rust/src/librustc_trans/trans/cleanup.rs
Björn Steinbrink 8c0f4f5d3a Avoid quadratic growth of functions due to cleanups
If a new cleanup is added to a cleanup scope, the cached exits for that
scope are cleared, so all previous cleanups have to be translated
again. In the worst case this means that we get N distinct landing pads
where the last one has N cleanups, then N-1 and so on.

As new cleanups are to be executed before older ones, we can instead
cache the number of already translated cleanups in addition to the
block that contains them, and then only translate new ones, if any and
then jump to the cached ones, getting away with linear growth instead.

For the crate in #31381 this reduces the compile time for an optimized
build from >20 minutes (I cancelled the build at that point) to about 11
seconds. Testing a few crates that come with rustc show compile time
improvements somewhere between 1 and 8%. The "big" winner being
rustc_platform_intrinsics which features code similar to that in #31381.

Fixes #31381
2016-02-04 00:34:53 +01:00

1292 lines
49 KiB
Rust

// Copyright 2013-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! ## The Cleanup module
//!
//! The cleanup module tracks what values need to be cleaned up as scopes
//! are exited, either via panic or just normal control flow. The basic
//! idea is that the function context maintains a stack of cleanup scopes
//! that are pushed/popped as we traverse the AST tree. There is typically
//! at least one cleanup scope per AST node; some AST nodes may introduce
//! additional temporary scopes.
//!
//! Cleanup items can be scheduled into any of the scopes on the stack.
//! Typically, when a scope is popped, we will also generate the code for
//! each of its cleanups at that time. This corresponds to a normal exit
//! from a block (for example, an expression completing evaluation
//! successfully without panic). However, it is also possible to pop a
//! block *without* executing its cleanups; this is typically used to
//! guard intermediate values that must be cleaned up on panic, but not
//! if everything goes right. See the section on custom scopes below for
//! more details.
//!
//! Cleanup scopes come in three kinds:
//!
//! - **AST scopes:** each AST node in a function body has a corresponding
//! AST scope. We push the AST scope when we start generate code for an AST
//! node and pop it once the AST node has been fully generated.
//! - **Loop scopes:** loops have an additional cleanup scope. Cleanups are
//! never scheduled into loop scopes; instead, they are used to record the
//! basic blocks that we should branch to when a `continue` or `break` statement
//! is encountered.
//! - **Custom scopes:** custom scopes are typically used to ensure cleanup
//! of intermediate values.
//!
//! ### When to schedule cleanup
//!
//! Although the cleanup system is intended to *feel* fairly declarative,
//! it's still important to time calls to `schedule_clean()` correctly.
//! Basically, you should not schedule cleanup for memory until it has
//! been initialized, because if an unwind should occur before the memory
//! is fully initialized, then the cleanup will run and try to free or
//! drop uninitialized memory. If the initialization itself produces
//! byproducts that need to be freed, then you should use temporary custom
//! scopes to ensure that those byproducts will get freed on unwind. For
//! example, an expression like `box foo()` will first allocate a box in the
//! heap and then call `foo()` -- if `foo()` should panic, this box needs
//! to be *shallowly* freed.
//!
//! ### Long-distance jumps
//!
//! In addition to popping a scope, which corresponds to normal control
//! flow exiting the scope, we may also *jump out* of a scope into some
//! earlier scope on the stack. This can occur in response to a `return`,
//! `break`, or `continue` statement, but also in response to panic. In
//! any of these cases, we will generate a series of cleanup blocks for
//! each of the scopes that is exited. So, if the stack contains scopes A
//! ... Z, and we break out of a loop whose corresponding cleanup scope is
//! X, we would generate cleanup blocks for the cleanups in X, Y, and Z.
//! After cleanup is done we would branch to the exit point for scope X.
//! But if panic should occur, we would generate cleanups for all the
//! scopes from A to Z and then resume the unwind process afterwards.
//!
//! To avoid generating tons of code, we cache the cleanup blocks that we
//! create for breaks, returns, unwinds, and other jumps. Whenever a new
//! cleanup is scheduled, though, we must clear these cached blocks. A
//! possible improvement would be to keep the cached blocks but simply
//! generate a new block which performs the additional cleanup and then
//! branches to the existing cached blocks.
//!
//! ### AST and loop cleanup scopes
//!
//! AST cleanup scopes are pushed when we begin and end processing an AST
//! node. They are used to house cleanups related to rvalue temporary that
//! get referenced (e.g., due to an expression like `&Foo()`). Whenever an
//! AST scope is popped, we always trans all the cleanups, adding the cleanup
//! code after the postdominator of the AST node.
//!
//! AST nodes that represent breakable loops also push a loop scope; the
//! loop scope never has any actual cleanups, it's just used to point to
//! the basic blocks where control should flow after a "continue" or
//! "break" statement. Popping a loop scope never generates code.
//!
//! ### Custom cleanup scopes
//!
//! Custom cleanup scopes are used for a variety of purposes. The most
//! common though is to handle temporary byproducts, where cleanup only
//! needs to occur on panic. The general strategy is to push a custom
//! cleanup scope, schedule *shallow* cleanups into the custom scope, and
//! then pop the custom scope (without transing the cleanups) when
//! execution succeeds normally. This way the cleanups are only trans'd on
//! unwind, and only up until the point where execution succeeded, at
//! which time the complete value should be stored in an lvalue or some
//! other place where normal cleanup applies.
//!
//! To spell it out, here is an example. Imagine an expression `box expr`.
//! We would basically:
//!
//! 1. Push a custom cleanup scope C.
//! 2. Allocate the box.
//! 3. Schedule a shallow free in the scope C.
//! 4. Trans `expr` into the box.
//! 5. Pop the scope C.
//! 6. Return the box as an rvalue.
//!
//! This way, if a panic occurs while transing `expr`, the custom
//! cleanup scope C is pushed and hence the box will be freed. The trans
//! code for `expr` itself is responsible for freeing any other byproducts
//! that may be in play.
pub use self::ScopeId::*;
pub use self::CleanupScopeKind::*;
pub use self::EarlyExitLabel::*;
pub use self::Heap::*;
use llvm::{BasicBlockRef, ValueRef};
use trans::base;
use trans::build;
use trans::common;
use trans::common::{Block, FunctionContext, NodeIdAndSpan, LandingPad};
use trans::datum::{Datum, Lvalue};
use trans::debuginfo::{DebugLoc, ToDebugLoc};
use trans::glue;
use middle::region;
use trans::type_::Type;
use middle::ty::{self, Ty};
use std::fmt;
use syntax::ast;
pub struct CleanupScope<'blk, 'tcx: 'blk> {
// The id of this cleanup scope. If the id is None,
// this is a *temporary scope* that is pushed during trans to
// cleanup miscellaneous garbage that trans may generate whose
// lifetime is a subset of some expression. See module doc for
// more details.
kind: CleanupScopeKind<'blk, 'tcx>,
// Cleanups to run upon scope exit.
cleanups: Vec<CleanupObj<'tcx>>,
// The debug location any drop calls generated for this scope will be
// associated with.
debug_loc: DebugLoc,
cached_early_exits: Vec<CachedEarlyExit>,
cached_landing_pad: Option<BasicBlockRef>,
}
#[derive(Copy, Clone, Debug)]
pub struct CustomScopeIndex {
index: usize
}
pub const EXIT_BREAK: usize = 0;
pub const EXIT_LOOP: usize = 1;
pub const EXIT_MAX: usize = 2;
pub enum CleanupScopeKind<'blk, 'tcx: 'blk> {
CustomScopeKind,
AstScopeKind(ast::NodeId),
LoopScopeKind(ast::NodeId, [Block<'blk, 'tcx>; EXIT_MAX])
}
impl<'blk, 'tcx: 'blk> fmt::Debug for CleanupScopeKind<'blk, 'tcx> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match *self {
CustomScopeKind => write!(f, "CustomScopeKind"),
AstScopeKind(nid) => write!(f, "AstScopeKind({})", nid),
LoopScopeKind(nid, ref blks) => {
try!(write!(f, "LoopScopeKind({}, [", nid));
for blk in blks {
try!(write!(f, "{:p}, ", blk));
}
write!(f, "])")
}
}
}
}
#[derive(Copy, Clone, PartialEq, Debug)]
pub enum EarlyExitLabel {
UnwindExit(UnwindKind),
ReturnExit,
LoopExit(ast::NodeId, usize)
}
#[derive(Copy, Clone, Debug)]
pub enum UnwindKind {
LandingPad,
CleanupPad(ValueRef),
}
#[derive(Copy, Clone)]
pub struct CachedEarlyExit {
label: EarlyExitLabel,
cleanup_block: BasicBlockRef,
last_cleanup: usize,
}
pub trait Cleanup<'tcx> {
fn must_unwind(&self) -> bool;
fn is_lifetime_end(&self) -> bool;
fn trans<'blk>(&self,
bcx: Block<'blk, 'tcx>,
debug_loc: DebugLoc)
-> Block<'blk, 'tcx>;
}
pub type CleanupObj<'tcx> = Box<Cleanup<'tcx>+'tcx>;
#[derive(Copy, Clone, Debug)]
pub enum ScopeId {
AstScope(ast::NodeId),
CustomScope(CustomScopeIndex)
}
#[derive(Copy, Clone, Debug)]
pub struct DropHint<K>(pub ast::NodeId, pub K);
pub type DropHintDatum<'tcx> = DropHint<Datum<'tcx, Lvalue>>;
pub type DropHintValue = DropHint<ValueRef>;
impl<K> DropHint<K> {
pub fn new(id: ast::NodeId, k: K) -> DropHint<K> { DropHint(id, k) }
}
impl DropHint<ValueRef> {
pub fn value(&self) -> ValueRef { self.1 }
}
pub trait DropHintMethods {
type ValueKind;
fn to_value(&self) -> Self::ValueKind;
}
impl<'tcx> DropHintMethods for DropHintDatum<'tcx> {
type ValueKind = DropHintValue;
fn to_value(&self) -> DropHintValue { DropHint(self.0, self.1.val) }
}
impl<'blk, 'tcx> CleanupMethods<'blk, 'tcx> for FunctionContext<'blk, 'tcx> {
/// Invoked when we start to trans the code contained within a new cleanup scope.
fn push_ast_cleanup_scope(&self, debug_loc: NodeIdAndSpan) {
debug!("push_ast_cleanup_scope({})",
self.ccx.tcx().map.node_to_string(debug_loc.id));
// FIXME(#2202) -- currently closure bodies have a parent
// region, which messes up the assertion below, since there
// are no cleanup scopes on the stack at the start of
// trans'ing a closure body. I think though that this should
// eventually be fixed by closure bodies not having a parent
// region, though that's a touch unclear, and it might also be
// better just to narrow this assertion more (i.e., by
// excluding id's that correspond to closure bodies only). For
// now we just say that if there is already an AST scope on the stack,
// this new AST scope had better be its immediate child.
let top_scope = self.top_ast_scope();
let region_maps = &self.ccx.tcx().region_maps;
if top_scope.is_some() {
assert!((region_maps
.opt_encl_scope(region_maps.node_extent(debug_loc.id))
.map(|s|s.node_id(region_maps)) == top_scope)
||
(region_maps
.opt_encl_scope(region_maps.lookup_code_extent(
region::CodeExtentData::DestructionScope(debug_loc.id)))
.map(|s|s.node_id(region_maps)) == top_scope));
}
self.push_scope(CleanupScope::new(AstScopeKind(debug_loc.id),
debug_loc.debug_loc()));
}
fn push_loop_cleanup_scope(&self,
id: ast::NodeId,
exits: [Block<'blk, 'tcx>; EXIT_MAX]) {
debug!("push_loop_cleanup_scope({})",
self.ccx.tcx().map.node_to_string(id));
assert_eq!(Some(id), self.top_ast_scope());
// Just copy the debuginfo source location from the enclosing scope
let debug_loc = self.scopes
.borrow()
.last()
.unwrap()
.debug_loc;
self.push_scope(CleanupScope::new(LoopScopeKind(id, exits), debug_loc));
}
fn push_custom_cleanup_scope(&self) -> CustomScopeIndex {
let index = self.scopes_len();
debug!("push_custom_cleanup_scope(): {}", index);
// Just copy the debuginfo source location from the enclosing scope
let debug_loc = self.scopes
.borrow()
.last()
.map(|opt_scope| opt_scope.debug_loc)
.unwrap_or(DebugLoc::None);
self.push_scope(CleanupScope::new(CustomScopeKind, debug_loc));
CustomScopeIndex { index: index }
}
fn push_custom_cleanup_scope_with_debug_loc(&self,
debug_loc: NodeIdAndSpan)
-> CustomScopeIndex {
let index = self.scopes_len();
debug!("push_custom_cleanup_scope(): {}", index);
self.push_scope(CleanupScope::new(CustomScopeKind,
debug_loc.debug_loc()));
CustomScopeIndex { index: index }
}
/// Removes the cleanup scope for id `cleanup_scope`, which must be at the top of the cleanup
/// stack, and generates the code to do its cleanups for normal exit.
fn pop_and_trans_ast_cleanup_scope(&self,
bcx: Block<'blk, 'tcx>,
cleanup_scope: ast::NodeId)
-> Block<'blk, 'tcx> {
debug!("pop_and_trans_ast_cleanup_scope({})",
self.ccx.tcx().map.node_to_string(cleanup_scope));
assert!(self.top_scope(|s| s.kind.is_ast_with_id(cleanup_scope)));
let scope = self.pop_scope();
self.trans_scope_cleanups(bcx, &scope)
}
/// Removes the loop cleanup scope for id `cleanup_scope`, which must be at the top of the
/// cleanup stack. Does not generate any cleanup code, since loop scopes should exit by
/// branching to a block generated by `normal_exit_block`.
fn pop_loop_cleanup_scope(&self,
cleanup_scope: ast::NodeId) {
debug!("pop_loop_cleanup_scope({})",
self.ccx.tcx().map.node_to_string(cleanup_scope));
assert!(self.top_scope(|s| s.kind.is_loop_with_id(cleanup_scope)));
let _ = self.pop_scope();
}
/// Removes the top cleanup scope from the stack without executing its cleanups. The top
/// cleanup scope must be the temporary scope `custom_scope`.
fn pop_custom_cleanup_scope(&self,
custom_scope: CustomScopeIndex) {
debug!("pop_custom_cleanup_scope({})", custom_scope.index);
assert!(self.is_valid_to_pop_custom_scope(custom_scope));
let _ = self.pop_scope();
}
/// Removes the top cleanup scope from the stack, which must be a temporary scope, and
/// generates the code to do its cleanups for normal exit.
fn pop_and_trans_custom_cleanup_scope(&self,
bcx: Block<'blk, 'tcx>,
custom_scope: CustomScopeIndex)
-> Block<'blk, 'tcx> {
debug!("pop_and_trans_custom_cleanup_scope({:?})", custom_scope);
assert!(self.is_valid_to_pop_custom_scope(custom_scope));
let scope = self.pop_scope();
self.trans_scope_cleanups(bcx, &scope)
}
/// Returns the id of the top-most loop scope
fn top_loop_scope(&self) -> ast::NodeId {
for scope in self.scopes.borrow().iter().rev() {
if let LoopScopeKind(id, _) = scope.kind {
return id;
}
}
self.ccx.sess().bug("no loop scope found");
}
/// Returns a block to branch to which will perform all pending cleanups and
/// then break/continue (depending on `exit`) out of the loop with id
/// `cleanup_scope`
fn normal_exit_block(&'blk self,
cleanup_scope: ast::NodeId,
exit: usize) -> BasicBlockRef {
self.trans_cleanups_to_exit_scope(LoopExit(cleanup_scope, exit))
}
/// Returns a block to branch to which will perform all pending cleanups and
/// then return from this function
fn return_exit_block(&'blk self) -> BasicBlockRef {
self.trans_cleanups_to_exit_scope(ReturnExit)
}
fn schedule_lifetime_end(&self,
cleanup_scope: ScopeId,
val: ValueRef) {
let drop = box LifetimeEnd {
ptr: val,
};
debug!("schedule_lifetime_end({:?}, val={})",
cleanup_scope,
self.ccx.tn().val_to_string(val));
self.schedule_clean(cleanup_scope, drop as CleanupObj);
}
/// Schedules a (deep) drop of `val`, which is a pointer to an instance of
/// `ty`
fn schedule_drop_mem(&self,
cleanup_scope: ScopeId,
val: ValueRef,
ty: Ty<'tcx>,
drop_hint: Option<DropHintDatum<'tcx>>) {
if !self.type_needs_drop(ty) { return; }
let drop_hint = drop_hint.map(|hint|hint.to_value());
let drop = box DropValue {
is_immediate: false,
val: val,
ty: ty,
fill_on_drop: false,
skip_dtor: false,
drop_hint: drop_hint,
};
debug!("schedule_drop_mem({:?}, val={}, ty={:?}) fill_on_drop={} skip_dtor={}",
cleanup_scope,
self.ccx.tn().val_to_string(val),
ty,
drop.fill_on_drop,
drop.skip_dtor);
self.schedule_clean(cleanup_scope, drop as CleanupObj);
}
/// Schedules a (deep) drop and filling of `val`, which is a pointer to an instance of `ty`
fn schedule_drop_and_fill_mem(&self,
cleanup_scope: ScopeId,
val: ValueRef,
ty: Ty<'tcx>,
drop_hint: Option<DropHintDatum<'tcx>>) {
if !self.type_needs_drop(ty) { return; }
let drop_hint = drop_hint.map(|datum|datum.to_value());
let drop = box DropValue {
is_immediate: false,
val: val,
ty: ty,
fill_on_drop: true,
skip_dtor: false,
drop_hint: drop_hint,
};
debug!("schedule_drop_and_fill_mem({:?}, val={}, ty={:?},
fill_on_drop={}, skip_dtor={}, has_drop_hint={})",
cleanup_scope,
self.ccx.tn().val_to_string(val),
ty,
drop.fill_on_drop,
drop.skip_dtor,
drop_hint.is_some());
self.schedule_clean(cleanup_scope, drop as CleanupObj);
}
/// Issue #23611: Schedules a (deep) drop of the contents of
/// `val`, which is a pointer to an instance of struct/enum type
/// `ty`. The scheduled code handles extracting the discriminant
/// and dropping the contents associated with that variant
/// *without* executing any associated drop implementation.
fn schedule_drop_adt_contents(&self,
cleanup_scope: ScopeId,
val: ValueRef,
ty: Ty<'tcx>) {
// `if` below could be "!contents_needs_drop"; skipping drop
// is just an optimization, so sound to be conservative.
if !self.type_needs_drop(ty) { return; }
let drop = box DropValue {
is_immediate: false,
val: val,
ty: ty,
fill_on_drop: false,
skip_dtor: true,
drop_hint: None,
};
debug!("schedule_drop_adt_contents({:?}, val={}, ty={:?}) fill_on_drop={} skip_dtor={}",
cleanup_scope,
self.ccx.tn().val_to_string(val),
ty,
drop.fill_on_drop,
drop.skip_dtor);
self.schedule_clean(cleanup_scope, drop as CleanupObj);
}
/// Schedules a (deep) drop of `val`, which is an instance of `ty`
fn schedule_drop_immediate(&self,
cleanup_scope: ScopeId,
val: ValueRef,
ty: Ty<'tcx>) {
if !self.type_needs_drop(ty) { return; }
let drop = Box::new(DropValue {
is_immediate: true,
val: val,
ty: ty,
fill_on_drop: false,
skip_dtor: false,
drop_hint: None,
});
debug!("schedule_drop_immediate({:?}, val={}, ty={:?}) fill_on_drop={} skip_dtor={}",
cleanup_scope,
self.ccx.tn().val_to_string(val),
ty,
drop.fill_on_drop,
drop.skip_dtor);
self.schedule_clean(cleanup_scope, drop as CleanupObj);
}
/// Schedules a call to `free(val)`. Note that this is a shallow operation.
fn schedule_free_value(&self,
cleanup_scope: ScopeId,
val: ValueRef,
heap: Heap,
content_ty: Ty<'tcx>) {
let drop = box FreeValue { ptr: val, heap: heap, content_ty: content_ty };
debug!("schedule_free_value({:?}, val={}, heap={:?})",
cleanup_scope,
self.ccx.tn().val_to_string(val),
heap);
self.schedule_clean(cleanup_scope, drop as CleanupObj);
}
fn schedule_clean(&self,
cleanup_scope: ScopeId,
cleanup: CleanupObj<'tcx>) {
match cleanup_scope {
AstScope(id) => self.schedule_clean_in_ast_scope(id, cleanup),
CustomScope(id) => self.schedule_clean_in_custom_scope(id, cleanup),
}
}
/// Schedules a cleanup to occur upon exit from `cleanup_scope`. If `cleanup_scope` is not
/// provided, then the cleanup is scheduled in the topmost scope, which must be a temporary
/// scope.
fn schedule_clean_in_ast_scope(&self,
cleanup_scope: ast::NodeId,
cleanup: CleanupObj<'tcx>) {
debug!("schedule_clean_in_ast_scope(cleanup_scope={})",
cleanup_scope);
for scope in self.scopes.borrow_mut().iter_mut().rev() {
if scope.kind.is_ast_with_id(cleanup_scope) {
scope.cleanups.push(cleanup);
scope.cached_landing_pad = None;
return;
} else {
// will be adding a cleanup to some enclosing scope
scope.clear_cached_exits();
}
}
self.ccx.sess().bug(
&format!("no cleanup scope {} found",
self.ccx.tcx().map.node_to_string(cleanup_scope)));
}
/// Schedules a cleanup to occur in the top-most scope, which must be a temporary scope.
fn schedule_clean_in_custom_scope(&self,
custom_scope: CustomScopeIndex,
cleanup: CleanupObj<'tcx>) {
debug!("schedule_clean_in_custom_scope(custom_scope={})",
custom_scope.index);
assert!(self.is_valid_custom_scope(custom_scope));
let mut scopes = self.scopes.borrow_mut();
let scope = &mut (*scopes)[custom_scope.index];
scope.cleanups.push(cleanup);
scope.cached_landing_pad = None;
}
/// Returns true if there are pending cleanups that should execute on panic.
fn needs_invoke(&self) -> bool {
self.scopes.borrow().iter().rev().any(|s| s.needs_invoke())
}
/// Returns a basic block to branch to in the event of a panic. This block
/// will run the panic cleanups and eventually resume the exception that
/// caused the landing pad to be run.
fn get_landing_pad(&'blk self) -> BasicBlockRef {
let _icx = base::push_ctxt("get_landing_pad");
debug!("get_landing_pad");
let orig_scopes_len = self.scopes_len();
assert!(orig_scopes_len > 0);
// Remove any scopes that do not have cleanups on panic:
let mut popped_scopes = vec!();
while !self.top_scope(|s| s.needs_invoke()) {
debug!("top scope does not need invoke");
popped_scopes.push(self.pop_scope());
}
// Check for an existing landing pad in the new topmost scope:
let llbb = self.get_or_create_landing_pad();
// Push the scopes we removed back on:
loop {
match popped_scopes.pop() {
Some(scope) => self.push_scope(scope),
None => break
}
}
assert_eq!(self.scopes_len(), orig_scopes_len);
return llbb;
}
}
impl<'blk, 'tcx> CleanupHelperMethods<'blk, 'tcx> for FunctionContext<'blk, 'tcx> {
/// Returns the id of the current top-most AST scope, if any.
fn top_ast_scope(&self) -> Option<ast::NodeId> {
for scope in self.scopes.borrow().iter().rev() {
match scope.kind {
CustomScopeKind | LoopScopeKind(..) => {}
AstScopeKind(i) => {
return Some(i);
}
}
}
None
}
fn top_nonempty_cleanup_scope(&self) -> Option<usize> {
self.scopes.borrow().iter().rev().position(|s| !s.cleanups.is_empty())
}
fn is_valid_to_pop_custom_scope(&self, custom_scope: CustomScopeIndex) -> bool {
self.is_valid_custom_scope(custom_scope) &&
custom_scope.index == self.scopes.borrow().len() - 1
}
fn is_valid_custom_scope(&self, custom_scope: CustomScopeIndex) -> bool {
let scopes = self.scopes.borrow();
custom_scope.index < scopes.len() &&
(*scopes)[custom_scope.index].kind.is_temp()
}
/// Generates the cleanups for `scope` into `bcx`
fn trans_scope_cleanups(&self, // cannot borrow self, will recurse
bcx: Block<'blk, 'tcx>,
scope: &CleanupScope<'blk, 'tcx>) -> Block<'blk, 'tcx> {
let mut bcx = bcx;
if !bcx.unreachable.get() {
for cleanup in scope.cleanups.iter().rev() {
bcx = cleanup.trans(bcx, scope.debug_loc);
}
}
bcx
}
fn scopes_len(&self) -> usize {
self.scopes.borrow().len()
}
fn push_scope(&self, scope: CleanupScope<'blk, 'tcx>) {
self.scopes.borrow_mut().push(scope)
}
fn pop_scope(&self) -> CleanupScope<'blk, 'tcx> {
debug!("popping cleanup scope {}, {} scopes remaining",
self.top_scope(|s| s.block_name("")),
self.scopes_len() - 1);
self.scopes.borrow_mut().pop().unwrap()
}
fn top_scope<R, F>(&self, f: F) -> R where F: FnOnce(&CleanupScope<'blk, 'tcx>) -> R {
f(self.scopes.borrow().last().unwrap())
}
/// Used when the caller wishes to jump to an early exit, such as a return,
/// break, continue, or unwind. This function will generate all cleanups
/// between the top of the stack and the exit `label` and return a basic
/// block that the caller can branch to.
///
/// For example, if the current stack of cleanups were as follows:
///
/// AST 22
/// Custom 1
/// AST 23
/// Loop 23
/// Custom 2
/// AST 24
///
/// and the `label` specifies a break from `Loop 23`, then this function
/// would generate a series of basic blocks as follows:
///
/// Cleanup(AST 24) -> Cleanup(Custom 2) -> break_blk
///
/// where `break_blk` is the block specified in `Loop 23` as the target for
/// breaks. The return value would be the first basic block in that sequence
/// (`Cleanup(AST 24)`). The caller could then branch to `Cleanup(AST 24)`
/// and it will perform all cleanups and finally branch to the `break_blk`.
fn trans_cleanups_to_exit_scope(&'blk self,
label: EarlyExitLabel)
-> BasicBlockRef {
debug!("trans_cleanups_to_exit_scope label={:?} scopes={}",
label, self.scopes_len());
let orig_scopes_len = self.scopes_len();
let mut prev_llbb;
let mut popped_scopes = vec!();
let mut skip = 0;
// First we pop off all the cleanup stacks that are
// traversed until the exit is reached, pushing them
// onto the side vector `popped_scopes`. No code is
// generated at this time.
//
// So, continuing the example from above, we would wind up
// with a `popped_scopes` vector of `[AST 24, Custom 2]`.
// (Presuming that there are no cached exits)
loop {
if self.scopes_len() == 0 {
match label {
UnwindExit(val) => {
// Generate a block that will resume unwinding to the
// calling function
let bcx = self.new_block("resume", None);
match val {
UnwindKind::LandingPad => {
let addr = self.landingpad_alloca.get()
.unwrap();
let lp = build::Load(bcx, addr);
base::call_lifetime_end(bcx, addr);
base::trans_unwind_resume(bcx, lp);
}
UnwindKind::CleanupPad(_) => {
let pad = build::CleanupPad(bcx, None, &[]);
build::CleanupRet(bcx, pad, None);
}
}
prev_llbb = bcx.llbb;
break;
}
ReturnExit => {
prev_llbb = self.get_llreturn();
break
}
LoopExit(id, _) => {
self.ccx.sess().bug(&format!(
"cannot exit from scope {}, \
not in scope", id));
}
}
}
// Pop off the scope, since we may be generating
// unwinding code for it.
let top_scope = self.pop_scope();
let cached_exit = top_scope.cached_early_exit(label);
popped_scopes.push(top_scope);
// Check if we have already cached the unwinding of this
// scope for this label. If so, we can stop popping scopes
// and branch to the cached label, since it contains the
// cleanups for any subsequent scopes.
if let Some((exit, last_cleanup)) = cached_exit {
prev_llbb = exit;
skip = last_cleanup;
break;
}
// If we are searching for a loop exit,
// and this scope is that loop, then stop popping and set
// `prev_llbb` to the appropriate exit block from the loop.
let scope = popped_scopes.last().unwrap();
match label {
UnwindExit(..) | ReturnExit => { }
LoopExit(id, exit) => {
if let Some(exit) = scope.kind.early_exit_block(id, exit) {
prev_llbb = exit;
break
}
}
}
}
debug!("trans_cleanups_to_exit_scope: popped {} scopes",
popped_scopes.len());
// Now push the popped scopes back on. As we go,
// we track in `prev_llbb` the exit to which this scope
// should branch when it's done.
//
// So, continuing with our example, we will start out with
// `prev_llbb` being set to `break_blk` (or possibly a cached
// early exit). We will then pop the scopes from `popped_scopes`
// and generate a basic block for each one, prepending it in the
// series and updating `prev_llbb`. So we begin by popping `Custom 2`
// and generating `Cleanup(Custom 2)`. We make `Cleanup(Custom 2)`
// branch to `prev_llbb == break_blk`, giving us a sequence like:
//
// Cleanup(Custom 2) -> prev_llbb
//
// We then pop `AST 24` and repeat the process, giving us the sequence:
//
// Cleanup(AST 24) -> Cleanup(Custom 2) -> prev_llbb
//
// At this point, `popped_scopes` is empty, and so the final block
// that we return to the user is `Cleanup(AST 24)`.
while let Some(mut scope) = popped_scopes.pop() {
if !scope.cleanups.is_empty() {
let name = scope.block_name("clean");
debug!("generating cleanups for {}", name);
let bcx_in = self.new_block(&name[..], None);
let exit_label = label.start(bcx_in);
let mut bcx_out = bcx_in;
let len = scope.cleanups.len();
for cleanup in scope.cleanups.iter().rev().take(len - skip) {
bcx_out = cleanup.trans(bcx_out, scope.debug_loc);
}
skip = 0;
exit_label.branch(bcx_out, prev_llbb);
prev_llbb = bcx_in.llbb;
scope.add_cached_early_exit(exit_label, prev_llbb, len);
}
self.push_scope(scope);
}
debug!("trans_cleanups_to_exit_scope: prev_llbb={:?}", prev_llbb);
assert_eq!(self.scopes_len(), orig_scopes_len);
prev_llbb
}
/// Creates a landing pad for the top scope, if one does not exist. The
/// landing pad will perform all cleanups necessary for an unwind and then
/// `resume` to continue error propagation:
///
/// landing_pad -> ... cleanups ... -> [resume]
///
/// (The cleanups and resume instruction are created by
/// `trans_cleanups_to_exit_scope()`, not in this function itself.)
fn get_or_create_landing_pad(&'blk self) -> BasicBlockRef {
let pad_bcx;
debug!("get_or_create_landing_pad");
// Check if a landing pad block exists; if not, create one.
{
let mut scopes = self.scopes.borrow_mut();
let last_scope = scopes.last_mut().unwrap();
match last_scope.cached_landing_pad {
Some(llbb) => return llbb,
None => {
let name = last_scope.block_name("unwind");
pad_bcx = self.new_block(&name[..], None);
last_scope.cached_landing_pad = Some(pad_bcx.llbb);
}
}
};
let llpersonality = pad_bcx.fcx.eh_personality();
let val = if base::wants_msvc_seh(self.ccx.sess()) {
// A cleanup pad requires a personality function to be specified, so
// we do that here explicitly (happens implicitly below through
// creation of the landingpad instruction). We then create a
// cleanuppad instruction which has no filters to run cleanup on all
// exceptions.
build::SetPersonalityFn(pad_bcx, llpersonality);
let llretval = build::CleanupPad(pad_bcx, None, &[]);
UnwindKind::CleanupPad(llretval)
} else {
// The landing pad return type (the type being propagated). Not sure
// what this represents but it's determined by the personality
// function and this is what the EH proposal example uses.
let llretty = Type::struct_(self.ccx,
&[Type::i8p(self.ccx), Type::i32(self.ccx)],
false);
// The only landing pad clause will be 'cleanup'
let llretval = build::LandingPad(pad_bcx, llretty, llpersonality, 1);
// The landing pad block is a cleanup
build::SetCleanup(pad_bcx, llretval);
let addr = match self.landingpad_alloca.get() {
Some(addr) => addr,
None => {
let addr = base::alloca(pad_bcx, common::val_ty(llretval),
"");
base::call_lifetime_start(pad_bcx, addr);
self.landingpad_alloca.set(Some(addr));
addr
}
};
build::Store(pad_bcx, llretval, addr);
UnwindKind::LandingPad
};
// Generate the cleanup block and branch to it.
let label = UnwindExit(val);
let cleanup_llbb = self.trans_cleanups_to_exit_scope(label);
label.branch(pad_bcx, cleanup_llbb);
return pad_bcx.llbb;
}
}
impl<'blk, 'tcx> CleanupScope<'blk, 'tcx> {
fn new(kind: CleanupScopeKind<'blk, 'tcx>,
debug_loc: DebugLoc)
-> CleanupScope<'blk, 'tcx> {
CleanupScope {
kind: kind,
debug_loc: debug_loc,
cleanups: vec!(),
cached_early_exits: vec!(),
cached_landing_pad: None,
}
}
fn clear_cached_exits(&mut self) {
self.cached_early_exits = vec!();
self.cached_landing_pad = None;
}
fn cached_early_exit(&self,
label: EarlyExitLabel)
-> Option<(BasicBlockRef, usize)> {
self.cached_early_exits.iter().rev().
find(|e| e.label == label).
map(|e| (e.cleanup_block, e.last_cleanup))
}
fn add_cached_early_exit(&mut self,
label: EarlyExitLabel,
blk: BasicBlockRef,
last_cleanup: usize) {
self.cached_early_exits.push(
CachedEarlyExit { label: label,
cleanup_block: blk,
last_cleanup: last_cleanup});
}
/// True if this scope has cleanups that need unwinding
fn needs_invoke(&self) -> bool {
self.cached_landing_pad.is_some() ||
self.cleanups.iter().any(|c| c.must_unwind())
}
/// Returns a suitable name to use for the basic block that handles this cleanup scope
fn block_name(&self, prefix: &str) -> String {
match self.kind {
CustomScopeKind => format!("{}_custom_", prefix),
AstScopeKind(id) => format!("{}_ast_{}_", prefix, id),
LoopScopeKind(id, _) => format!("{}_loop_{}_", prefix, id),
}
}
/// Manipulate cleanup scope for call arguments. Conceptually, each
/// argument to a call is an lvalue, and performing the call moves each
/// of the arguments into a new rvalue (which gets cleaned up by the
/// callee). As an optimization, instead of actually performing all of
/// those moves, trans just manipulates the cleanup scope to obtain the
/// same effect.
pub fn drop_non_lifetime_clean(&mut self) {
self.cleanups.retain(|c| c.is_lifetime_end());
self.clear_cached_exits();
}
}
impl<'blk, 'tcx> CleanupScopeKind<'blk, 'tcx> {
fn is_temp(&self) -> bool {
match *self {
CustomScopeKind => true,
LoopScopeKind(..) | AstScopeKind(..) => false,
}
}
fn is_ast_with_id(&self, id: ast::NodeId) -> bool {
match *self {
CustomScopeKind | LoopScopeKind(..) => false,
AstScopeKind(i) => i == id
}
}
fn is_loop_with_id(&self, id: ast::NodeId) -> bool {
match *self {
CustomScopeKind | AstScopeKind(..) => false,
LoopScopeKind(i, _) => i == id
}
}
/// If this is a loop scope with id `id`, return the early exit block `exit`, else `None`
fn early_exit_block(&self,
id: ast::NodeId,
exit: usize) -> Option<BasicBlockRef> {
match *self {
LoopScopeKind(i, ref exits) if id == i => Some(exits[exit].llbb),
_ => None,
}
}
}
impl EarlyExitLabel {
/// Generates a branch going from `from_bcx` to `to_llbb` where `self` is
/// the exit label attached to the start of `from_bcx`.
///
/// Transitions from an exit label to other exit labels depend on the type
/// of label. For example with MSVC exceptions unwind exit labels will use
/// the `cleanupret` instruction instead of the `br` instruction.
fn branch(&self, from_bcx: Block, to_llbb: BasicBlockRef) {
if let UnwindExit(UnwindKind::CleanupPad(pad)) = *self {
build::CleanupRet(from_bcx, pad, Some(to_llbb));
} else {
build::Br(from_bcx, to_llbb, DebugLoc::None);
}
}
/// Generates the necessary instructions at the start of `bcx` to prepare
/// for the same kind of early exit label that `self` is.
///
/// This function will appropriately configure `bcx` based on the kind of
/// label this is. For UnwindExit labels, the `lpad` field of the block will
/// be set to `Some`, and for MSVC exceptions this function will generate a
/// `cleanuppad` instruction at the start of the block so it may be jumped
/// to in the future (e.g. so this block can be cached as an early exit).
///
/// Returns a new label which will can be used to cache `bcx` in the list of
/// early exits.
fn start(&self, bcx: Block) -> EarlyExitLabel {
match *self {
UnwindExit(UnwindKind::CleanupPad(..)) => {
let pad = build::CleanupPad(bcx, None, &[]);
*bcx.lpad.borrow_mut() = Some(LandingPad::msvc(pad));
UnwindExit(UnwindKind::CleanupPad(pad))
}
UnwindExit(UnwindKind::LandingPad) => {
*bcx.lpad.borrow_mut() = Some(LandingPad::gnu());
*self
}
label => label,
}
}
}
impl PartialEq for UnwindKind {
fn eq(&self, val: &UnwindKind) -> bool {
match (*self, *val) {
(UnwindKind::LandingPad, UnwindKind::LandingPad) |
(UnwindKind::CleanupPad(..), UnwindKind::CleanupPad(..)) => true,
_ => false,
}
}
}
///////////////////////////////////////////////////////////////////////////
// Cleanup types
#[derive(Copy, Clone)]
pub struct DropValue<'tcx> {
is_immediate: bool,
val: ValueRef,
ty: Ty<'tcx>,
fill_on_drop: bool,
skip_dtor: bool,
drop_hint: Option<DropHintValue>,
}
impl<'tcx> Cleanup<'tcx> for DropValue<'tcx> {
fn must_unwind(&self) -> bool {
true
}
fn is_lifetime_end(&self) -> bool {
false
}
fn trans<'blk>(&self,
bcx: Block<'blk, 'tcx>,
debug_loc: DebugLoc)
-> Block<'blk, 'tcx> {
let skip_dtor = self.skip_dtor;
let _icx = if skip_dtor {
base::push_ctxt("<DropValue as Cleanup>::trans skip_dtor=true")
} else {
base::push_ctxt("<DropValue as Cleanup>::trans skip_dtor=false")
};
let bcx = if self.is_immediate {
glue::drop_ty_immediate(bcx, self.val, self.ty, debug_loc, self.skip_dtor)
} else {
glue::drop_ty_core(bcx, self.val, self.ty, debug_loc, self.skip_dtor, self.drop_hint)
};
if self.fill_on_drop {
base::drop_done_fill_mem(bcx, self.val, self.ty);
}
bcx
}
}
#[derive(Copy, Clone, Debug)]
pub enum Heap {
HeapExchange
}
#[derive(Copy, Clone)]
pub struct FreeValue<'tcx> {
ptr: ValueRef,
heap: Heap,
content_ty: Ty<'tcx>
}
impl<'tcx> Cleanup<'tcx> for FreeValue<'tcx> {
fn must_unwind(&self) -> bool {
true
}
fn is_lifetime_end(&self) -> bool {
false
}
fn trans<'blk>(&self,
bcx: Block<'blk, 'tcx>,
debug_loc: DebugLoc)
-> Block<'blk, 'tcx> {
match self.heap {
HeapExchange => {
glue::trans_exchange_free_ty(bcx,
self.ptr,
self.content_ty,
debug_loc)
}
}
}
}
#[derive(Copy, Clone)]
pub struct LifetimeEnd {
ptr: ValueRef,
}
impl<'tcx> Cleanup<'tcx> for LifetimeEnd {
fn must_unwind(&self) -> bool {
false
}
fn is_lifetime_end(&self) -> bool {
true
}
fn trans<'blk>(&self,
bcx: Block<'blk, 'tcx>,
debug_loc: DebugLoc)
-> Block<'blk, 'tcx> {
debug_loc.apply(bcx.fcx);
base::call_lifetime_end(bcx, self.ptr);
bcx
}
}
pub fn temporary_scope(tcx: &ty::ctxt,
id: ast::NodeId)
-> ScopeId {
match tcx.region_maps.temporary_scope(id) {
Some(scope) => {
let r = AstScope(scope.node_id(&tcx.region_maps));
debug!("temporary_scope({}) = {:?}", id, r);
r
}
None => {
tcx.sess.bug(&format!("no temporary scope available for expr {}",
id))
}
}
}
pub fn var_scope(tcx: &ty::ctxt,
id: ast::NodeId)
-> ScopeId {
let r = AstScope(tcx.region_maps.var_scope(id).node_id(&tcx.region_maps));
debug!("var_scope({}) = {:?}", id, r);
r
}
///////////////////////////////////////////////////////////////////////////
// These traits just exist to put the methods into this file.
pub trait CleanupMethods<'blk, 'tcx> {
fn push_ast_cleanup_scope(&self, id: NodeIdAndSpan);
fn push_loop_cleanup_scope(&self,
id: ast::NodeId,
exits: [Block<'blk, 'tcx>; EXIT_MAX]);
fn push_custom_cleanup_scope(&self) -> CustomScopeIndex;
fn push_custom_cleanup_scope_with_debug_loc(&self,
debug_loc: NodeIdAndSpan)
-> CustomScopeIndex;
fn pop_and_trans_ast_cleanup_scope(&self,
bcx: Block<'blk, 'tcx>,
cleanup_scope: ast::NodeId)
-> Block<'blk, 'tcx>;
fn pop_loop_cleanup_scope(&self,
cleanup_scope: ast::NodeId);
fn pop_custom_cleanup_scope(&self,
custom_scope: CustomScopeIndex);
fn pop_and_trans_custom_cleanup_scope(&self,
bcx: Block<'blk, 'tcx>,
custom_scope: CustomScopeIndex)
-> Block<'blk, 'tcx>;
fn top_loop_scope(&self) -> ast::NodeId;
fn normal_exit_block(&'blk self,
cleanup_scope: ast::NodeId,
exit: usize) -> BasicBlockRef;
fn return_exit_block(&'blk self) -> BasicBlockRef;
fn schedule_lifetime_end(&self,
cleanup_scope: ScopeId,
val: ValueRef);
fn schedule_drop_mem(&self,
cleanup_scope: ScopeId,
val: ValueRef,
ty: Ty<'tcx>,
drop_hint: Option<DropHintDatum<'tcx>>);
fn schedule_drop_and_fill_mem(&self,
cleanup_scope: ScopeId,
val: ValueRef,
ty: Ty<'tcx>,
drop_hint: Option<DropHintDatum<'tcx>>);
fn schedule_drop_adt_contents(&self,
cleanup_scope: ScopeId,
val: ValueRef,
ty: Ty<'tcx>);
fn schedule_drop_immediate(&self,
cleanup_scope: ScopeId,
val: ValueRef,
ty: Ty<'tcx>);
fn schedule_free_value(&self,
cleanup_scope: ScopeId,
val: ValueRef,
heap: Heap,
content_ty: Ty<'tcx>);
fn schedule_clean(&self,
cleanup_scope: ScopeId,
cleanup: CleanupObj<'tcx>);
fn schedule_clean_in_ast_scope(&self,
cleanup_scope: ast::NodeId,
cleanup: CleanupObj<'tcx>);
fn schedule_clean_in_custom_scope(&self,
custom_scope: CustomScopeIndex,
cleanup: CleanupObj<'tcx>);
fn needs_invoke(&self) -> bool;
fn get_landing_pad(&'blk self) -> BasicBlockRef;
}
trait CleanupHelperMethods<'blk, 'tcx> {
fn top_ast_scope(&self) -> Option<ast::NodeId>;
fn top_nonempty_cleanup_scope(&self) -> Option<usize>;
fn is_valid_to_pop_custom_scope(&self, custom_scope: CustomScopeIndex) -> bool;
fn is_valid_custom_scope(&self, custom_scope: CustomScopeIndex) -> bool;
fn trans_scope_cleanups(&self,
bcx: Block<'blk, 'tcx>,
scope: &CleanupScope<'blk, 'tcx>) -> Block<'blk, 'tcx>;
fn trans_cleanups_to_exit_scope(&'blk self,
label: EarlyExitLabel)
-> BasicBlockRef;
fn get_or_create_landing_pad(&'blk self) -> BasicBlockRef;
fn scopes_len(&self) -> usize;
fn push_scope(&self, scope: CleanupScope<'blk, 'tcx>);
fn pop_scope(&self) -> CleanupScope<'blk, 'tcx>;
fn top_scope<R, F>(&self, f: F) -> R where F: FnOnce(&CleanupScope<'blk, 'tcx>) -> R;
}