rust/src/librustc/middle/dead.rs
Jared Roesch 79d02895ff Begin refactor type checking state
This first patch starts by moving around pieces of state related to
type checking. The goal is to slowly unify the type checking state
into a single typing context. This initial patch moves the
ParameterEnvironment into the InferCtxt and moves shared tables
from Inherited and ty::ctxt into their own struct Tables. This
is the foundational work to refactoring the type checker to
enable future evolution of the language and tooling.
2015-06-27 13:43:20 -07:00

637 lines
23 KiB
Rust

// Copyright 2013 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
// This implements the dead-code warning pass. It follows middle::reachable
// closely. The idea is that all reachable symbols are live, codes called
// from live codes are live, and everything else is dead.
use ast_map;
use middle::{def, pat_util, privacy, ty};
use lint;
use util::nodemap::NodeSet;
use std::collections::HashSet;
use syntax::{ast, codemap};
use syntax::ast_util::{local_def, is_local};
use syntax::attr::{self, AttrMetaMethods};
use syntax::visit::{self, Visitor};
// Any local node that may call something in its body block should be
// explored. For example, if it's a live NodeItem that is a
// function, then we should explore its block to check for codes that
// may need to be marked as live.
fn should_explore(tcx: &ty::ctxt, def_id: ast::DefId) -> bool {
if !is_local(def_id) {
return false;
}
match tcx.map.find(def_id.node) {
Some(ast_map::NodeItem(..))
| Some(ast_map::NodeImplItem(..))
| Some(ast_map::NodeForeignItem(..))
| Some(ast_map::NodeTraitItem(..)) => true,
_ => false
}
}
struct MarkSymbolVisitor<'a, 'tcx: 'a> {
worklist: Vec<ast::NodeId>,
tcx: &'a ty::ctxt<'tcx>,
live_symbols: Box<HashSet<ast::NodeId>>,
struct_has_extern_repr: bool,
ignore_non_const_paths: bool,
inherited_pub_visibility: bool,
ignore_variant_stack: Vec<ast::NodeId>,
}
impl<'a, 'tcx> MarkSymbolVisitor<'a, 'tcx> {
fn new(tcx: &'a ty::ctxt<'tcx>,
worklist: Vec<ast::NodeId>) -> MarkSymbolVisitor<'a, 'tcx> {
MarkSymbolVisitor {
worklist: worklist,
tcx: tcx,
live_symbols: box HashSet::new(),
struct_has_extern_repr: false,
ignore_non_const_paths: false,
inherited_pub_visibility: false,
ignore_variant_stack: vec![],
}
}
fn check_def_id(&mut self, def_id: ast::DefId) {
if should_explore(self.tcx, def_id) {
self.worklist.push(def_id.node);
}
self.live_symbols.insert(def_id.node);
}
fn lookup_and_handle_definition(&mut self, id: &ast::NodeId) {
self.tcx.def_map.borrow().get(id).map(|def| {
match def.full_def() {
def::DefConst(_) | def::DefAssociatedConst(..) => {
self.check_def_id(def.def_id())
}
_ if self.ignore_non_const_paths => (),
def::DefPrimTy(_) => (),
def::DefVariant(enum_id, variant_id, _) => {
self.check_def_id(enum_id);
if !self.ignore_variant_stack.contains(&variant_id.node) {
self.check_def_id(variant_id);
}
}
_ => {
self.check_def_id(def.def_id());
}
}
});
}
fn lookup_and_handle_method(&mut self, id: ast::NodeId,
span: codemap::Span) {
let method_call = ty::MethodCall::expr(id);
match self.tcx.tables.borrow().method_map.get(&method_call) {
Some(method) => {
match method.origin {
ty::MethodStatic(def_id) => {
match self.tcx.provided_source(def_id) {
Some(p_did) => self.check_def_id(p_did),
None => self.check_def_id(def_id)
}
}
ty::MethodStaticClosure(_) => {}
ty::MethodTypeParam(ty::MethodParam {
ref trait_ref,
method_num: index,
..
}) |
ty::MethodTraitObject(ty::MethodObject {
ref trait_ref,
method_num: index,
..
}) => {
let trait_item = self.tcx.trait_item(trait_ref.def_id, index);
self.check_def_id(trait_item.def_id());
}
}
}
None => {
self.tcx.sess.span_bug(span,
"method call expression not \
in method map?!")
}
}
}
fn handle_field_access(&mut self, lhs: &ast::Expr, name: ast::Name) {
match self.tcx.expr_ty_adjusted(lhs).sty {
ty::TyStruct(id, _) => {
let fields = self.tcx.lookup_struct_fields(id);
let field_id = fields.iter()
.find(|field| field.name == name).unwrap().id;
self.live_symbols.insert(field_id.node);
},
_ => ()
}
}
fn handle_tup_field_access(&mut self, lhs: &ast::Expr, idx: usize) {
match self.tcx.expr_ty_adjusted(lhs).sty {
ty::TyStruct(id, _) => {
let fields = self.tcx.lookup_struct_fields(id);
let field_id = fields[idx].id;
self.live_symbols.insert(field_id.node);
},
_ => ()
}
}
fn handle_field_pattern_match(&mut self, lhs: &ast::Pat,
pats: &[codemap::Spanned<ast::FieldPat>]) {
let id = match self.tcx.def_map.borrow().get(&lhs.id).unwrap().full_def() {
def::DefVariant(_, id, _) => id,
_ => {
match self.tcx.node_id_to_type(lhs.id).ty_to_def_id() {
None => {
self.tcx.sess.span_bug(lhs.span,
"struct pattern wasn't of a \
type with a def ID?!")
}
Some(def_id) => def_id,
}
}
};
let fields = self.tcx.lookup_struct_fields(id);
for pat in pats {
if let ast::PatWild(ast::PatWildSingle) = pat.node.pat.node {
continue;
}
let field_id = fields.iter()
.find(|field| field.name == pat.node.ident.name).unwrap().id;
self.live_symbols.insert(field_id.node);
}
}
fn mark_live_symbols(&mut self) {
let mut scanned = HashSet::new();
while !self.worklist.is_empty() {
let id = self.worklist.pop().unwrap();
if scanned.contains(&id) {
continue
}
scanned.insert(id);
match self.tcx.map.find(id) {
Some(ref node) => {
self.live_symbols.insert(id);
self.visit_node(node);
}
None => (),
}
}
}
fn visit_node(&mut self, node: &ast_map::Node) {
let had_extern_repr = self.struct_has_extern_repr;
self.struct_has_extern_repr = false;
let had_inherited_pub_visibility = self.inherited_pub_visibility;
self.inherited_pub_visibility = false;
match *node {
ast_map::NodeItem(item) => {
match item.node {
ast::ItemStruct(..) => {
self.struct_has_extern_repr = item.attrs.iter().any(|attr| {
attr::find_repr_attrs(self.tcx.sess.diagnostic(), attr)
.contains(&attr::ReprExtern)
});
visit::walk_item(self, &*item);
}
ast::ItemEnum(..) => {
self.inherited_pub_visibility = item.vis == ast::Public;
visit::walk_item(self, &*item);
}
ast::ItemFn(..)
| ast::ItemTy(..)
| ast::ItemStatic(..)
| ast::ItemConst(..) => {
visit::walk_item(self, &*item);
}
_ => ()
}
}
ast_map::NodeTraitItem(trait_item) => {
visit::walk_trait_item(self, trait_item);
}
ast_map::NodeImplItem(impl_item) => {
visit::walk_impl_item(self, impl_item);
}
ast_map::NodeForeignItem(foreign_item) => {
visit::walk_foreign_item(self, &*foreign_item);
}
_ => ()
}
self.struct_has_extern_repr = had_extern_repr;
self.inherited_pub_visibility = had_inherited_pub_visibility;
}
}
impl<'a, 'tcx, 'v> Visitor<'v> for MarkSymbolVisitor<'a, 'tcx> {
fn visit_struct_def(&mut self, def: &ast::StructDef, _: ast::Ident,
_: &ast::Generics, _: ast::NodeId) {
let has_extern_repr = self.struct_has_extern_repr;
let inherited_pub_visibility = self.inherited_pub_visibility;
let live_fields = def.fields.iter().filter(|f| {
has_extern_repr || inherited_pub_visibility || match f.node.kind {
ast::NamedField(_, ast::Public) => true,
_ => false
}
});
self.live_symbols.extend(live_fields.map(|f| f.node.id));
visit::walk_struct_def(self, def);
}
fn visit_expr(&mut self, expr: &ast::Expr) {
match expr.node {
ast::ExprMethodCall(..) => {
self.lookup_and_handle_method(expr.id, expr.span);
}
ast::ExprField(ref lhs, ref ident) => {
self.handle_field_access(&**lhs, ident.node.name);
}
ast::ExprTupField(ref lhs, idx) => {
self.handle_tup_field_access(&**lhs, idx.node);
}
_ => ()
}
visit::walk_expr(self, expr);
}
fn visit_arm(&mut self, arm: &ast::Arm) {
if arm.pats.len() == 1 {
let pat = &*arm.pats[0];
let variants = pat_util::necessary_variants(&self.tcx.def_map, pat);
// Inside the body, ignore constructions of variants
// necessary for the pattern to match. Those construction sites
// can't be reached unless the variant is constructed elsewhere.
let len = self.ignore_variant_stack.len();
self.ignore_variant_stack.push_all(&*variants);
visit::walk_arm(self, arm);
self.ignore_variant_stack.truncate(len);
} else {
visit::walk_arm(self, arm);
}
}
fn visit_pat(&mut self, pat: &ast::Pat) {
let def_map = &self.tcx.def_map;
match pat.node {
ast::PatStruct(_, ref fields, _) => {
self.handle_field_pattern_match(pat, fields);
}
_ if pat_util::pat_is_const(def_map, pat) => {
// it might be the only use of a const
self.lookup_and_handle_definition(&pat.id)
}
_ => ()
}
self.ignore_non_const_paths = true;
visit::walk_pat(self, pat);
self.ignore_non_const_paths = false;
}
fn visit_path(&mut self, path: &ast::Path, id: ast::NodeId) {
self.lookup_and_handle_definition(&id);
visit::walk_path(self, path);
}
fn visit_item(&mut self, _: &ast::Item) {
// Do not recurse into items. These items will be added to the
// worklist and recursed into manually if necessary.
}
}
fn has_allow_dead_code_or_lang_attr(attrs: &[ast::Attribute]) -> bool {
if attr::contains_name(attrs, "lang") {
return true;
}
let dead_code = lint::builtin::DEAD_CODE.name_lower();
for attr in lint::gather_attrs(attrs) {
match attr {
Ok((ref name, lint::Allow, _))
if &name[..] == dead_code => return true,
_ => (),
}
}
false
}
// This visitor seeds items that
// 1) We want to explicitly consider as live:
// * Item annotated with #[allow(dead_code)]
// - This is done so that if we want to suppress warnings for a
// group of dead functions, we only have to annotate the "root".
// For example, if both `f` and `g` are dead and `f` calls `g`,
// then annotating `f` with `#[allow(dead_code)]` will suppress
// warning for both `f` and `g`.
// * Item annotated with #[lang=".."]
// - This is because lang items are always callable from elsewhere.
// or
// 2) We are not sure to be live or not
// * Implementation of a trait method
struct LifeSeeder {
worklist: Vec<ast::NodeId>
}
impl<'v> Visitor<'v> for LifeSeeder {
fn visit_item(&mut self, item: &ast::Item) {
let allow_dead_code = has_allow_dead_code_or_lang_attr(&item.attrs);
if allow_dead_code {
self.worklist.push(item.id);
}
match item.node {
ast::ItemEnum(ref enum_def, _) if allow_dead_code => {
self.worklist.extend(enum_def.variants.iter().map(|variant| variant.node.id));
}
ast::ItemTrait(_, _, _, ref trait_items) => {
for trait_item in trait_items {
match trait_item.node {
ast::ConstTraitItem(_, Some(_)) |
ast::MethodTraitItem(_, Some(_)) => {
if has_allow_dead_code_or_lang_attr(&trait_item.attrs) {
self.worklist.push(trait_item.id);
}
}
_ => {}
}
}
}
ast::ItemImpl(_, _, _, ref opt_trait, _, ref impl_items) => {
for impl_item in impl_items {
match impl_item.node {
ast::ConstImplItem(..) |
ast::MethodImplItem(..) => {
if opt_trait.is_some() ||
has_allow_dead_code_or_lang_attr(&impl_item.attrs) {
self.worklist.push(impl_item.id);
}
}
ast::TypeImplItem(_) => {}
ast::MacImplItem(_) => panic!("unexpanded macro")
}
}
}
_ => ()
}
visit::walk_item(self, item);
}
}
fn create_and_seed_worklist(tcx: &ty::ctxt,
exported_items: &privacy::ExportedItems,
reachable_symbols: &NodeSet,
krate: &ast::Crate) -> Vec<ast::NodeId> {
let mut worklist = Vec::new();
// Preferably, we would only need to seed the worklist with reachable
// symbols. However, since the set of reachable symbols differs
// depending on whether a crate is built as bin or lib, and we want
// the warning to be consistent, we also seed the worklist with
// exported symbols.
for id in exported_items {
worklist.push(*id);
}
for id in reachable_symbols {
// Reachable variants can be dead, because we warn about
// variants never constructed, not variants never used.
if let Some(ast_map::NodeVariant(..)) = tcx.map.find(*id) {
continue;
}
worklist.push(*id);
}
// Seed entry point
match *tcx.sess.entry_fn.borrow() {
Some((id, _)) => worklist.push(id),
None => ()
}
// Seed implemented trait items
let mut life_seeder = LifeSeeder {
worklist: worklist
};
visit::walk_crate(&mut life_seeder, krate);
return life_seeder.worklist;
}
fn find_live(tcx: &ty::ctxt,
exported_items: &privacy::ExportedItems,
reachable_symbols: &NodeSet,
krate: &ast::Crate)
-> Box<HashSet<ast::NodeId>> {
let worklist = create_and_seed_worklist(tcx, exported_items,
reachable_symbols, krate);
let mut symbol_visitor = MarkSymbolVisitor::new(tcx, worklist);
symbol_visitor.mark_live_symbols();
symbol_visitor.live_symbols
}
fn get_struct_ctor_id(item: &ast::Item) -> Option<ast::NodeId> {
match item.node {
ast::ItemStruct(ref struct_def, _) => struct_def.ctor_id,
_ => None
}
}
struct DeadVisitor<'a, 'tcx: 'a> {
tcx: &'a ty::ctxt<'tcx>,
live_symbols: Box<HashSet<ast::NodeId>>,
}
impl<'a, 'tcx> DeadVisitor<'a, 'tcx> {
fn should_warn_about_item(&mut self, item: &ast::Item) -> bool {
let should_warn = match item.node {
ast::ItemStatic(..)
| ast::ItemConst(..)
| ast::ItemFn(..)
| ast::ItemEnum(..)
| ast::ItemStruct(..) => true,
_ => false
};
let ctor_id = get_struct_ctor_id(item);
should_warn && !self.symbol_is_live(item.id, ctor_id)
}
fn should_warn_about_field(&mut self, node: &ast::StructField_) -> bool {
let is_named = node.ident().is_some();
let field_type = self.tcx.node_id_to_type(node.id);
let is_marker_field = match field_type.ty_to_def_id() {
Some(def_id) => self.tcx.lang_items.items().any(|(_, item)| *item == Some(def_id)),
_ => false
};
is_named
&& !self.symbol_is_live(node.id, None)
&& !is_marker_field
&& !has_allow_dead_code_or_lang_attr(&node.attrs)
}
fn should_warn_about_variant(&mut self, variant: &ast::Variant_) -> bool {
!self.symbol_is_live(variant.id, None)
&& !has_allow_dead_code_or_lang_attr(&variant.attrs)
}
// id := node id of an item's definition.
// ctor_id := `Some` if the item is a struct_ctor (tuple struct),
// `None` otherwise.
// If the item is a struct_ctor, then either its `id` or
// `ctor_id` (unwrapped) is in the live_symbols set. More specifically,
// DefMap maps the ExprPath of a struct_ctor to the node referred by
// `ctor_id`. On the other hand, in a statement like
// `type <ident> <generics> = <ty>;` where <ty> refers to a struct_ctor,
// DefMap maps <ty> to `id` instead.
fn symbol_is_live(&mut self, id: ast::NodeId,
ctor_id: Option<ast::NodeId>) -> bool {
if self.live_symbols.contains(&id)
|| ctor_id.map_or(false,
|ctor| self.live_symbols.contains(&ctor)) {
return true;
}
// If it's a type whose items are live, then it's live, too.
// This is done to handle the case where, for example, the static
// method of a private type is used, but the type itself is never
// called directly.
let impl_items = self.tcx.impl_items.borrow();
match self.tcx.inherent_impls.borrow().get(&local_def(id)) {
None => (),
Some(impl_list) => {
for impl_did in impl_list.iter() {
for item_did in impl_items.get(impl_did).unwrap().iter() {
if self.live_symbols.contains(&item_did.def_id()
.node) {
return true;
}
}
}
}
}
false
}
fn warn_dead_code(&mut self,
id: ast::NodeId,
span: codemap::Span,
name: ast::Name,
node_type: &str) {
let name = name.as_str();
if !name.starts_with("_") {
self.tcx
.sess
.add_lint(lint::builtin::DEAD_CODE,
id,
span,
format!("{} is never used: `{}`", node_type, name));
}
}
}
impl<'a, 'tcx, 'v> Visitor<'v> for DeadVisitor<'a, 'tcx> {
fn visit_item(&mut self, item: &ast::Item) {
if self.should_warn_about_item(item) {
self.warn_dead_code(
item.id,
item.span,
item.ident.name,
item.node.descriptive_variant()
);
} else {
match item.node {
ast::ItemEnum(ref enum_def, _) => {
for variant in &enum_def.variants {
if self.should_warn_about_variant(&variant.node) {
self.warn_dead_code(variant.node.id, variant.span,
variant.node.name.name, "variant");
}
}
},
_ => ()
}
}
visit::walk_item(self, item);
}
fn visit_foreign_item(&mut self, fi: &ast::ForeignItem) {
if !self.symbol_is_live(fi.id, None) {
self.warn_dead_code(fi.id, fi.span, fi.ident.name, fi.node.descriptive_variant());
}
visit::walk_foreign_item(self, fi);
}
fn visit_struct_field(&mut self, field: &ast::StructField) {
if self.should_warn_about_field(&field.node) {
self.warn_dead_code(field.node.id, field.span,
field.node.ident().unwrap().name, "struct field");
}
visit::walk_struct_field(self, field);
}
fn visit_impl_item(&mut self, impl_item: &ast::ImplItem) {
match impl_item.node {
ast::ConstImplItem(_, ref expr) => {
if !self.symbol_is_live(impl_item.id, None) {
self.warn_dead_code(impl_item.id, impl_item.span,
impl_item.ident.name, "associated const");
}
visit::walk_expr(self, expr)
}
ast::MethodImplItem(_, ref body) => {
if !self.symbol_is_live(impl_item.id, None) {
self.warn_dead_code(impl_item.id, impl_item.span,
impl_item.ident.name, "method");
}
visit::walk_block(self, body)
}
ast::TypeImplItem(..) |
ast::MacImplItem(..) => {}
}
}
// Overwrite so that we don't warn the trait item itself.
fn visit_trait_item(&mut self, trait_item: &ast::TraitItem) {
match trait_item.node {
ast::ConstTraitItem(_, Some(ref expr)) => {
visit::walk_expr(self, expr)
}
ast::MethodTraitItem(_, Some(ref body)) => {
visit::walk_block(self, body)
}
ast::ConstTraitItem(_, None) |
ast::MethodTraitItem(_, None) |
ast::TypeTraitItem(..) => {}
}
}
}
pub fn check_crate(tcx: &ty::ctxt,
exported_items: &privacy::ExportedItems,
reachable_symbols: &NodeSet) {
let krate = tcx.map.krate();
let live_symbols = find_live(tcx, exported_items,
reachable_symbols, krate);
let mut visitor = DeadVisitor { tcx: tcx, live_symbols: live_symbols };
visit::walk_crate(&mut visitor, krate);
}