rust/src/test/run-pass/iter-zip.rs
Ulrik Sverdrup ed5015939f Expand .zip() specialization to .map() and .cloned()
Implement .zip() specialization for Map and Cloned.

The crucial thing for transparent specialization is that we want to
preserve the potential side effects.

The simplest example is that in this code snippet:

`(0..6).map(f).zip((0..4).map(g)).count()`

`f` will be called five times, and `g` four times. The last time for `f`
is when the other iterator is at its end, so this element is unused.
This side effect can be preserved without disturbing code generation for
simple uses of `.map()`.

The `Zip::next_back()` case is even more complicated, unfortunately.
2016-10-17 10:58:21 +02:00

113 lines
3.0 KiB
Rust

// Copyright 2016 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
// Test that .zip() specialization preserves side effects
// in sideeffectful iterator adaptors.
use std::cell::Cell;
#[derive(Debug)]
struct CountClone(Cell<i32>);
fn count_clone() -> CountClone { CountClone(Cell::new(0)) }
impl PartialEq<i32> for CountClone {
fn eq(&self, rhs: &i32) -> bool {
self.0.get() == *rhs
}
}
impl Clone for CountClone {
fn clone(&self) -> Self {
let ret = CountClone(self.0.clone());
let n = self.0.get();
self.0.set(n + 1);
ret
}
}
fn test_zip_cloned_sideffectful() {
let xs = [count_clone(), count_clone(), count_clone(), count_clone()];
let ys = [count_clone(), count_clone()];
for _ in xs.iter().cloned().zip(ys.iter().cloned()) { }
assert_eq!(&xs, &[1, 1, 1, 0][..]);
assert_eq!(&ys, &[1, 1][..]);
let xs = [count_clone(), count_clone()];
let ys = [count_clone(), count_clone(), count_clone(), count_clone()];
for _ in xs.iter().cloned().zip(ys.iter().cloned()) { }
assert_eq!(&xs, &[1, 1][..]);
assert_eq!(&ys, &[1, 1, 0, 0][..]);
}
fn test_zip_map_sideffectful() {
let mut xs = [0; 6];
let mut ys = [0; 4];
for _ in xs.iter_mut().map(|x| *x += 1).zip(ys.iter_mut().map(|y| *y += 1)) { }
assert_eq!(&xs, &[1, 1, 1, 1, 1, 0]);
assert_eq!(&ys, &[1, 1, 1, 1]);
let mut xs = [0; 4];
let mut ys = [0; 6];
for _ in xs.iter_mut().map(|x| *x += 1).zip(ys.iter_mut().map(|y| *y += 1)) { }
assert_eq!(&xs, &[1, 1, 1, 1]);
assert_eq!(&ys, &[1, 1, 1, 1, 0, 0]);
}
fn test_zip_map_rev_sideffectful() {
let mut xs = [0; 6];
let mut ys = [0; 4];
{
let mut it = xs.iter_mut().map(|x| *x += 1).zip(ys.iter_mut().map(|y| *y += 1));
it.next_back();
}
assert_eq!(&xs, &[0, 0, 0, 1, 1, 1]);
assert_eq!(&ys, &[0, 0, 0, 1]);
let mut xs = [0; 6];
let mut ys = [0; 4];
{
let mut it = xs.iter_mut().map(|x| *x += 1).zip(ys.iter_mut().map(|y| *y += 1));
(&mut it).take(5).count();
it.next_back();
}
assert_eq!(&xs, &[1, 1, 1, 1, 1, 1]);
assert_eq!(&ys, &[1, 1, 1, 1]);
}
fn test_zip_nested_sideffectful() {
let mut xs = [0; 6];
let ys = [0; 4];
{
// test that it has the side effect nested inside enumerate
let it = xs.iter_mut().map(|x| *x = 1).enumerate().zip(&ys);
it.count();
}
assert_eq!(&xs, &[1, 1, 1, 1, 1, 0]);
}
fn main() {
test_zip_cloned_sideffectful();
test_zip_map_sideffectful();
test_zip_map_rev_sideffectful();
test_zip_nested_sideffectful();
}