}
|
|
|
|
if let Some((def_id, depth)) = recursion_depth_reset {
|
|
recursion_depths.insert(def_id, depth);
|
|
}
|
|
|
|
debug!("END collect_items_rec({})", starting_point.to_string(ccx));
|
|
}
|
|
|
|
fn load_mir<'a, 'tcx: 'a>(ccx: &CrateContext<'a, 'tcx>,
|
|
def_id: DefId,
|
|
mir_cache: &mut DefIdMap<CachedMir<'a, 'tcx>>)
|
|
-> CachedMir<'a, 'tcx> {
|
|
let mir_not_found_error_message = || {
|
|
format!("Could not find MIR for function: {}",
|
|
ccx.tcx().item_path_str(def_id))
|
|
};
|
|
|
|
if def_id.is_local() {
|
|
let node_id = ccx.tcx().map.as_local_node_id(def_id).unwrap();
|
|
let mir_opt = ccx.mir_map().get(&node_id);
|
|
let mir = errors::expect(ccx.sess().diagnostic(),
|
|
mir_opt,
|
|
mir_not_found_error_message);
|
|
CachedMir::Ref(mir)
|
|
} else {
|
|
if let Some(mir) = mir_cache.get(&def_id) {
|
|
return mir.clone();
|
|
}
|
|
|
|
let mir_opt = ccx.sess().cstore.maybe_get_item_mir(ccx.tcx(), def_id);
|
|
let mir = errors::expect(ccx.sess().diagnostic(),
|
|
mir_opt,
|
|
mir_not_found_error_message);
|
|
let cached = CachedMir::Owned(Rc::new(mir));
|
|
mir_cache.insert(def_id, cached.clone());
|
|
cached
|
|
}
|
|
}
|
|
|
|
fn check_recursion_limit<'a, 'tcx: 'a>(ccx: &CrateContext<'a, 'tcx>,
|
|
def_id: DefId,
|
|
recursion_depths: &mut DefIdMap<usize>)
|
|
-> (DefId, usize) {
|
|
let recursion_depth = recursion_depths.get(&def_id)
|
|
.map(|x| *x)
|
|
.unwrap_or(0);
|
|
debug!(" => recursion depth={}", recursion_depth);
|
|
|
|
// Code that needs to instantiate the same function recursively
|
|
// more than the recursion limit is assumed to be causing an
|
|
// infinite expansion.
|
|
if recursion_depth > ccx.sess().recursion_limit.get() {
|
|
if let Some(node_id) = ccx.tcx().map.as_local_node_id(def_id) {
|
|
ccx.sess().span_fatal(ccx.tcx().map.span(node_id),
|
|
"reached the recursion limit during monomorphization");
|
|
} else {
|
|
let error = format!("reached the recursion limit during \
|
|
monomorphization of '{}'",
|
|
ccx.tcx().item_path_str(def_id));
|
|
ccx.sess().fatal(&error[..]);
|
|
}
|
|
}
|
|
|
|
recursion_depths.insert(def_id, recursion_depth + 1);
|
|
|
|
(def_id, recursion_depth)
|
|
}
|
|
|
|
struct MirNeighborCollector<'a, 'tcx: 'a> {
|
|
ccx: &'a CrateContext<'a, 'tcx>,
|
|
mir: &'a mir::Mir<'tcx>,
|
|
output: &'a mut Vec<TransItem<'tcx>>,
|
|
param_substs: &'tcx Substs<'tcx>
|
|
}
|
|
|
|
impl<'a, 'tcx> MirVisitor<'tcx> for MirNeighborCollector<'a, 'tcx> {
|
|
|
|
fn visit_rvalue(&mut self, rvalue: &mir::Rvalue<'tcx>) {
|
|
debug!("visiting rvalue {:?}", *rvalue);
|
|
|
|
match *rvalue {
|
|
mir::Rvalue::Aggregate(mir::AggregateKind::Closure(def_id,
|
|
ref substs), _) => {
|
|
assert!(can_have_local_instance(self.ccx, def_id));
|
|
let trans_item = create_fn_trans_item(self.ccx,
|
|
def_id,
|
|
substs.func_substs,
|
|
self.param_substs);
|
|
self.output.push(trans_item);
|
|
}
|
|
// When doing an cast from a regular pointer to a fat pointer, we
|
|
// have to instantiate all methods of the trait being cast to, so we
|
|
// can build the appropriate vtable.
|
|
mir::Rvalue::Cast(mir::CastKind::Unsize, ref operand, target_ty) => {
|
|
let target_ty = monomorphize::apply_param_substs(self.ccx.tcx(),
|
|
self.param_substs,
|
|
&target_ty);
|
|
let source_ty = self.mir.operand_ty(self.ccx.tcx(), operand);
|
|
let source_ty = monomorphize::apply_param_substs(self.ccx.tcx(),
|
|
self.param_substs,
|
|
&source_ty);
|
|
let (source_ty, target_ty) = find_vtable_types_for_unsizing(self.ccx,
|
|
source_ty,
|
|
target_ty);
|
|
// This could also be a different Unsize instruction, like
|
|
// from a fixed sized array to a slice. But we are only
|
|
// interested in things that produce a vtable.
|
|
if target_ty.is_trait() && !source_ty.is_trait() {
|
|
create_trans_items_for_vtable_methods(self.ccx,
|
|
target_ty,
|
|
source_ty,
|
|
self.output);
|
|
}
|
|
}
|
|
mir::Rvalue::Box(_) => {
|
|
let exchange_malloc_fn_def_id =
|
|
self.ccx
|
|
.tcx()
|
|
.lang_items
|
|
.require(ExchangeMallocFnLangItem)
|
|
.expect("Could not find ExchangeMallocFnLangItem");
|
|
|
|
assert!(can_have_local_instance(self.ccx, exchange_malloc_fn_def_id));
|
|
let exchange_malloc_fn_trans_item =
|
|
create_fn_trans_item(self.ccx,
|
|
exchange_malloc_fn_def_id,
|
|
&Substs::trans_empty(),
|
|
self.param_substs);
|
|
|
|
self.output.push(exchange_malloc_fn_trans_item);
|
|
}
|
|
_ => { /* not interesting */ }
|
|
}
|
|
|
|
self.super_rvalue(rvalue);
|
|
}
|
|
|
|
fn visit_lvalue(&mut self,
|
|
lvalue: &mir::Lvalue<'tcx>,
|
|
context: mir_visit::LvalueContext) {
|
|
debug!("visiting lvalue {:?}", *lvalue);
|
|
|
|
if let mir_visit::LvalueContext::Drop = context {
|
|
let ty = self.mir.lvalue_ty(self.ccx.tcx(), lvalue)
|
|
.to_ty(self.ccx.tcx());
|
|
|
|
let ty = monomorphize::apply_param_substs(self.ccx.tcx(),
|
|
self.param_substs,
|
|
&ty);
|
|
let ty = self.ccx.tcx().erase_regions(&ty);
|
|
let ty = glue::get_drop_glue_type(self.ccx, ty);
|
|
self.output.push(TransItem::DropGlue(ty));
|
|
}
|
|
|
|
self.super_lvalue(lvalue, context);
|
|
}
|
|
|
|
fn visit_operand(&mut self, operand: &mir::Operand<'tcx>) {
|
|
debug!("visiting operand {:?}", *operand);
|
|
|
|
let callee = match *operand {
|
|
mir::Operand::Constant(mir::Constant {
|
|
literal: mir::Literal::Item {
|
|
def_id,
|
|
kind,
|
|
substs
|
|
},
|
|
..
|
|
}) if is_function_or_method(kind) => Some((def_id, substs)),
|
|
_ => None
|
|
};
|
|
|
|
if let Some((callee_def_id, callee_substs)) = callee {
|
|
debug!(" => operand is callable");
|
|
|
|
// `callee_def_id` might refer to a trait method instead of a
|
|
// concrete implementation, so we have to find the actual
|
|
// implementation. For example, the call might look like
|
|
//
|
|
// std::cmp::partial_cmp(0i32, 1i32)
|
|
//
|
|
// Calling do_static_dispatch() here will map the def_id of
|
|
// `std::cmp::partial_cmp` to the def_id of `i32::partial_cmp<i32>`
|
|
let dispatched = do_static_dispatch(self.ccx,
|
|
callee_def_id,
|
|
callee_substs,
|
|
self.param_substs);
|
|
|
|
if let Some((callee_def_id, callee_substs)) = dispatched {
|
|
// if we have a concrete impl (which we might not have
|
|
// in the case of something compiler generated like an
|
|
// object shim or a closure that is handled differently),
|
|
// we check if the callee is something that will actually
|
|
// result in a translation item ...
|
|
if can_result_in_trans_item(self.ccx, callee_def_id) {
|
|
// ... and create one if it does.
|
|
let trans_item = create_fn_trans_item(self.ccx,
|
|
callee_def_id,
|
|
callee_substs,
|
|
self.param_substs);
|
|
self.output.push(trans_item);
|
|
}
|
|
}
|
|
}
|
|
|
|
self.super_operand(operand);
|
|
|
|
fn is_function_or_method(item_kind: mir::ItemKind) -> bool {
|
|
match item_kind {
|
|
mir::ItemKind::Constant => false,
|
|
mir::ItemKind::Function |
|
|
mir::ItemKind::Method => true
|
|
}
|
|
}
|
|
|
|
fn can_result_in_trans_item<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>,
|
|
def_id: DefId)
|
|
-> bool {
|
|
if !match ccx.tcx().lookup_item_type(def_id).ty.sty {
|
|
ty::TyBareFn(Some(def_id), _) => {
|
|
// Some constructors also have type TyBareFn but they are
|
|
// always instantiated inline and don't result in
|
|
// translation item.
|
|
match ccx.tcx().map.get_if_local(def_id) {
|
|
Some(hir_map::NodeVariant(_)) |
|
|
Some(hir_map::NodeStructCtor(_)) => false,
|
|
Some(_) => true,
|
|
None => {
|
|
ccx.sess().cstore.variant_kind(def_id).is_none()
|
|
}
|
|
}
|
|
}
|
|
ty::TyClosure(..) => true,
|
|
_ => false
|
|
} {
|
|
return false;
|
|
}
|
|
|
|
can_have_local_instance(ccx, def_id)
|
|
}
|
|
}
|
|
}
|
|
|
|
fn can_have_local_instance<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>,
|
|
def_id: DefId)
|
|
-> bool {
|
|
// Take a look if we have the definition available. If not, we
|
|
// will not emit code for this item in the local crate, and thus
|
|
// don't create a translation item for it.
|
|
def_id.is_local() || ccx.sess().cstore.is_item_mir_available(def_id)
|
|
}
|
|
|
|
fn find_drop_glue_neighbors<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>,
|
|
ty: ty::Ty<'tcx>,
|
|
output: &mut Vec<TransItem<'tcx>>)
|
|
{
|
|
debug!("find_drop_glue_neighbors: {}", type_to_string(ccx, ty));
|
|
|
|
// Make sure the exchange_free_fn() lang-item gets translated if
|
|
// there is a boxed value.
|
|
if let ty::TyBox(_) = ty.sty {
|
|
let exchange_free_fn_def_id = ccx.tcx()
|
|
.lang_items
|
|
.require(ExchangeFreeFnLangItem)
|
|
.expect("Could not find ExchangeFreeFnLangItem");
|
|
|
|
assert!(can_have_local_instance(ccx, exchange_free_fn_def_id));
|
|
let exchange_free_fn_trans_item =
|
|
create_fn_trans_item(ccx,
|
|
exchange_free_fn_def_id,
|
|
&Substs::trans_empty(),
|
|
&Substs::trans_empty());
|
|
|
|
output.push(exchange_free_fn_trans_item);
|
|
}
|
|
|
|
// If the type implements Drop, also add a translation item for the
|
|
// monomorphized Drop::drop() implementation.
|
|
let destructor_did = match ty.sty {
|
|
ty::TyStruct(def, _) |
|
|
ty::TyEnum(def, _) => def.destructor(),
|
|
_ => None
|
|
};
|
|
|
|
if let Some(destructor_did) = destructor_did {
|
|
use rustc::middle::ty::ToPolyTraitRef;
|
|
|
|
let drop_trait_def_id = ccx.tcx()
|
|
.lang_items
|
|
.drop_trait()
|
|
.unwrap();
|
|
|
|
let self_type_substs = ccx.tcx().mk_substs(
|
|
Substs::trans_empty().with_self_ty(ty));
|
|
|
|
let trait_ref = ty::TraitRef {
|
|
def_id: drop_trait_def_id,
|
|
substs: self_type_substs,
|
|
}.to_poly_trait_ref();
|
|
|
|
let substs = match fulfill_obligation(ccx, DUMMY_SP, trait_ref) {
|
|
traits::VtableImpl(data) => data.substs,
|
|
_ => unreachable!()
|
|
};
|
|
|
|
if can_have_local_instance(ccx, destructor_did) {
|
|
let trans_item = create_fn_trans_item(ccx,
|
|
destructor_did,
|
|
ccx.tcx().mk_substs(substs),
|
|
&Substs::trans_empty());
|
|
output.push(trans_item);
|
|
}
|
|
}
|
|
|
|
// Finally add the types of nested values
|
|
match ty.sty {
|
|
ty::TyBool |
|
|
ty::TyChar |
|
|
ty::TyInt(_) |
|
|
ty::TyUint(_) |
|
|
ty::TyStr |
|
|
ty::TyFloat(_) |
|
|
ty::TyRawPtr(_) |
|
|
ty::TyRef(..) |
|
|
ty::TyBareFn(..) |
|
|
ty::TySlice(_) |
|
|
ty::TyTrait(_) => {
|
|
/* nothing to do */
|
|
}
|
|
ty::TyStruct(ref adt_def, substs) |
|
|
ty::TyEnum(ref adt_def, substs) => {
|
|
for field in adt_def.all_fields() {
|
|
let field_type = monomorphize::apply_param_substs(ccx.tcx(),
|
|
substs,
|
|
&field.unsubst_ty());
|
|
let field_type = glue::get_drop_glue_type(ccx, field_type);
|
|
|
|
if glue::type_needs_drop(ccx.tcx(), field_type) {
|
|
output.push(TransItem::DropGlue(field_type));
|
|
}
|
|
}
|
|
}
|
|
ty::TyClosure(_, ref substs) => {
|
|
for upvar_ty in &substs.upvar_tys {
|
|
let upvar_ty = glue::get_drop_glue_type(ccx, upvar_ty);
|
|
if glue::type_needs_drop(ccx.tcx(), upvar_ty) {
|
|
output.push(TransItem::DropGlue(upvar_ty));
|
|
}
|
|
}
|
|
}
|
|
ty::TyBox(inner_type) |
|
|
ty::TyArray(inner_type, _) => {
|
|
let inner_type = glue::get_drop_glue_type(ccx, inner_type);
|
|
if glue::type_needs_drop(ccx.tcx(), inner_type) {
|
|
output.push(TransItem::DropGlue(inner_type));
|
|
}
|
|
}
|
|
ty::TyTuple(ref args) => {
|
|
for arg in args {
|
|
let arg = glue::get_drop_glue_type(ccx, arg);
|
|
if glue::type_needs_drop(ccx.tcx(), arg) {
|
|
output.push(TransItem::DropGlue(arg));
|
|
}
|
|
}
|
|
}
|
|
ty::TyProjection(_) |
|
|
ty::TyParam(_) |
|
|
ty::TyInfer(_) |
|
|
ty::TyError => {
|
|
ccx.sess().bug("encountered unexpected type");
|
|
}
|
|
}
|
|
}
|
|
|
|
fn do_static_dispatch<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>,
|
|
fn_def_id: DefId,
|
|
fn_substs: &'tcx Substs<'tcx>,
|
|
param_substs: &'tcx Substs<'tcx>)
|
|
-> Option<(DefId, &'tcx Substs<'tcx>)> {
|
|
debug!("do_static_dispatch(fn_def_id={}, fn_substs={:?}, param_substs={:?})",
|
|
def_id_to_string(ccx, fn_def_id, None),
|
|
fn_substs,
|
|
param_substs);
|
|
|
|
let is_trait_method = ccx.tcx().trait_of_item(fn_def_id).is_some();
|
|
|
|
if is_trait_method {
|
|
match ccx.tcx().impl_or_trait_item(fn_def_id) {
|
|
ty::MethodTraitItem(ref method) => {
|
|
match method.container {
|
|
ty::TraitContainer(trait_def_id) => {
|
|
debug!(" => trait method, attempting to find impl");
|
|
do_static_trait_method_dispatch(ccx,
|
|
method,
|
|
trait_def_id,
|
|
fn_substs,
|
|
param_substs)
|
|
}
|
|
ty::ImplContainer(_) => {
|
|
// This is already a concrete implementation
|
|
debug!(" => impl method");
|
|
Some((fn_def_id, fn_substs))
|
|
}
|
|
}
|
|
}
|
|
_ => unreachable!()
|
|
}
|
|
} else {
|
|
debug!(" => regular function");
|
|
// The function is not part of an impl or trait, no dispatching
|
|
// to be done
|
|
Some((fn_def_id, fn_substs))
|
|
}
|
|
}
|
|
|
|
// Given a trait-method and substitution information, find out the actual
|
|
// implementation of the trait method.
|
|
fn do_static_trait_method_dispatch<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>,
|
|
trait_method: &ty::Method,
|
|
trait_id: DefId,
|
|
callee_substs: &'tcx Substs<'tcx>,
|
|
param_substs: &'tcx Substs<'tcx>)
|
|
-> Option<(DefId, &'tcx Substs<'tcx>)> {
|
|
let tcx = ccx.tcx();
|
|
debug!("do_static_trait_method_dispatch(trait_method={}, \
|
|
trait_id={}, \
|
|
callee_substs={:?}, \
|
|
param_substs={:?}",
|
|
def_id_to_string(ccx, trait_method.def_id, None),
|
|
def_id_to_string(ccx, trait_id, None),
|
|
callee_substs,
|
|
param_substs);
|
|
|
|
let rcvr_substs = monomorphize::apply_param_substs(tcx,
|
|
param_substs,
|
|
callee_substs);
|
|
|
|
let trait_ref = ty::Binder(rcvr_substs.to_trait_ref(tcx, trait_id));
|
|
let vtbl = fulfill_obligation(ccx, DUMMY_SP, trait_ref);
|
|
|
|
// Now that we know which impl is being used, we can dispatch to
|
|
// the actual function:
|
|
match vtbl {
|
|
traits::VtableImpl(traits::VtableImplData {
|
|
impl_def_id: impl_did,
|
|
substs: impl_substs,
|
|
nested: _ }) =>
|
|
{
|
|
let callee_substs = impl_substs.with_method_from(&rcvr_substs);
|
|
let impl_method = tcx.get_impl_method(impl_did,
|
|
callee_substs,
|
|
trait_method.name);
|
|
Some((impl_method.method.def_id, tcx.mk_substs(impl_method.substs)))
|
|
}
|
|
// If we have a closure or a function pointer, we will also encounter
|
|
// the concrete closure/function somewhere else (during closure or fn
|
|
// pointer construction). That's where we track those things.
|
|
traits::VtableClosure(..) |
|
|
traits::VtableFnPointer(..) |
|
|
traits::VtableObject(..) => {
|
|
None
|
|
}
|
|
_ => {
|
|
tcx.sess.bug(&format!("static call to invalid vtable: {:?}", vtbl))
|
|
}
|
|
}
|
|
}
|
|
|
|
/// For given pair of source and target type that occur in an unsizing coercion,
|
|
/// this function finds the pair of types that determines the vtable linking
|
|
/// them.
|
|
///
|
|
/// For example, the source type might be `&SomeStruct` and the target type\
|
|
/// might be `&SomeTrait` in a cast like:
|
|
///
|
|
/// let src: &SomeStruct = ...;
|
|
/// let target = src as &SomeTrait;
|
|
///
|
|
/// Then the output of this function would be (SomeStruct, SomeTrait) since for
|
|
/// constructing the `target` fat-pointer we need the vtable for that pair.
|
|
///
|
|
/// Things can get more complicated though because there's also the case where
|
|
/// the unsized type occurs as a field:
|
|
///
|
|
/// ```rust
|
|
/// struct ComplexStruct<T: ?Sized> {
|
|
/// a: u32,
|
|
/// b: f64,
|
|
/// c: T
|
|
/// }
|
|
/// ```
|
|
///
|
|
/// In this case, if `T` is sized, `&ComplexStruct<T>` is a thin pointer. If `T`
|
|
/// is unsized, `&SomeStruct` is a fat pointer, and the vtable it points to is
|
|
/// for the pair of `T` (which is a trait) and the concrete type that `T` was
|
|
/// originally coerced from:
|
|
///
|
|
/// let src: &ComplexStruct<SomeStruct> = ...;
|
|
/// let target = src as &ComplexStruct<SomeTrait>;
|
|
///
|
|
/// Again, we want this `find_vtable_types_for_unsizing()` to provide the pair
|
|
/// `(SomeStruct, SomeTrait)`.
|
|
///
|
|
/// Finally, there is also the case of custom unsizing coercions, e.g. for
|
|
/// smart pointers such as `Rc` and `Arc`.
|
|
fn find_vtable_types_for_unsizing<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>,
|
|
source_ty: ty::Ty<'tcx>,
|
|
target_ty: ty::Ty<'tcx>)
|
|
-> (ty::Ty<'tcx>, ty::Ty<'tcx>) {
|
|
match (&source_ty.sty, &target_ty.sty) {
|
|
(&ty::TyBox(a), &ty::TyBox(b)) |
|
|
(&ty::TyRef(_, ty::TypeAndMut { ty: a, .. }),
|
|
&ty::TyRef(_, ty::TypeAndMut { ty: b, .. })) |
|
|
(&ty::TyRef(_, ty::TypeAndMut { ty: a, .. }),
|
|
&ty::TyRawPtr(ty::TypeAndMut { ty: b, .. })) |
|
|
(&ty::TyRawPtr(ty::TypeAndMut { ty: a, .. }),
|
|
&ty::TyRawPtr(ty::TypeAndMut { ty: b, .. })) => {
|
|
let (inner_source, inner_target) = (a, b);
|
|
|
|
if !type_is_sized(ccx.tcx(), inner_source) {
|
|
(inner_source, inner_target)
|
|
} else {
|
|
ccx.tcx().struct_lockstep_tails(inner_source, inner_target)
|
|
}
|
|
}
|
|
|
|
(&ty::TyStruct(source_adt_def, source_substs),
|
|
&ty::TyStruct(target_adt_def, target_substs)) => {
|
|
assert_eq!(source_adt_def, target_adt_def);
|
|
|
|
let kind = custom_coerce_unsize_info(ccx, source_ty, target_ty);
|
|
|
|
let coerce_index = match kind {
|
|
CustomCoerceUnsized::Struct(i) => i
|
|
};
|
|
|
|
let source_fields = &source_adt_def.struct_variant().fields;
|
|
let target_fields = &target_adt_def.struct_variant().fields;
|
|
|
|
assert!(coerce_index < source_fields.len() &&
|
|
source_fields.len() == target_fields.len());
|
|
|
|
find_vtable_types_for_unsizing(ccx,
|
|
source_fields[coerce_index].ty(ccx.tcx(),
|
|
source_substs),
|
|
target_fields[coerce_index].ty(ccx.tcx(),
|
|
target_substs))
|
|
}
|
|
_ => ccx.sess()
|
|
.bug(&format!("find_vtable_types_for_unsizing: invalid coercion {:?} -> {:?}",
|
|
source_ty,
|
|
target_ty))
|
|
}
|
|
}
|
|
|
|
fn create_fn_trans_item<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>,
|
|
def_id: DefId,
|
|
fn_substs: &Substs<'tcx>,
|
|
param_substs: &Substs<'tcx>)
|
|
-> TransItem<'tcx>
|
|
{
|
|
debug!("create_fn_trans_item(def_id={}, fn_substs={:?}, param_substs={:?})",
|
|
def_id_to_string(ccx, def_id, None),
|
|
fn_substs,
|
|
param_substs);
|
|
|
|
// We only get here, if fn_def_id either designates a local item or
|
|
// an inlineable external item. Non-inlineable external items are
|
|
// ignored because we don't want to generate any code for them.
|
|
let concrete_substs = monomorphize::apply_param_substs(ccx.tcx(),
|
|
param_substs,
|
|
fn_substs);
|
|
let concrete_substs = ccx.tcx().erase_regions(&concrete_substs);
|
|
|
|
let trans_item = TransItem::Fn {
|
|
def_id: def_id,
|
|
substs: ccx.tcx().mk_substs(concrete_substs),
|
|
};
|
|
|
|
return trans_item;
|
|
}
|
|
|
|
/// Creates a `TransItem` for each method that is referenced by the vtable for
|
|
/// the given trait/impl pair.
|
|
fn create_trans_items_for_vtable_methods<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>,
|
|
trait_ty: ty::Ty<'tcx>,
|
|
impl_ty: ty::Ty<'tcx>,
|
|
output: &mut Vec<TransItem<'tcx>>) {
|
|
assert!(!trait_ty.needs_subst() && !impl_ty.needs_subst());
|
|
|
|
if let ty::TyTrait(ref trait_ty) = trait_ty.sty {
|
|
let poly_trait_ref = trait_ty.principal_trait_ref_with_self_ty(ccx.tcx(),
|
|
impl_ty);
|
|
|
|
// Walk all methods of the trait, including those of its supertraits
|
|
for trait_ref in traits::supertraits(ccx.tcx(), poly_trait_ref) {
|
|
let vtable = fulfill_obligation(ccx, DUMMY_SP, trait_ref);
|
|
match vtable {
|
|
traits::VtableImpl(
|
|
traits::VtableImplData {
|
|
impl_def_id,
|
|
substs,
|
|
nested: _ }) => {
|
|
let items = meth::get_vtable_methods(ccx, impl_def_id, substs)
|
|
.into_iter()
|
|
// filter out None values
|
|
.filter_map(|opt_impl_method| opt_impl_method)
|
|
// create translation items
|
|
.filter_map(|impl_method| {
|
|
if can_have_local_instance(ccx, impl_method.method.def_id) {
|
|
let substs = ccx.tcx().mk_substs(impl_method.substs);
|
|
Some(create_fn_trans_item(ccx,
|
|
impl_method.method.def_id,
|
|
substs,
|
|
&Substs::trans_empty()))
|
|
} else {
|
|
None
|
|
}
|
|
})
|
|
.collect::<Vec<_>>();
|
|
|
|
output.extend(items.into_iter());
|
|
}
|
|
_ => { /* */ }
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
//=-----------------------------------------------------------------------------
|
|
// Root Collection
|
|
//=-----------------------------------------------------------------------------
|
|
|
|
struct RootCollector<'b, 'a: 'b, 'tcx: 'a + 'b> {
|
|
ccx: &'b CrateContext<'a, 'tcx>,
|
|
mode: TransItemCollectionMode,
|
|
output: &'b mut Vec<TransItem<'tcx>>,
|
|
enclosing_item: Option<&'tcx hir::Item>,
|
|
trans_empty_substs: &'tcx Substs<'tcx>
|
|
}
|
|
|
|
impl<'b, 'a, 'v> hir_visit::Visitor<'v> for RootCollector<'b, 'a, 'v> {
|
|
fn visit_item(&mut self, item: &'v hir::Item) {
|
|
let old_enclosing_item = self.enclosing_item;
|
|
self.enclosing_item = Some(item);
|
|
|
|
match item.node {
|
|
hir::ItemExternCrate(..) |
|
|
hir::ItemUse(..) |
|
|
hir::ItemForeignMod(..) |
|
|
hir::ItemTy(..) |
|
|
hir::ItemDefaultImpl(..) |
|
|
hir::ItemTrait(..) |
|
|
hir::ItemConst(..) |
|
|
hir::ItemMod(..) => {
|
|
// Nothing to do, just keep recursing...
|
|
}
|
|
|
|
hir::ItemImpl(..) => {
|
|
if self.mode == TransItemCollectionMode::Eager {
|
|
create_trans_items_for_default_impls(self.ccx,
|
|
item,
|
|
self.trans_empty_substs,
|
|
self.output);
|
|
}
|
|
}
|
|
|
|
hir::ItemEnum(_, ref generics) |
|
|
hir::ItemStruct(_, ref generics) => {
|
|
if !generics.is_parameterized() {
|
|
let ty = {
|
|
let tables = self.ccx.tcx().tables.borrow();
|
|
tables.node_types[&item.id]
|
|
};
|
|
|
|
if self.mode == TransItemCollectionMode::Eager {
|
|
debug!("RootCollector: ADT drop-glue for {}",
|
|
def_id_to_string(self.ccx,
|
|
self.ccx.tcx().map.local_def_id(item.id),
|
|
None));
|
|
|
|
let ty = glue::get_drop_glue_type(self.ccx, ty);
|
|
self.output.push(TransItem::DropGlue(ty));
|
|
}
|
|
}
|
|
}
|
|
hir::ItemStatic(..) => {
|
|
debug!("RootCollector: ItemStatic({})",
|
|
def_id_to_string(self.ccx,
|
|
self.ccx.tcx().map.local_def_id(item.id),
|
|
None));
|
|
self.output.push(TransItem::Static(item.id));
|
|
}
|
|
hir::ItemFn(_, _, constness, _, ref generics, _) => {
|
|
if !generics.is_type_parameterized() &&
|
|
constness == hir::Constness::NotConst {
|
|
let def_id = self.ccx.tcx().map.local_def_id(item.id);
|
|
|
|
debug!("RootCollector: ItemFn({})",
|
|
def_id_to_string(self.ccx, def_id, None));
|
|
|
|
self.output.push(TransItem::Fn {
|
|
def_id: def_id,
|
|
substs: self.trans_empty_substs
|
|
});
|
|
}
|
|
}
|
|
}
|
|
|
|
hir_visit::walk_item(self, item);
|
|
self.enclosing_item = old_enclosing_item;
|
|
}
|
|
|
|
fn visit_impl_item(&mut self, ii: &'v hir::ImplItem) {
|
|
match ii.node {
|
|
hir::ImplItemKind::Method(hir::MethodSig {
|
|
ref generics,
|
|
constness,
|
|
..
|
|
}, _) if constness == hir::Constness::NotConst => {
|
|
let hir_map = &self.ccx.tcx().map;
|
|
let parent_node_id = hir_map.get_parent_node(ii.id);
|
|
let is_impl_generic = match hir_map.expect_item(parent_node_id) {
|
|
&hir::Item {
|
|
node: hir::ItemImpl(_, _, ref generics, _, _, _),
|
|
..
|
|
} => {
|
|
generics.is_type_parameterized()
|
|
}
|
|
_ => {
|
|
unreachable!()
|
|
}
|
|
};
|
|
|
|
if !generics.is_type_parameterized() && !is_impl_generic {
|
|
let def_id = self.ccx.tcx().map.local_def_id(ii.id);
|
|
|
|
debug!("RootCollector: MethodImplItem({})",
|
|
def_id_to_string(self.ccx, def_id, None));
|
|
|
|
self.output.push(TransItem::Fn {
|
|
def_id: def_id,
|
|
substs: self.trans_empty_substs
|
|
});
|
|
}
|
|
}
|
|
_ => { /* Nothing to do here */ }
|
|
}
|
|
|
|
hir_visit::walk_impl_item(self, ii)
|
|
}
|
|
}
|
|
|
|
fn create_trans_items_for_default_impls<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>,
|
|
item: &'tcx hir::Item,
|
|
trans_empty_substs: &'tcx Substs<'tcx>,
|
|
output: &mut Vec<TransItem<'tcx>>) {
|
|
match item.node {
|
|
hir::ItemImpl(_,
|
|
_,
|
|
ref generics,
|
|
_,
|
|
_,
|
|
ref items) => {
|
|
if generics.is_type_parameterized() {
|
|
return
|
|
}
|
|
|
|
let tcx = ccx.tcx();
|
|
let impl_def_id = tcx.map.local_def_id(item.id);
|
|
|
|
debug!("create_trans_items_for_default_impls(item={})",
|
|
def_id_to_string(ccx, impl_def_id, None));
|
|
|
|
if let Some(trait_ref) = tcx.impl_trait_ref(impl_def_id) {
|
|
let default_impls = tcx.provided_trait_methods(trait_ref.def_id);
|
|
let callee_substs = tcx.mk_substs(tcx.erase_regions(trait_ref.substs));
|
|
let overridden_methods: FnvHashSet<_> = items.iter()
|
|
.map(|item| item.name)
|
|
.collect();
|
|
for default_impl in default_impls {
|
|
if overridden_methods.contains(&default_impl.name) {
|
|
continue;
|
|
}
|
|
|
|
if default_impl.generics.has_type_params(subst::FnSpace) {
|
|
continue;
|
|
}
|
|
|
|
// The substitutions we have are on the impl, so we grab
|
|
// the method type from the impl to substitute into.
|
|
let mth = tcx.get_impl_method(impl_def_id,
|
|
callee_substs.clone(),
|
|
default_impl.name);
|
|
|
|
assert!(mth.is_provided);
|
|
|
|
let predicates = mth.method.predicates.predicates.subst(tcx, &mth.substs);
|
|
if !normalize_and_test_predicates(ccx, predicates.into_vec()) {
|
|
continue;
|
|
}
|
|
|
|
if can_have_local_instance(ccx, default_impl.def_id) {
|
|
let item = create_fn_trans_item(ccx,
|
|
default_impl.def_id,
|
|
callee_substs,
|
|
trans_empty_substs);
|
|
output.push(item);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
_ => {
|
|
unreachable!()
|
|
}
|
|
}
|
|
}
|
|
|
|
//=-----------------------------------------------------------------------------
|
|
// TransItem String Keys
|
|
//=-----------------------------------------------------------------------------
|
|
|
|
// The code below allows for producing a unique string key for a trans item.
|
|
// These keys are used by the handwritten auto-tests, so they need to be
|
|
// predictable and human-readable.
|
|
//
|
|
// Note: A lot of this could looks very similar to what's already in the
|
|
// ppaux module. It would be good to refactor things so we only have one
|
|
// parameterizable implementation for printing types.
|
|
|
|
/// Same as `unique_type_name()` but with the result pushed onto the given
|
|
/// `output` parameter.
|
|
pub fn push_unique_type_name<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>,
|
|
t: ty::Ty<'tcx>,
|
|
output: &mut String) {
|
|
match t.sty {
|
|
ty::TyBool => output.push_str("bool"),
|
|
ty::TyChar => output.push_str("char"),
|
|
ty::TyStr => output.push_str("str"),
|
|
ty::TyInt(ast::TyIs) => output.push_str("isize"),
|
|
ty::TyInt(ast::TyI8) => output.push_str("i8"),
|
|
ty::TyInt(ast::TyI16) => output.push_str("i16"),
|
|
ty::TyInt(ast::TyI32) => output.push_str("i32"),
|
|
ty::TyInt(ast::TyI64) => output.push_str("i64"),
|
|
ty::TyUint(ast::TyUs) => output.push_str("usize"),
|
|
ty::TyUint(ast::TyU8) => output.push_str("u8"),
|
|
ty::TyUint(ast::TyU16) => output.push_str("u16"),
|
|
ty::TyUint(ast::TyU32) => output.push_str("u32"),
|
|
ty::TyUint(ast::TyU64) => output.push_str("u64"),
|
|
ty::TyFloat(ast::TyF32) => output.push_str("f32"),
|
|
ty::TyFloat(ast::TyF64) => output.push_str("f64"),
|
|
ty::TyStruct(adt_def, substs) |
|
|
ty::TyEnum(adt_def, substs) => {
|
|
push_item_name(cx, adt_def.did, output);
|
|
push_type_params(cx, substs, &[], output);
|
|
},
|
|
ty::TyTuple(ref component_types) => {
|
|
output.push('(');
|
|
for &component_type in component_types {
|
|
push_unique_type_name(cx, component_type, output);
|
|
output.push_str(", ");
|
|
}
|
|
if !component_types.is_empty() {
|
|
output.pop();
|
|
output.pop();
|
|
}
|
|
output.push(')');
|
|
},
|
|
ty::TyBox(inner_type) => {
|
|
output.push_str("Box<");
|
|
push_unique_type_name(cx, inner_type, output);
|
|
output.push('>');
|
|
},
|
|
ty::TyRawPtr(ty::TypeAndMut { ty: inner_type, mutbl } ) => {
|
|
output.push('*');
|
|
match mutbl {
|
|
hir::MutImmutable => output.push_str("const "),
|
|
hir::MutMutable => output.push_str("mut "),
|
|
}
|
|
|
|
push_unique_type_name(cx, inner_type, output);
|
|
},
|
|
ty::TyRef(_, ty::TypeAndMut { ty: inner_type, mutbl }) => {
|
|
output.push('&');
|
|
if mutbl == hir::MutMutable {
|
|
output.push_str("mut ");
|
|
}
|
|
|
|
push_unique_type_name(cx, inner_type, output);
|
|
},
|
|
ty::TyArray(inner_type, len) => {
|
|
output.push('[');
|
|
push_unique_type_name(cx, inner_type, output);
|
|
output.push_str(&format!("; {}", len));
|
|
output.push(']');
|
|
},
|
|
ty::TySlice(inner_type) => {
|
|
output.push('[');
|
|
push_unique_type_name(cx, inner_type, output);
|
|
output.push(']');
|
|
},
|
|
ty::TyTrait(ref trait_data) => {
|
|
push_item_name(cx, trait_data.principal.skip_binder().def_id, output);
|
|
push_type_params(cx,
|
|
&trait_data.principal.skip_binder().substs,
|
|
&trait_data.bounds.projection_bounds,
|
|
output);
|
|
},
|
|
ty::TyBareFn(_, &ty::BareFnTy{ unsafety, abi, ref sig } ) => {
|
|
if unsafety == hir::Unsafety::Unsafe {
|
|
output.push_str("unsafe ");
|
|
}
|
|
|
|
if abi != ::syntax::abi::Rust {
|
|
output.push_str("extern \"");
|
|
output.push_str(abi.name());
|
|
output.push_str("\" ");
|
|
}
|
|
|
|
output.push_str("fn(");
|
|
|
|
let sig = cx.tcx().erase_late_bound_regions(sig);
|
|
if !sig.inputs.is_empty() {
|
|
for ¶meter_type in &sig.inputs {
|
|
push_unique_type_name(cx, parameter_type, output);
|
|
output.push_str(", ");
|
|
}
|
|
output.pop();
|
|
output.pop();
|
|
}
|
|
|
|
if sig.variadic {
|
|
if !sig.inputs.is_empty() {
|
|
output.push_str(", ...");
|
|
} else {
|
|
output.push_str("...");
|
|
}
|
|
}
|
|
|
|
output.push(')');
|
|
|
|
match sig.output {
|
|
ty::FnConverging(result_type) if result_type.is_nil() => {}
|
|
ty::FnConverging(result_type) => {
|
|
output.push_str(" -> ");
|
|
push_unique_type_name(cx, result_type, output);
|
|
}
|
|
ty::FnDiverging => {
|
|
output.push_str(" -> !");
|
|
}
|
|
}
|
|
},
|
|
ty::TyClosure(def_id, ref closure_substs) => {
|
|
push_item_name(cx, def_id, output);
|
|
output.push_str("{");
|
|
output.push_str(&format!("{}:{}", def_id.krate, def_id.index.as_usize()));
|
|
output.push_str("}");
|
|
push_type_params(cx, closure_substs.func_substs, &[], output);
|
|
}
|
|
ty::TyError |
|
|
ty::TyInfer(_) |
|
|
ty::TyProjection(..) |
|
|
ty::TyParam(_) => {
|
|
cx.sess().bug(&format!("debuginfo: Trying to create type name for \
|
|
unexpected type: {:?}", t));
|
|
}
|
|
}
|
|
}
|
|
|
|
fn push_item_name(ccx: &CrateContext,
|
|
def_id: DefId,
|
|
output: &mut String) {
|
|
if def_id.is_local() {
|
|
let node_id = ccx.tcx().map.as_local_node_id(def_id).unwrap();
|
|
let inlined_from = ccx.external_srcs()
|
|
.borrow()
|
|
.get(&node_id)
|
|
.map(|def_id| *def_id);
|
|
|
|
if let Some(extern_def_id) = inlined_from {
|
|
push_item_name(ccx, extern_def_id, output);
|
|
return;
|
|
}
|
|
|
|
output.push_str(&ccx.link_meta().crate_name);
|
|
output.push_str("::");
|
|
}
|
|
|
|
for part in ccx.tcx().def_path(def_id) {
|
|
output.push_str(&format!("{}[{}]::",
|
|
part.data.as_interned_str(),
|
|
part.disambiguator));
|
|
}
|
|
|
|
output.pop();
|
|
output.pop();
|
|
}
|
|
|
|
fn push_type_params<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>,
|
|
substs: &Substs<'tcx>,
|
|
projections: &[ty::PolyProjectionPredicate<'tcx>],
|
|
output: &mut String) {
|
|
if substs.types.is_empty() && projections.is_empty() {
|
|
return;
|
|
}
|
|
|
|
output.push('<');
|
|
|
|
for &type_parameter in &substs.types {
|
|
push_unique_type_name(cx, type_parameter, output);
|
|
output.push_str(", ");
|
|
}
|
|
|
|
for projection in projections {
|
|
let projection = projection.skip_binder();
|
|
let name = token::get_ident_interner().get(projection.projection_ty.item_name);
|
|
output.push_str(&name[..]);
|
|
output.push_str("=");
|
|
push_unique_type_name(cx, projection.ty, output);
|
|
output.push_str(", ");
|
|
}
|
|
|
|
output.pop();
|
|
output.pop();
|
|
|
|
output.push('>');
|
|
}
|
|
|
|
fn push_def_id_as_string<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>,
|
|
def_id: DefId,
|
|
substs: Option<&Substs<'tcx>>,
|
|
output: &mut String) {
|
|
push_item_name(ccx, def_id, output);
|
|
|
|
if let Some(substs) = substs {
|
|
push_type_params(ccx, substs, &[], output);
|
|
}
|
|
}
|
|
|
|
fn def_id_to_string<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>,
|
|
def_id: DefId,
|
|
substs: Option<&Substs<'tcx>>)
|
|
-> String {
|
|
let mut output = String::new();
|
|
push_def_id_as_string(ccx, def_id, substs, &mut output);
|
|
output
|
|
}
|
|
|
|
fn type_to_string<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>,
|
|
ty: ty::Ty<'tcx>)
|
|
-> String {
|
|
let mut output = String::new();
|
|
push_unique_type_name(ccx, ty, &mut output);
|
|
output
|
|
}
|
|
|
|
impl<'tcx> TransItem<'tcx> {
|
|
|
|
pub fn to_string<'a>(&self, ccx: &CrateContext<'a, 'tcx>) -> String {
|
|
let hir_map = &ccx.tcx().map;
|
|
|
|
return match *self {
|
|
TransItem::DropGlue(t) => {
|
|
let mut s = String::with_capacity(32);
|
|
s.push_str("drop-glue ");
|
|
push_unique_type_name(ccx, t, &mut s);
|
|
s
|
|
}
|
|
TransItem::Fn { def_id, ref substs } => {
|
|
to_string_internal(ccx, "fn ", def_id, Some(substs))
|
|
},
|
|
TransItem::Static(node_id) => {
|
|
let def_id = hir_map.local_def_id(node_id);
|
|
to_string_internal(ccx, "static ", def_id, None)
|
|
},
|
|
};
|
|
|
|
fn to_string_internal<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>,
|
|
prefix: &str,
|
|
def_id: DefId,
|
|
substs: Option<&Substs<'tcx>>)
|
|
-> String {
|
|
let mut result = String::with_capacity(32);
|
|
result.push_str(prefix);
|
|
push_def_id_as_string(ccx, def_id, substs, &mut result);
|
|
result
|
|
}
|
|
}
|
|
|
|
fn to_raw_string(&self) -> String {
|
|
match *self {
|
|
TransItem::DropGlue(t) => {
|
|
format!("DropGlue({})", t as *const _ as usize)
|
|
}
|
|
TransItem::Fn { def_id, substs } => {
|
|
format!("Fn({:?}, {})",
|
|
def_id,
|
|
substs as *const _ as usize)
|
|
}
|
|
TransItem::Static(id) => {
|
|
format!("Static({:?})", id)
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
|
|
pub enum TransItemState {
|
|
PredictedAndGenerated,
|
|
PredictedButNotGenerated,
|
|
NotPredictedButGenerated,
|
|
}
|
|
|
|
pub fn collecting_debug_information(ccx: &CrateContext) -> bool {
|
|
return cfg!(debug_assertions) &&
|
|
ccx.sess().opts.debugging_opts.print_trans_items.is_some();
|
|
}
|
|
|
|
pub fn print_collection_results<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>) {
|
|
use std::hash::{Hash, SipHasher, Hasher};
|
|
|
|
if !collecting_debug_information(ccx) {
|
|
return;
|
|
}
|
|
|
|
fn hash<T: Hash>(t: &T) -> u64 {
|
|
let mut s = SipHasher::new();
|
|
t.hash(&mut s);
|
|
s.finish()
|
|
}
|
|
|
|
let trans_items = ccx.translation_items().borrow();
|
|
|
|
{
|
|
// Check for duplicate item keys
|
|
let mut item_keys = FnvHashMap();
|
|
|
|
for (item, item_state) in trans_items.iter() {
|
|
let k = item.to_string(&ccx);
|
|
|
|
if item_keys.contains_key(&k) {
|
|
let prev: (TransItem, TransItemState) = item_keys[&k];
|
|
debug!("DUPLICATE KEY: {}", k);
|
|
debug!(" (1) {:?}, {:?}, hash: {}, raw: {}",
|
|
prev.0,
|
|
prev.1,
|
|
hash(&prev.0),
|
|
prev.0.to_raw_string());
|
|
|
|
debug!(" (2) {:?}, {:?}, hash: {}, raw: {}",
|
|
*item,
|
|
*item_state,
|
|
hash(item),
|
|
item.to_raw_string());
|
|
} else {
|
|
item_keys.insert(k, (*item, *item_state));
|
|
}
|
|
}
|
|
}
|
|
|
|
let mut predicted_but_not_generated = FnvHashSet();
|
|
let mut not_predicted_but_generated = FnvHashSet();
|
|
let mut predicted = FnvHashSet();
|
|
let mut generated = FnvHashSet();
|
|
|
|
for (item, item_state) in trans_items.iter() {
|
|
let item_key = item.to_string(&ccx);
|
|
|
|
match *item_state {
|
|
TransItemState::PredictedAndGenerated => {
|
|
predicted.insert(item_key.clone());
|
|
generated.insert(item_key);
|
|
}
|
|
TransItemState::PredictedButNotGenerated => {
|
|
predicted_but_not_generated.insert(item_key.clone());
|
|
predicted.insert(item_key);
|
|
}
|
|
TransItemState::NotPredictedButGenerated => {
|
|
not_predicted_but_generated.insert(item_key.clone());
|
|
generated.insert(item_key);
|
|
}
|
|
}
|
|
}
|
|
|
|
debug!("Total number of translation items predicted: {}", predicted.len());
|
|
debug!("Total number of translation items generated: {}", generated.len());
|
|
debug!("Total number of translation items predicted but not generated: {}",
|
|
predicted_but_not_generated.len());
|
|
debug!("Total number of translation items not predicted but generated: {}",
|
|
not_predicted_but_generated.len());
|
|
|
|
if generated.len() > 0 {
|
|
debug!("Failed to predict {}% of translation items",
|
|
(100 * not_predicted_but_generated.len()) / generated.len());
|
|
}
|
|
if generated.len() > 0 {
|
|
debug!("Predict {}% too many translation items",
|
|
(100 * predicted_but_not_generated.len()) / generated.len());
|
|
}
|
|
|
|
debug!("");
|
|
debug!("Not predicted but generated:");
|
|
debug!("============================");
|
|
for item in not_predicted_but_generated {
|
|
debug!(" - {}", item);
|
|
}
|
|
|
|
debug!("");
|
|
debug!("Predicted but not generated:");
|
|
debug!("============================");
|
|
for item in predicted_but_not_generated {
|
|
debug!(" - {}", item);
|
|
}
|
|
}
|