860 lines
24 KiB
Rust
860 lines
24 KiB
Rust
// Copyright 2012-2013 The Rust Project Developers. See the COPYRIGHT
|
|
// file at the top-level directory of this distribution and at
|
|
// http://rust-lang.org/COPYRIGHT.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
|
|
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
|
|
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
|
|
// option. This file may not be copied, modified, or distributed
|
|
// except according to those terms.
|
|
|
|
//! A double-ended queue implemented as a circular buffer
|
|
//!
|
|
//! RingBuf implements the trait Deque. It should be imported with `use
|
|
//! extra::container::Deque`.
|
|
|
|
use std::cmp;
|
|
use std::vec;
|
|
use std::iter::{Rev, RandomAccessIterator};
|
|
|
|
use deque::Deque;
|
|
|
|
use serialize::{Encodable, Decodable, Encoder, Decoder};
|
|
|
|
static INITIAL_CAPACITY: uint = 8u; // 2^3
|
|
static MINIMUM_CAPACITY: uint = 2u;
|
|
|
|
/// RingBuf is a circular buffer that implements Deque.
|
|
#[deriving(Clone)]
|
|
pub struct RingBuf<T> {
|
|
priv nelts: uint,
|
|
priv lo: uint,
|
|
priv elts: ~[Option<T>]
|
|
}
|
|
|
|
impl<T> Container for RingBuf<T> {
|
|
/// Return the number of elements in the RingBuf
|
|
fn len(&self) -> uint { self.nelts }
|
|
}
|
|
|
|
impl<T> Mutable for RingBuf<T> {
|
|
/// Clear the RingBuf, removing all values.
|
|
fn clear(&mut self) {
|
|
for x in self.elts.mut_iter() { *x = None }
|
|
self.nelts = 0;
|
|
self.lo = 0;
|
|
}
|
|
}
|
|
|
|
impl<T> Deque<T> for RingBuf<T> {
|
|
/// Return a reference to the first element in the RingBuf
|
|
fn front<'a>(&'a self) -> Option<&'a T> {
|
|
if self.nelts > 0 { Some(self.get(0)) } else { None }
|
|
}
|
|
|
|
/// Return a mutable reference to the first element in the RingBuf
|
|
fn front_mut<'a>(&'a mut self) -> Option<&'a mut T> {
|
|
if self.nelts > 0 { Some(self.get_mut(0)) } else { None }
|
|
}
|
|
|
|
/// Return a reference to the last element in the RingBuf
|
|
fn back<'a>(&'a self) -> Option<&'a T> {
|
|
if self.nelts > 0 { Some(self.get(self.nelts - 1)) } else { None }
|
|
}
|
|
|
|
/// Return a mutable reference to the last element in the RingBuf
|
|
fn back_mut<'a>(&'a mut self) -> Option<&'a mut T> {
|
|
if self.nelts > 0 { Some(self.get_mut(self.nelts - 1)) } else { None }
|
|
}
|
|
|
|
/// Remove and return the first element in the RingBuf, or None if it is empty
|
|
fn pop_front(&mut self) -> Option<T> {
|
|
let result = self.elts[self.lo].take();
|
|
if result.is_some() {
|
|
self.lo = (self.lo + 1u) % self.elts.len();
|
|
self.nelts -= 1u;
|
|
}
|
|
result
|
|
}
|
|
|
|
/// Remove and return the last element in the RingBuf, or None if it is empty
|
|
fn pop_back(&mut self) -> Option<T> {
|
|
if self.nelts > 0 {
|
|
self.nelts -= 1;
|
|
let hi = self.raw_index(self.nelts);
|
|
self.elts[hi].take()
|
|
} else {
|
|
None
|
|
}
|
|
}
|
|
|
|
/// Prepend an element to the RingBuf
|
|
fn push_front(&mut self, t: T) {
|
|
if self.nelts == self.elts.len() {
|
|
grow(self.nelts, &mut self.lo, &mut self.elts);
|
|
}
|
|
if self.lo == 0u {
|
|
self.lo = self.elts.len() - 1u;
|
|
} else { self.lo -= 1u; }
|
|
self.elts[self.lo] = Some(t);
|
|
self.nelts += 1u;
|
|
}
|
|
|
|
/// Append an element to the RingBuf
|
|
fn push_back(&mut self, t: T) {
|
|
if self.nelts == self.elts.len() {
|
|
grow(self.nelts, &mut self.lo, &mut self.elts);
|
|
}
|
|
let hi = self.raw_index(self.nelts);
|
|
self.elts[hi] = Some(t);
|
|
self.nelts += 1u;
|
|
}
|
|
}
|
|
|
|
impl<T> RingBuf<T> {
|
|
/// Create an empty RingBuf
|
|
pub fn new() -> RingBuf<T> {
|
|
RingBuf::with_capacity(INITIAL_CAPACITY)
|
|
}
|
|
|
|
/// Create an empty RingBuf with space for at least `n` elements.
|
|
pub fn with_capacity(n: uint) -> RingBuf<T> {
|
|
RingBuf{nelts: 0, lo: 0,
|
|
elts: vec::from_fn(cmp::max(MINIMUM_CAPACITY, n), |_| None)}
|
|
}
|
|
|
|
/// Retrieve an element in the RingBuf by index
|
|
///
|
|
/// Fails if there is no element with the given index
|
|
pub fn get<'a>(&'a self, i: uint) -> &'a T {
|
|
let idx = self.raw_index(i);
|
|
match self.elts[idx] {
|
|
None => fail!(),
|
|
Some(ref v) => v
|
|
}
|
|
}
|
|
|
|
/// Retrieve an element in the RingBuf by index
|
|
///
|
|
/// Fails if there is no element with the given index
|
|
pub fn get_mut<'a>(&'a mut self, i: uint) -> &'a mut T {
|
|
let idx = self.raw_index(i);
|
|
match self.elts[idx] {
|
|
None => fail!(),
|
|
Some(ref mut v) => v
|
|
}
|
|
}
|
|
|
|
/// Swap elements at indices `i` and `j`
|
|
///
|
|
/// `i` and `j` may be equal.
|
|
///
|
|
/// Fails if there is no element with the given index
|
|
pub fn swap(&mut self, i: uint, j: uint) {
|
|
assert!(i < self.len());
|
|
assert!(j < self.len());
|
|
let ri = self.raw_index(i);
|
|
let rj = self.raw_index(j);
|
|
self.elts.swap(ri, rj);
|
|
}
|
|
|
|
/// Return index in underlying vec for a given logical element index
|
|
fn raw_index(&self, idx: uint) -> uint {
|
|
raw_index(self.lo, self.elts.len(), idx)
|
|
}
|
|
|
|
/// Reserve capacity for exactly `n` elements in the given RingBuf,
|
|
/// doing nothing if `self`'s capacity is already equal to or greater
|
|
/// than the requested capacity
|
|
///
|
|
/// # Arguments
|
|
///
|
|
/// * n - The number of elements to reserve space for
|
|
pub fn reserve_exact(&mut self, n: uint) {
|
|
self.elts.reserve_exact(n);
|
|
}
|
|
|
|
/// Reserve capacity for at least `n` elements in the given RingBuf,
|
|
/// over-allocating in case the caller needs to reserve additional
|
|
/// space.
|
|
///
|
|
/// Do nothing if `self`'s capacity is already equal to or greater
|
|
/// than the requested capacity.
|
|
///
|
|
/// # Arguments
|
|
///
|
|
/// * n - The number of elements to reserve space for
|
|
pub fn reserve(&mut self, n: uint) {
|
|
self.elts.reserve(n);
|
|
}
|
|
|
|
/// Front-to-back iterator.
|
|
pub fn iter<'a>(&'a self) -> Items<'a, T> {
|
|
Items{index: 0, rindex: self.nelts, lo: self.lo, elts: self.elts}
|
|
}
|
|
|
|
/// Back-to-front iterator.
|
|
pub fn rev_iter<'a>(&'a self) -> Rev<Items<'a, T>> {
|
|
self.iter().rev()
|
|
}
|
|
|
|
/// Front-to-back iterator which returns mutable values.
|
|
pub fn mut_iter<'a>(&'a mut self) -> MutItems<'a, T> {
|
|
let start_index = raw_index(self.lo, self.elts.len(), 0);
|
|
let end_index = raw_index(self.lo, self.elts.len(), self.nelts);
|
|
|
|
// Divide up the array
|
|
if end_index <= start_index {
|
|
// Items to iterate goes from:
|
|
// start_index to self.elts.len()
|
|
// and then
|
|
// 0 to end_index
|
|
let (temp, remaining1) = self.elts.mut_split_at(start_index);
|
|
let (remaining2, _) = temp.mut_split_at(end_index);
|
|
MutItems { remaining1: remaining1,
|
|
remaining2: remaining2,
|
|
nelts: self.nelts }
|
|
} else {
|
|
// Items to iterate goes from start_index to end_index:
|
|
let (empty, elts) = self.elts.mut_split_at(0);
|
|
let remaining1 = elts.mut_slice(start_index, end_index);
|
|
MutItems { remaining1: remaining1,
|
|
remaining2: empty,
|
|
nelts: self.nelts }
|
|
}
|
|
}
|
|
|
|
/// Back-to-front iterator which returns mutable values.
|
|
pub fn mut_rev_iter<'a>(&'a mut self) -> Rev<MutItems<'a, T>> {
|
|
self.mut_iter().rev()
|
|
}
|
|
}
|
|
|
|
/// RingBuf iterator
|
|
pub struct Items<'a, T> {
|
|
priv lo: uint,
|
|
priv index: uint,
|
|
priv rindex: uint,
|
|
priv elts: &'a [Option<T>],
|
|
}
|
|
|
|
impl<'a, T> Iterator<&'a T> for Items<'a, T> {
|
|
#[inline]
|
|
fn next(&mut self) -> Option<&'a T> {
|
|
if self.index == self.rindex {
|
|
return None;
|
|
}
|
|
let raw_index = raw_index(self.lo, self.elts.len(), self.index);
|
|
self.index += 1;
|
|
Some(self.elts[raw_index].get_ref())
|
|
}
|
|
|
|
#[inline]
|
|
fn size_hint(&self) -> (uint, Option<uint>) {
|
|
let len = self.rindex - self.index;
|
|
(len, Some(len))
|
|
}
|
|
}
|
|
|
|
impl<'a, T> DoubleEndedIterator<&'a T> for Items<'a, T> {
|
|
#[inline]
|
|
fn next_back(&mut self) -> Option<&'a T> {
|
|
if self.index == self.rindex {
|
|
return None;
|
|
}
|
|
self.rindex -= 1;
|
|
let raw_index = raw_index(self.lo, self.elts.len(), self.rindex);
|
|
Some(self.elts[raw_index].get_ref())
|
|
}
|
|
}
|
|
|
|
impl<'a, T> ExactSize<&'a T> for Items<'a, T> {}
|
|
|
|
impl<'a, T> RandomAccessIterator<&'a T> for Items<'a, T> {
|
|
#[inline]
|
|
fn indexable(&self) -> uint { self.rindex - self.index }
|
|
|
|
#[inline]
|
|
fn idx(&self, j: uint) -> Option<&'a T> {
|
|
if j >= self.indexable() {
|
|
None
|
|
} else {
|
|
let raw_index = raw_index(self.lo, self.elts.len(), self.index + j);
|
|
Some(self.elts[raw_index].get_ref())
|
|
}
|
|
}
|
|
}
|
|
|
|
/// RingBuf mutable iterator
|
|
pub struct MutItems<'a, T> {
|
|
priv remaining1: &'a mut [Option<T>],
|
|
priv remaining2: &'a mut [Option<T>],
|
|
priv nelts: uint,
|
|
}
|
|
|
|
impl<'a, T> Iterator<&'a mut T> for MutItems<'a, T> {
|
|
#[inline]
|
|
fn next(&mut self) -> Option<&'a mut T> {
|
|
if self.nelts == 0 {
|
|
return None;
|
|
}
|
|
let r = if self.remaining1.len() > 0 {
|
|
&mut self.remaining1
|
|
} else {
|
|
assert!(self.remaining2.len() > 0);
|
|
&mut self.remaining2
|
|
};
|
|
self.nelts -= 1;
|
|
Some(r.mut_shift_ref().unwrap().get_mut_ref())
|
|
}
|
|
|
|
#[inline]
|
|
fn size_hint(&self) -> (uint, Option<uint>) {
|
|
(self.nelts, Some(self.nelts))
|
|
}
|
|
}
|
|
|
|
impl<'a, T> DoubleEndedIterator<&'a mut T> for MutItems<'a, T> {
|
|
#[inline]
|
|
fn next_back(&mut self) -> Option<&'a mut T> {
|
|
if self.nelts == 0 {
|
|
return None;
|
|
}
|
|
let r = if self.remaining2.len() > 0 {
|
|
&mut self.remaining2
|
|
} else {
|
|
assert!(self.remaining1.len() > 0);
|
|
&mut self.remaining1
|
|
};
|
|
self.nelts -= 1;
|
|
Some(r.mut_pop_ref().unwrap().get_mut_ref())
|
|
}
|
|
}
|
|
|
|
impl<'a, T> ExactSize<&'a mut T> for MutItems<'a, T> {}
|
|
|
|
/// Grow is only called on full elts, so nelts is also len(elts), unlike
|
|
/// elsewhere.
|
|
fn grow<T>(nelts: uint, loptr: &mut uint, elts: &mut ~[Option<T>]) {
|
|
assert_eq!(nelts, elts.len());
|
|
let lo = *loptr;
|
|
let newlen = nelts * 2;
|
|
elts.reserve(newlen);
|
|
|
|
/* fill with None */
|
|
for _ in range(elts.len(), elts.capacity()) {
|
|
elts.push(None);
|
|
}
|
|
|
|
/*
|
|
Move the shortest half into the newly reserved area.
|
|
lo ---->|
|
|
nelts ----------->|
|
|
[o o o|o o o o o]
|
|
A [. . .|o o o o o o o o|. . . . .]
|
|
B [o o o|. . . . . . . .|o o o o o]
|
|
*/
|
|
|
|
assert!(newlen - nelts/2 >= nelts);
|
|
if lo <= (nelts - lo) { // A
|
|
for i in range(0u, lo) {
|
|
elts.swap(i, nelts + i);
|
|
}
|
|
} else { // B
|
|
for i in range(lo, nelts) {
|
|
elts.swap(i, newlen - nelts + i);
|
|
}
|
|
*loptr += newlen - nelts;
|
|
}
|
|
}
|
|
|
|
/// Return index in underlying vec for a given logical element index
|
|
fn raw_index(lo: uint, len: uint, index: uint) -> uint {
|
|
if lo >= len - index {
|
|
lo + index - len
|
|
} else {
|
|
lo + index
|
|
}
|
|
}
|
|
|
|
impl<A: Eq> Eq for RingBuf<A> {
|
|
fn eq(&self, other: &RingBuf<A>) -> bool {
|
|
self.nelts == other.nelts &&
|
|
self.iter().zip(other.iter()).all(|(a, b)| a.eq(b))
|
|
}
|
|
fn ne(&self, other: &RingBuf<A>) -> bool {
|
|
!self.eq(other)
|
|
}
|
|
}
|
|
|
|
impl<A> FromIterator<A> for RingBuf<A> {
|
|
fn from_iterator<T: Iterator<A>>(iterator: &mut T) -> RingBuf<A> {
|
|
let (lower, _) = iterator.size_hint();
|
|
let mut deq = RingBuf::with_capacity(lower);
|
|
deq.extend(iterator);
|
|
deq
|
|
}
|
|
}
|
|
|
|
impl<A> Extendable<A> for RingBuf<A> {
|
|
fn extend<T: Iterator<A>>(&mut self, iterator: &mut T) {
|
|
for elt in *iterator {
|
|
self.push_back(elt);
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<
|
|
S: Encoder,
|
|
T: Encodable<S>
|
|
> Encodable<S> for RingBuf<T> {
|
|
fn encode(&self, s: &mut S) {
|
|
s.emit_seq(self.len(), |s| {
|
|
for (i, e) in self.iter().enumerate() {
|
|
s.emit_seq_elt(i, |s| e.encode(s));
|
|
}
|
|
})
|
|
}
|
|
}
|
|
|
|
impl<D:Decoder,T:Decodable<D>> Decodable<D> for RingBuf<T> {
|
|
fn decode(d: &mut D) -> RingBuf<T> {
|
|
let mut deque = RingBuf::new();
|
|
d.read_seq(|d, len| {
|
|
for i in range(0u, len) {
|
|
deque.push_back(d.read_seq_elt(i, |d| Decodable::decode(d)));
|
|
}
|
|
});
|
|
deque
|
|
}
|
|
}
|
|
|
|
#[cfg(test)]
|
|
mod tests {
|
|
extern crate test;
|
|
use self::test::BenchHarness;
|
|
use deque::Deque;
|
|
use std::clone::Clone;
|
|
use std::cmp::Eq;
|
|
use super::RingBuf;
|
|
|
|
#[test]
|
|
fn test_simple() {
|
|
let mut d = RingBuf::new();
|
|
assert_eq!(d.len(), 0u);
|
|
d.push_front(17);
|
|
d.push_front(42);
|
|
d.push_back(137);
|
|
assert_eq!(d.len(), 3u);
|
|
d.push_back(137);
|
|
assert_eq!(d.len(), 4u);
|
|
debug!("{:?}", d.front());
|
|
assert_eq!(*d.front().unwrap(), 42);
|
|
debug!("{:?}", d.back());
|
|
assert_eq!(*d.back().unwrap(), 137);
|
|
let mut i = d.pop_front();
|
|
debug!("{:?}", i);
|
|
assert_eq!(i, Some(42));
|
|
i = d.pop_back();
|
|
debug!("{:?}", i);
|
|
assert_eq!(i, Some(137));
|
|
i = d.pop_back();
|
|
debug!("{:?}", i);
|
|
assert_eq!(i, Some(137));
|
|
i = d.pop_back();
|
|
debug!("{:?}", i);
|
|
assert_eq!(i, Some(17));
|
|
assert_eq!(d.len(), 0u);
|
|
d.push_back(3);
|
|
assert_eq!(d.len(), 1u);
|
|
d.push_front(2);
|
|
assert_eq!(d.len(), 2u);
|
|
d.push_back(4);
|
|
assert_eq!(d.len(), 3u);
|
|
d.push_front(1);
|
|
assert_eq!(d.len(), 4u);
|
|
debug!("{:?}", d.get(0));
|
|
debug!("{:?}", d.get(1));
|
|
debug!("{:?}", d.get(2));
|
|
debug!("{:?}", d.get(3));
|
|
assert_eq!(*d.get(0), 1);
|
|
assert_eq!(*d.get(1), 2);
|
|
assert_eq!(*d.get(2), 3);
|
|
assert_eq!(*d.get(3), 4);
|
|
}
|
|
|
|
#[test]
|
|
fn test_boxes() {
|
|
let a: @int = @5;
|
|
let b: @int = @72;
|
|
let c: @int = @64;
|
|
let d: @int = @175;
|
|
|
|
let mut deq = RingBuf::new();
|
|
assert_eq!(deq.len(), 0);
|
|
deq.push_front(a);
|
|
deq.push_front(b);
|
|
deq.push_back(c);
|
|
assert_eq!(deq.len(), 3);
|
|
deq.push_back(d);
|
|
assert_eq!(deq.len(), 4);
|
|
assert_eq!(deq.front(), Some(&b));
|
|
assert_eq!(deq.back(), Some(&d));
|
|
assert_eq!(deq.pop_front(), Some(b));
|
|
assert_eq!(deq.pop_back(), Some(d));
|
|
assert_eq!(deq.pop_back(), Some(c));
|
|
assert_eq!(deq.pop_back(), Some(a));
|
|
assert_eq!(deq.len(), 0);
|
|
deq.push_back(c);
|
|
assert_eq!(deq.len(), 1);
|
|
deq.push_front(b);
|
|
assert_eq!(deq.len(), 2);
|
|
deq.push_back(d);
|
|
assert_eq!(deq.len(), 3);
|
|
deq.push_front(a);
|
|
assert_eq!(deq.len(), 4);
|
|
assert_eq!(*deq.get(0), a);
|
|
assert_eq!(*deq.get(1), b);
|
|
assert_eq!(*deq.get(2), c);
|
|
assert_eq!(*deq.get(3), d);
|
|
}
|
|
|
|
#[cfg(test)]
|
|
fn test_parameterized<T:Clone + Eq>(a: T, b: T, c: T, d: T) {
|
|
let mut deq = RingBuf::new();
|
|
assert_eq!(deq.len(), 0);
|
|
deq.push_front(a.clone());
|
|
deq.push_front(b.clone());
|
|
deq.push_back(c.clone());
|
|
assert_eq!(deq.len(), 3);
|
|
deq.push_back(d.clone());
|
|
assert_eq!(deq.len(), 4);
|
|
assert_eq!((*deq.front().unwrap()).clone(), b.clone());
|
|
assert_eq!((*deq.back().unwrap()).clone(), d.clone());
|
|
assert_eq!(deq.pop_front().unwrap(), b.clone());
|
|
assert_eq!(deq.pop_back().unwrap(), d.clone());
|
|
assert_eq!(deq.pop_back().unwrap(), c.clone());
|
|
assert_eq!(deq.pop_back().unwrap(), a.clone());
|
|
assert_eq!(deq.len(), 0);
|
|
deq.push_back(c.clone());
|
|
assert_eq!(deq.len(), 1);
|
|
deq.push_front(b.clone());
|
|
assert_eq!(deq.len(), 2);
|
|
deq.push_back(d.clone());
|
|
assert_eq!(deq.len(), 3);
|
|
deq.push_front(a.clone());
|
|
assert_eq!(deq.len(), 4);
|
|
assert_eq!((*deq.get(0)).clone(), a.clone());
|
|
assert_eq!((*deq.get(1)).clone(), b.clone());
|
|
assert_eq!((*deq.get(2)).clone(), c.clone());
|
|
assert_eq!((*deq.get(3)).clone(), d.clone());
|
|
}
|
|
|
|
#[test]
|
|
fn test_push_front_grow() {
|
|
let mut deq = RingBuf::new();
|
|
for i in range(0u, 66) {
|
|
deq.push_front(i);
|
|
}
|
|
assert_eq!(deq.len(), 66);
|
|
|
|
for i in range(0u, 66) {
|
|
assert_eq!(*deq.get(i), 65 - i);
|
|
}
|
|
|
|
let mut deq = RingBuf::new();
|
|
for i in range(0u, 66) {
|
|
deq.push_back(i);
|
|
}
|
|
|
|
for i in range(0u, 66) {
|
|
assert_eq!(*deq.get(i), i);
|
|
}
|
|
}
|
|
|
|
#[bench]
|
|
fn bench_new(b: &mut test::BenchHarness) {
|
|
b.iter(|| {
|
|
let _: RingBuf<u64> = RingBuf::new();
|
|
})
|
|
}
|
|
|
|
#[bench]
|
|
fn bench_push_back(b: &mut test::BenchHarness) {
|
|
let mut deq = RingBuf::new();
|
|
b.iter(|| {
|
|
deq.push_back(0);
|
|
})
|
|
}
|
|
|
|
#[bench]
|
|
fn bench_push_front(b: &mut test::BenchHarness) {
|
|
let mut deq = RingBuf::new();
|
|
b.iter(|| {
|
|
deq.push_front(0);
|
|
})
|
|
}
|
|
|
|
#[bench]
|
|
fn bench_grow(b: &mut test::BenchHarness) {
|
|
let mut deq = RingBuf::new();
|
|
b.iter(|| {
|
|
for _ in range(0, 65) {
|
|
deq.push_front(1);
|
|
}
|
|
})
|
|
}
|
|
|
|
#[deriving(Clone, Eq)]
|
|
enum Taggy {
|
|
One(int),
|
|
Two(int, int),
|
|
Three(int, int, int),
|
|
}
|
|
|
|
#[deriving(Clone, Eq)]
|
|
enum Taggypar<T> {
|
|
Onepar(int),
|
|
Twopar(int, int),
|
|
Threepar(int, int, int),
|
|
}
|
|
|
|
#[deriving(Clone, Eq)]
|
|
struct RecCy {
|
|
x: int,
|
|
y: int,
|
|
t: Taggy
|
|
}
|
|
|
|
#[test]
|
|
fn test_param_int() {
|
|
test_parameterized::<int>(5, 72, 64, 175);
|
|
}
|
|
|
|
#[test]
|
|
fn test_param_at_int() {
|
|
test_parameterized::<@int>(@5, @72, @64, @175);
|
|
}
|
|
|
|
#[test]
|
|
fn test_param_taggy() {
|
|
test_parameterized::<Taggy>(One(1), Two(1, 2), Three(1, 2, 3), Two(17, 42));
|
|
}
|
|
|
|
#[test]
|
|
fn test_param_taggypar() {
|
|
test_parameterized::<Taggypar<int>>(Onepar::<int>(1),
|
|
Twopar::<int>(1, 2),
|
|
Threepar::<int>(1, 2, 3),
|
|
Twopar::<int>(17, 42));
|
|
}
|
|
|
|
#[test]
|
|
fn test_param_reccy() {
|
|
let reccy1 = RecCy { x: 1, y: 2, t: One(1) };
|
|
let reccy2 = RecCy { x: 345, y: 2, t: Two(1, 2) };
|
|
let reccy3 = RecCy { x: 1, y: 777, t: Three(1, 2, 3) };
|
|
let reccy4 = RecCy { x: 19, y: 252, t: Two(17, 42) };
|
|
test_parameterized::<RecCy>(reccy1, reccy2, reccy3, reccy4);
|
|
}
|
|
|
|
#[test]
|
|
fn test_with_capacity() {
|
|
let mut d = RingBuf::with_capacity(0);
|
|
d.push_back(1);
|
|
assert_eq!(d.len(), 1);
|
|
let mut d = RingBuf::with_capacity(50);
|
|
d.push_back(1);
|
|
assert_eq!(d.len(), 1);
|
|
}
|
|
|
|
#[test]
|
|
fn test_reserve_exact() {
|
|
let mut d = RingBuf::new();
|
|
d.push_back(0u64);
|
|
d.reserve_exact(50);
|
|
assert_eq!(d.elts.capacity(), 50);
|
|
let mut d = RingBuf::new();
|
|
d.push_back(0u32);
|
|
d.reserve_exact(50);
|
|
assert_eq!(d.elts.capacity(), 50);
|
|
}
|
|
|
|
#[test]
|
|
fn test_reserve() {
|
|
let mut d = RingBuf::new();
|
|
d.push_back(0u64);
|
|
d.reserve(50);
|
|
assert_eq!(d.elts.capacity(), 64);
|
|
let mut d = RingBuf::new();
|
|
d.push_back(0u32);
|
|
d.reserve(50);
|
|
assert_eq!(d.elts.capacity(), 64);
|
|
}
|
|
|
|
#[test]
|
|
fn test_swap() {
|
|
let mut d: RingBuf<int> = range(0, 5).collect();
|
|
d.pop_front();
|
|
d.swap(0, 3);
|
|
assert_eq!(d.iter().map(|&x|x).collect::<~[int]>(), ~[4, 2, 3, 1]);
|
|
}
|
|
|
|
#[test]
|
|
fn test_iter() {
|
|
let mut d = RingBuf::new();
|
|
assert_eq!(d.iter().next(), None);
|
|
assert_eq!(d.iter().size_hint(), (0, Some(0)));
|
|
|
|
for i in range(0, 5) {
|
|
d.push_back(i);
|
|
}
|
|
assert_eq!(d.iter().collect::<~[&int]>(), ~[&0,&1,&2,&3,&4]);
|
|
|
|
for i in range(6, 9) {
|
|
d.push_front(i);
|
|
}
|
|
assert_eq!(d.iter().collect::<~[&int]>(), ~[&8,&7,&6,&0,&1,&2,&3,&4]);
|
|
|
|
let mut it = d.iter();
|
|
let mut len = d.len();
|
|
loop {
|
|
match it.next() {
|
|
None => break,
|
|
_ => { len -= 1; assert_eq!(it.size_hint(), (len, Some(len))) }
|
|
}
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
fn test_rev_iter() {
|
|
let mut d = RingBuf::new();
|
|
assert_eq!(d.rev_iter().next(), None);
|
|
|
|
for i in range(0, 5) {
|
|
d.push_back(i);
|
|
}
|
|
assert_eq!(d.rev_iter().collect::<~[&int]>(), ~[&4,&3,&2,&1,&0]);
|
|
|
|
for i in range(6, 9) {
|
|
d.push_front(i);
|
|
}
|
|
assert_eq!(d.rev_iter().collect::<~[&int]>(), ~[&4,&3,&2,&1,&0,&6,&7,&8]);
|
|
}
|
|
|
|
#[test]
|
|
fn test_mut_rev_iter_wrap() {
|
|
let mut d = RingBuf::with_capacity(3);
|
|
assert!(d.mut_rev_iter().next().is_none());
|
|
|
|
d.push_back(1);
|
|
d.push_back(2);
|
|
d.push_back(3);
|
|
assert_eq!(d.pop_front(), Some(1));
|
|
d.push_back(4);
|
|
|
|
assert_eq!(d.mut_rev_iter().map(|x| *x).collect::<~[int]>(),
|
|
~[4, 3, 2]);
|
|
}
|
|
|
|
#[test]
|
|
fn test_mut_iter() {
|
|
let mut d = RingBuf::new();
|
|
assert!(d.mut_iter().next().is_none());
|
|
|
|
for i in range(0u, 3) {
|
|
d.push_front(i);
|
|
}
|
|
|
|
for (i, elt) in d.mut_iter().enumerate() {
|
|
assert_eq!(*elt, 2 - i);
|
|
*elt = i;
|
|
}
|
|
|
|
{
|
|
let mut it = d.mut_iter();
|
|
assert_eq!(*it.next().unwrap(), 0);
|
|
assert_eq!(*it.next().unwrap(), 1);
|
|
assert_eq!(*it.next().unwrap(), 2);
|
|
assert!(it.next().is_none());
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
fn test_mut_rev_iter() {
|
|
let mut d = RingBuf::new();
|
|
assert!(d.mut_rev_iter().next().is_none());
|
|
|
|
for i in range(0u, 3) {
|
|
d.push_front(i);
|
|
}
|
|
|
|
for (i, elt) in d.mut_rev_iter().enumerate() {
|
|
assert_eq!(*elt, i);
|
|
*elt = i;
|
|
}
|
|
|
|
{
|
|
let mut it = d.mut_rev_iter();
|
|
assert_eq!(*it.next().unwrap(), 0);
|
|
assert_eq!(*it.next().unwrap(), 1);
|
|
assert_eq!(*it.next().unwrap(), 2);
|
|
assert!(it.next().is_none());
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
fn test_from_iterator() {
|
|
use std::iter;
|
|
let v = ~[1,2,3,4,5,6,7];
|
|
let deq: RingBuf<int> = v.iter().map(|&x| x).collect();
|
|
let u: ~[int] = deq.iter().map(|&x| x).collect();
|
|
assert_eq!(u, v);
|
|
|
|
let mut seq = iter::count(0u, 2).take(256);
|
|
let deq: RingBuf<uint> = seq.collect();
|
|
for (i, &x) in deq.iter().enumerate() {
|
|
assert_eq!(2*i, x);
|
|
}
|
|
assert_eq!(deq.len(), 256);
|
|
}
|
|
|
|
#[test]
|
|
fn test_clone() {
|
|
let mut d = RingBuf::new();
|
|
d.push_front(17);
|
|
d.push_front(42);
|
|
d.push_back(137);
|
|
d.push_back(137);
|
|
assert_eq!(d.len(), 4u);
|
|
let mut e = d.clone();
|
|
assert_eq!(e.len(), 4u);
|
|
while !d.is_empty() {
|
|
assert_eq!(d.pop_back(), e.pop_back());
|
|
}
|
|
assert_eq!(d.len(), 0u);
|
|
assert_eq!(e.len(), 0u);
|
|
}
|
|
|
|
#[test]
|
|
fn test_eq() {
|
|
let mut d = RingBuf::new();
|
|
assert_eq!(&d, &RingBuf::with_capacity(0));
|
|
d.push_front(137);
|
|
d.push_front(17);
|
|
d.push_front(42);
|
|
d.push_back(137);
|
|
let mut e = RingBuf::with_capacity(0);
|
|
e.push_back(42);
|
|
e.push_back(17);
|
|
e.push_back(137);
|
|
e.push_back(137);
|
|
assert_eq!(&e, &d);
|
|
e.pop_back();
|
|
e.push_back(0);
|
|
assert!(e != d);
|
|
e.clear();
|
|
assert_eq!(e, RingBuf::new());
|
|
}
|
|
}
|