rust/crates/ide-ssr/src/tests.rs

1399 lines
39 KiB
Rust

use expect_test::{expect, Expect};
use ide_db::{
base_db::{salsa::Durability, FileId, FilePosition, FileRange, SourceDatabaseExt},
FxHashSet,
};
use test_utils::RangeOrOffset;
use triomphe::Arc;
use crate::{MatchFinder, SsrRule};
fn parse_error_text(query: &str) -> String {
format!("{}", query.parse::<SsrRule>().unwrap_err())
}
#[test]
fn parser_empty_query() {
assert_eq!(parse_error_text(""), "Parse error: Cannot find delimiter `==>>`");
}
#[test]
fn parser_no_delimiter() {
assert_eq!(parse_error_text("foo()"), "Parse error: Cannot find delimiter `==>>`");
}
#[test]
fn parser_two_delimiters() {
assert_eq!(
parse_error_text("foo() ==>> a ==>> b "),
"Parse error: More than one delimiter found"
);
}
#[test]
fn parser_repeated_name() {
assert_eq!(
parse_error_text("foo($a, $a) ==>>"),
"Parse error: Placeholder `$a` repeats more than once"
);
}
#[test]
fn parser_invalid_pattern() {
assert_eq!(
parse_error_text(" ==>> ()"),
"Parse error: Not a valid Rust expression, type, item, path or pattern"
);
}
#[test]
fn parser_invalid_template() {
assert_eq!(
parse_error_text("() ==>> )"),
"Parse error: Not a valid Rust expression, type, item, path or pattern"
);
}
#[test]
fn parser_undefined_placeholder_in_replacement() {
assert_eq!(
parse_error_text("42 ==>> $a"),
"Parse error: Replacement contains undefined placeholders: $a"
);
}
/// `code` may optionally contain a cursor marker `$0`. If it doesn't, then the position will be
/// the start of the file. If there's a second cursor marker, then we'll return a single range.
pub(crate) fn single_file(code: &str) -> (ide_db::RootDatabase, FilePosition, Vec<FileRange>) {
use ide_db::symbol_index::SymbolsDatabase;
use test_fixture::{WithFixture, WORKSPACE};
let (mut db, file_id, range_or_offset) = if code.contains(test_utils::CURSOR_MARKER) {
ide_db::RootDatabase::with_range_or_offset(code)
} else {
let (db, file_id) = ide_db::RootDatabase::with_single_file(code);
(db, file_id, RangeOrOffset::Offset(0.into()))
};
let selections;
let position;
match range_or_offset {
RangeOrOffset::Range(range) => {
position = FilePosition { file_id, offset: range.start() };
selections = vec![FileRange { file_id, range }];
}
RangeOrOffset::Offset(offset) => {
position = FilePosition { file_id, offset };
selections = vec![];
}
}
let mut local_roots = FxHashSet::default();
local_roots.insert(WORKSPACE);
db.set_local_roots_with_durability(Arc::new(local_roots), Durability::HIGH);
(db, position, selections)
}
fn assert_ssr_transform(rule: &str, input: &str, expected: Expect) {
assert_ssr_transforms(&[rule], input, expected);
}
fn assert_ssr_transforms(rules: &[&str], input: &str, expected: Expect) {
let (db, position, selections) = single_file(input);
let mut match_finder = MatchFinder::in_context(&db, position, selections).unwrap();
for rule in rules {
let rule: SsrRule = rule.parse().unwrap();
match_finder.add_rule(rule).unwrap();
}
let edits = match_finder.edits();
if edits.is_empty() {
panic!("No edits were made");
}
// Note, db.file_text is not necessarily the same as `input`, since fixture parsing alters
// stuff.
let mut actual = db.file_text(position.file_id).to_string();
edits[&position.file_id].apply(&mut actual);
expected.assert_eq(&actual);
}
#[allow(clippy::print_stdout)]
fn print_match_debug_info(match_finder: &MatchFinder<'_>, file_id: FileId, snippet: &str) {
let debug_info = match_finder.debug_where_text_equal(file_id, snippet);
println!(
"Match debug info: {} nodes had text exactly equal to '{}'",
debug_info.len(),
snippet
);
for (index, d) in debug_info.iter().enumerate() {
println!("Node #{index}\n{d:#?}\n");
}
}
fn assert_matches(pattern: &str, code: &str, expected: &[&str]) {
let (db, position, selections) = single_file(code);
let mut match_finder = MatchFinder::in_context(&db, position, selections).unwrap();
match_finder.add_search_pattern(pattern.parse().unwrap()).unwrap();
let matched_strings: Vec<String> =
match_finder.matches().flattened().matches.iter().map(|m| m.matched_text()).collect();
if matched_strings != expected && !expected.is_empty() {
print_match_debug_info(&match_finder, position.file_id, expected[0]);
}
assert_eq!(matched_strings, expected);
}
fn assert_no_match(pattern: &str, code: &str) {
let (db, position, selections) = single_file(code);
let mut match_finder = MatchFinder::in_context(&db, position, selections).unwrap();
match_finder.add_search_pattern(pattern.parse().unwrap()).unwrap();
let matches = match_finder.matches().flattened().matches;
if !matches.is_empty() {
print_match_debug_info(&match_finder, position.file_id, &matches[0].matched_text());
panic!("Got {} matches when we expected none: {matches:#?}", matches.len());
}
}
fn assert_match_failure_reason(pattern: &str, code: &str, snippet: &str, expected_reason: &str) {
let (db, position, selections) = single_file(code);
let mut match_finder = MatchFinder::in_context(&db, position, selections).unwrap();
match_finder.add_search_pattern(pattern.parse().unwrap()).unwrap();
let mut reasons = Vec::new();
for d in match_finder.debug_where_text_equal(position.file_id, snippet) {
if let Some(reason) = d.match_failure_reason() {
reasons.push(reason.to_owned());
}
}
assert_eq!(reasons, vec![expected_reason]);
}
#[test]
fn ssr_let_stmt_in_macro_match() {
assert_matches(
"let a = 0",
r#"
macro_rules! m1 { ($a:stmt) => {$a}; }
fn f() {m1!{ let a = 0 };}"#,
// FIXME: Whitespace is not part of the matched block
&["leta=0"],
);
}
#[test]
fn ssr_let_stmt_in_fn_match() {
assert_matches("let $a = 10;", "fn main() { let x = 10; x }", &["let x = 10;"]);
assert_matches("let $a = $b;", "fn main() { let x = 10; x }", &["let x = 10;"]);
}
#[test]
fn ssr_block_expr_match() {
assert_matches("{ let $a = $b; }", "fn main() { let x = 10; }", &["{ let x = 10; }"]);
assert_matches("{ let $a = $b; $c }", "fn main() { let x = 10; x }", &["{ let x = 10; x }"]);
}
#[test]
fn ssr_let_stmt_replace() {
// Pattern and template with trailing semicolon
assert_ssr_transform(
"let $a = $b; ==>> let $a = 11;",
"fn main() { let x = 10; x }",
expect![["fn main() { let x = 11; x }"]],
);
}
#[test]
fn ssr_let_stmt_replace_expr() {
// Trailing semicolon should be dropped from the new expression
assert_ssr_transform(
"let $a = $b; ==>> $b",
"fn main() { let x = 10; }",
expect![["fn main() { 10 }"]],
);
}
#[test]
fn ssr_blockexpr_replace_stmt_with_stmt() {
assert_ssr_transform(
"if $a() {$b;} ==>> $b;",
"{
if foo() {
bar();
}
Ok(())
}",
expect![[r#"{
bar();
Ok(())
}"#]],
);
}
#[test]
fn ssr_blockexpr_match_trailing_expr() {
assert_matches(
"if $a() {$b;}",
"{
if foo() {
bar();
}
}",
&["if foo() {
bar();
}"],
);
}
#[test]
fn ssr_blockexpr_replace_trailing_expr_with_stmt() {
assert_ssr_transform(
"if $a() {$b;} ==>> $b;",
"{
if foo() {
bar();
}
}",
expect![["{
bar();
}"]],
);
}
#[test]
fn ssr_function_to_method() {
assert_ssr_transform(
"my_function($a, $b) ==>> ($a).my_method($b)",
"fn my_function() {} fn main() { loop { my_function( other_func(x, y), z + w) } }",
expect![["fn my_function() {} fn main() { loop { (other_func(x, y)).my_method(z + w) } }"]],
)
}
#[test]
fn ssr_nested_function() {
assert_ssr_transform(
"foo($a, $b, $c) ==>> bar($c, baz($a, $b))",
r#"
//- /lib.rs crate:foo
fn foo() {}
fn bar() {}
fn baz() {}
fn main { foo (x + value.method(b), x+y-z, true && false) }
"#,
expect![[r#"
fn foo() {}
fn bar() {}
fn baz() {}
fn main { bar(true && false, baz(x + value.method(b), x+y-z)) }
"#]],
)
}
#[test]
fn ssr_expected_spacing() {
assert_ssr_transform(
"foo($x) + bar() ==>> bar($x)",
"fn foo() {} fn bar() {} fn main() { foo(5) + bar() }",
expect![["fn foo() {} fn bar() {} fn main() { bar(5) }"]],
);
}
#[test]
fn ssr_with_extra_space() {
assert_ssr_transform(
"foo($x ) + bar() ==>> bar($x)",
"fn foo() {} fn bar() {} fn main() { foo( 5 ) +bar( ) }",
expect![["fn foo() {} fn bar() {} fn main() { bar(5) }"]],
);
}
#[test]
fn ssr_keeps_nested_comment() {
assert_ssr_transform(
"foo($x) ==>> bar($x)",
"fn foo() {} fn bar() {} fn main() { foo(other(5 /* using 5 */)) }",
expect![["fn foo() {} fn bar() {} fn main() { bar(other(5 /* using 5 */)) }"]],
)
}
#[test]
fn ssr_keeps_comment() {
assert_ssr_transform(
"foo($x) ==>> bar($x)",
"fn foo() {} fn bar() {} fn main() { foo(5 /* using 5 */) }",
expect![["fn foo() {} fn bar() {} fn main() { bar(5)/* using 5 */ }"]],
)
}
#[test]
fn ssr_struct_lit() {
assert_ssr_transform(
"Foo{a: $a, b: $b} ==>> Foo::new($a, $b)",
r#"
struct Foo() {}
impl Foo { fn new() {} }
fn main() { Foo{b:2, a:1} }
"#,
expect![[r#"
struct Foo() {}
impl Foo { fn new() {} }
fn main() { Foo::new(1, 2) }
"#]],
)
}
#[test]
fn ssr_struct_def() {
assert_ssr_transform(
"struct Foo { $f: $t } ==>> struct Foo($t);",
r#"struct Foo { field: i32 }"#,
expect![[r#"struct Foo(i32);"#]],
)
}
#[test]
fn ignores_whitespace() {
assert_matches("1+2", "fn f() -> i32 {1 + 2}", &["1 + 2"]);
assert_matches("1 + 2", "fn f() -> i32 {1+2}", &["1+2"]);
}
#[test]
fn no_match() {
assert_no_match("1 + 3", "fn f() -> i32 {1 + 2}");
}
#[test]
fn match_fn_definition() {
assert_matches("fn $a($b: $t) {$c}", "fn f(a: i32) {bar()}", &["fn f(a: i32) {bar()}"]);
}
#[test]
fn match_struct_definition() {
let code = r#"
struct Option<T> {}
struct Bar {}
struct Foo {name: Option<String>}"#;
assert_matches("struct $n {$f: Option<String>}", code, &["struct Foo {name: Option<String>}"]);
}
#[test]
fn match_expr() {
let code = r#"
fn foo() {}
fn f() -> i32 {foo(40 + 2, 42)}"#;
assert_matches("foo($a, $b)", code, &["foo(40 + 2, 42)"]);
assert_no_match("foo($a, $b, $c)", code);
assert_no_match("foo($a)", code);
}
#[test]
fn match_nested_method_calls() {
assert_matches(
"$a.z().z().z()",
"fn f() {h().i().j().z().z().z().d().e()}",
&["h().i().j().z().z().z()"],
);
}
// Make sure that our node matching semantics don't differ within macro calls.
#[test]
fn match_nested_method_calls_with_macro_call() {
assert_matches(
"$a.z().z().z()",
r#"
macro_rules! m1 { ($a:expr) => {$a}; }
fn f() {m1!(h().i().j().z().z().z().d().e())}"#,
&["h().i().j().z().z().z()"],
);
}
#[test]
fn match_complex_expr() {
let code = r#"
fn foo() {} fn bar() {}
fn f() -> i32 {foo(bar(40, 2), 42)}"#;
assert_matches("foo($a, $b)", code, &["foo(bar(40, 2), 42)"]);
assert_no_match("foo($a, $b, $c)", code);
assert_no_match("foo($a)", code);
assert_matches("bar($a, $b)", code, &["bar(40, 2)"]);
}
// Trailing commas in the code should be ignored.
#[test]
fn match_with_trailing_commas() {
// Code has comma, pattern doesn't.
assert_matches("foo($a, $b)", "fn foo() {} fn f() {foo(1, 2,);}", &["foo(1, 2,)"]);
assert_matches("Foo{$a, $b}", "struct Foo {} fn f() {Foo{1, 2,};}", &["Foo{1, 2,}"]);
// Pattern has comma, code doesn't.
assert_matches("foo($a, $b,)", "fn foo() {} fn f() {foo(1, 2);}", &["foo(1, 2)"]);
assert_matches("Foo{$a, $b,}", "struct Foo {} fn f() {Foo{1, 2};}", &["Foo{1, 2}"]);
}
#[test]
fn match_type() {
assert_matches("i32", "fn f() -> i32 {1 + 2}", &["i32"]);
assert_matches(
"Option<$a>",
"struct Option<T> {} fn f() -> Option<i32> {42}",
&["Option<i32>"],
);
assert_no_match(
"Option<$a>",
"struct Option<T> {} struct Result<T, E> {} fn f() -> Result<i32, ()> {42}",
);
}
#[test]
fn match_struct_instantiation() {
let code = r#"
struct Foo {bar: i32, baz: i32}
fn f() {Foo {bar: 1, baz: 2}}"#;
assert_matches("Foo {bar: 1, baz: 2}", code, &["Foo {bar: 1, baz: 2}"]);
// Now with placeholders for all parts of the struct.
assert_matches("Foo {$a: $b, $c: $d}", code, &["Foo {bar: 1, baz: 2}"]);
assert_matches("Foo {}", "struct Foo {} fn f() {Foo {}}", &["Foo {}"]);
}
#[test]
fn match_path() {
let code = r#"
mod foo {
pub fn bar() {}
}
fn f() {foo::bar(42)}"#;
assert_matches("foo::bar", code, &["foo::bar"]);
assert_matches("$a::bar", code, &["foo::bar"]);
assert_matches("foo::$b", code, &["foo::bar"]);
}
#[test]
fn match_pattern() {
assert_matches("Some($a)", "struct Some(); fn f() {if let Some(x) = foo() {}}", &["Some(x)"]);
}
// If our pattern has a full path, e.g. a::b::c() and the code has c(), but c resolves to
// a::b::c, then we should match.
#[test]
fn match_fully_qualified_fn_path() {
let code = r#"
mod a {
pub mod b {
pub fn c(_: i32) {}
}
}
use a::b::c;
fn f1() {
c(42);
}
"#;
assert_matches("a::b::c($a)", code, &["c(42)"]);
}
#[test]
fn match_resolved_type_name() {
let code = r#"
mod m1 {
pub mod m2 {
pub trait Foo<T> {}
}
}
mod m3 {
trait Foo<T> {}
fn f1(f: Option<&dyn Foo<bool>>) {}
}
mod m4 {
use crate::m1::m2::Foo;
fn f1(f: Option<&dyn Foo<i32>>) {}
}
"#;
assert_matches("m1::m2::Foo<$t>", code, &["Foo<i32>"]);
}
#[test]
fn type_arguments_within_path() {
cov_mark::check!(type_arguments_within_path);
let code = r#"
mod foo {
pub struct Bar<T> {t: T}
impl<T> Bar<T> {
pub fn baz() {}
}
}
fn f1() {foo::Bar::<i32>::baz();}
"#;
assert_no_match("foo::Bar::<i64>::baz()", code);
assert_matches("foo::Bar::<i32>::baz()", code, &["foo::Bar::<i32>::baz()"]);
}
#[test]
fn literal_constraint() {
cov_mark::check!(literal_constraint);
let code = r#"
enum Option<T> { Some(T), None }
use Option::Some;
fn f1() {
let x1 = Some(42);
let x2 = Some("foo");
let x3 = Some(x1);
let x4 = Some(40 + 2);
let x5 = Some(true);
}
"#;
assert_matches("Some(${a:kind(literal)})", code, &["Some(42)", "Some(\"foo\")", "Some(true)"]);
assert_matches("Some(${a:not(kind(literal))})", code, &["Some(x1)", "Some(40 + 2)"]);
}
#[test]
fn match_reordered_struct_instantiation() {
assert_matches(
"Foo {aa: 1, b: 2, ccc: 3}",
"struct Foo {} fn f() {Foo {b: 2, ccc: 3, aa: 1}}",
&["Foo {b: 2, ccc: 3, aa: 1}"],
);
assert_no_match("Foo {a: 1}", "struct Foo {} fn f() {Foo {b: 1}}");
assert_no_match("Foo {a: 1}", "struct Foo {} fn f() {Foo {a: 2}}");
assert_no_match("Foo {a: 1, b: 2}", "struct Foo {} fn f() {Foo {a: 1}}");
assert_no_match("Foo {a: 1, b: 2}", "struct Foo {} fn f() {Foo {b: 2}}");
assert_no_match("Foo {a: 1, }", "struct Foo {} fn f() {Foo {a: 1, b: 2}}");
assert_no_match("Foo {a: 1, z: 9}", "struct Foo {} fn f() {Foo {a: 1}}");
}
#[test]
fn match_macro_invocation() {
assert_matches(
"foo!($a)",
"macro_rules! foo {() => {}} fn() {foo(foo!(foo()))}",
&["foo!(foo())"],
);
assert_matches(
"foo!(41, $a, 43)",
"macro_rules! foo {() => {}} fn() {foo!(41, 42, 43)}",
&["foo!(41, 42, 43)"],
);
assert_no_match("foo!(50, $a, 43)", "macro_rules! foo {() => {}} fn() {foo!(41, 42, 43}");
assert_no_match("foo!(41, $a, 50)", "macro_rules! foo {() => {}} fn() {foo!(41, 42, 43}");
assert_matches(
"foo!($a())",
"macro_rules! foo {() => {}} fn() {foo!(bar())}",
&["foo!(bar())"],
);
}
// When matching within a macro expansion, we only allow matches of nodes that originated from
// the macro call, not from the macro definition.
#[test]
fn no_match_expression_from_macro() {
assert_no_match(
"$a.clone()",
r#"
macro_rules! m1 {
() => {42.clone()}
}
fn f1() {m1!()}
"#,
);
}
// We definitely don't want to allow matching of an expression that part originates from the
// macro call `42` and part from the macro definition `.clone()`.
#[test]
fn no_match_split_expression() {
assert_no_match(
"$a.clone()",
r#"
macro_rules! m1 {
($x:expr) => {$x.clone()}
}
fn f1() {m1!(42)}
"#,
);
}
#[test]
fn replace_function_call() {
// This test also makes sure that we ignore empty-ranges.
assert_ssr_transform(
"foo() ==>> bar()",
"fn foo() {$0$0} fn bar() {} fn f1() {foo(); foo();}",
expect![["fn foo() {} fn bar() {} fn f1() {bar(); bar();}"]],
);
}
#[test]
fn replace_function_call_with_placeholders() {
assert_ssr_transform(
"foo($a, $b) ==>> bar($b, $a)",
"fn foo() {} fn bar() {} fn f1() {foo(5, 42)}",
expect![["fn foo() {} fn bar() {} fn f1() {bar(42, 5)}"]],
);
}
#[test]
fn replace_nested_function_calls() {
assert_ssr_transform(
"foo($a) ==>> bar($a)",
"fn foo() {} fn bar() {} fn f1() {foo(foo(42))}",
expect![["fn foo() {} fn bar() {} fn f1() {bar(bar(42))}"]],
);
}
#[test]
fn replace_associated_function_call() {
assert_ssr_transform(
"Foo::new() ==>> Bar::new()",
r#"
struct Foo {}
impl Foo { fn new() {} }
struct Bar {}
impl Bar { fn new() {} }
fn f1() {Foo::new();}
"#,
expect![[r#"
struct Foo {}
impl Foo { fn new() {} }
struct Bar {}
impl Bar { fn new() {} }
fn f1() {Bar::new();}
"#]],
);
}
#[test]
fn replace_associated_trait_default_function_call() {
cov_mark::check!(replace_associated_trait_default_function_call);
assert_ssr_transform(
"Bar2::foo() ==>> Bar2::foo2()",
r#"
trait Foo { fn foo() {} }
pub struct Bar {}
impl Foo for Bar {}
pub struct Bar2 {}
impl Foo for Bar2 {}
impl Bar2 { fn foo2() {} }
fn main() {
Bar::foo();
Bar2::foo();
}
"#,
expect![[r#"
trait Foo { fn foo() {} }
pub struct Bar {}
impl Foo for Bar {}
pub struct Bar2 {}
impl Foo for Bar2 {}
impl Bar2 { fn foo2() {} }
fn main() {
Bar::foo();
Bar2::foo2();
}
"#]],
);
}
#[test]
fn replace_associated_trait_constant() {
cov_mark::check!(replace_associated_trait_constant);
assert_ssr_transform(
"Bar2::VALUE ==>> Bar2::VALUE_2222",
r#"
trait Foo { const VALUE: i32; const VALUE_2222: i32; }
pub struct Bar {}
impl Foo for Bar { const VALUE: i32 = 1; const VALUE_2222: i32 = 2; }
pub struct Bar2 {}
impl Foo for Bar2 { const VALUE: i32 = 1; const VALUE_2222: i32 = 2; }
impl Bar2 { fn foo2() {} }
fn main() {
Bar::VALUE;
Bar2::VALUE;
}
"#,
expect![[r#"
trait Foo { const VALUE: i32; const VALUE_2222: i32; }
pub struct Bar {}
impl Foo for Bar { const VALUE: i32 = 1; const VALUE_2222: i32 = 2; }
pub struct Bar2 {}
impl Foo for Bar2 { const VALUE: i32 = 1; const VALUE_2222: i32 = 2; }
impl Bar2 { fn foo2() {} }
fn main() {
Bar::VALUE;
Bar2::VALUE_2222;
}
"#]],
);
}
#[test]
fn replace_path_in_different_contexts() {
// Note the $0 inside module a::b which marks the point where the rule is interpreted. We
// replace foo with bar, but both need different path qualifiers in different contexts. In f4,
// foo is unqualified because of a use statement, however the replacement needs to be fully
// qualified.
assert_ssr_transform(
"c::foo() ==>> c::bar()",
r#"
mod a {
pub mod b {$0
pub mod c {
pub fn foo() {}
pub fn bar() {}
fn f1() { foo() }
}
fn f2() { c::foo() }
}
fn f3() { b::c::foo() }
}
use a::b::c::foo;
fn f4() { foo() }
"#,
expect![[r#"
mod a {
pub mod b {
pub mod c {
pub fn foo() {}
pub fn bar() {}
fn f1() { bar() }
}
fn f2() { c::bar() }
}
fn f3() { b::c::bar() }
}
use a::b::c::foo;
fn f4() { a::b::c::bar() }
"#]],
);
}
#[test]
fn replace_associated_function_with_generics() {
assert_ssr_transform(
"c::Foo::<$a>::new() ==>> d::Bar::<$a>::default()",
r#"
mod c {
pub struct Foo<T> {v: T}
impl<T> Foo<T> { pub fn new() {} }
fn f1() {
Foo::<i32>::new();
}
}
mod d {
pub struct Bar<T> {v: T}
impl<T> Bar<T> { pub fn default() {} }
fn f1() {
super::c::Foo::<i32>::new();
}
}
"#,
expect![[r#"
mod c {
pub struct Foo<T> {v: T}
impl<T> Foo<T> { pub fn new() {} }
fn f1() {
crate::d::Bar::<i32>::default();
}
}
mod d {
pub struct Bar<T> {v: T}
impl<T> Bar<T> { pub fn default() {} }
fn f1() {
Bar::<i32>::default();
}
}
"#]],
);
}
#[test]
fn replace_type() {
assert_ssr_transform(
"Result<(), $a> ==>> Option<$a>",
"struct Result<T, E> {} struct Option<T> {} fn f1() -> Result<(), Vec<Error>> {foo()}",
expect![[
"struct Result<T, E> {} struct Option<T> {} fn f1() -> Option<Vec<Error>> {foo()}"
]],
);
assert_ssr_transform(
"dyn Trait<$a> ==>> DynTrait<$a>",
r#"
trait Trait<T> {}
struct DynTrait<T> {}
fn f1() -> dyn Trait<Vec<Error>> {foo()}
"#,
expect![[r#"
trait Trait<T> {}
struct DynTrait<T> {}
fn f1() -> DynTrait<Vec<Error>> {foo()}
"#]],
);
}
#[test]
fn replace_macro_invocations() {
assert_ssr_transform(
"try!($a) ==>> $a?",
"macro_rules! try {() => {}} fn f1() -> Result<(), E> {bar(try!(foo()));}",
expect![["macro_rules! try {() => {}} fn f1() -> Result<(), E> {bar(foo()?);}"]],
);
// FIXME: Figure out why this doesn't work anymore
// assert_ssr_transform(
// "foo!($a($b)) ==>> foo($b, $a)",
// "macro_rules! foo {() => {}} fn f1() {foo!(abc(def() + 2));}",
// expect![["macro_rules! foo {() => {}} fn f1() {foo(def() + 2, abc);}"]],
// );
}
#[test]
fn replace_binary_op() {
assert_ssr_transform(
"$a + $b ==>> $b + $a",
"fn f() {2 * 3 + 4 * 5}",
expect![["fn f() {4 * 5 + 2 * 3}"]],
);
assert_ssr_transform(
"$a + $b ==>> $b + $a",
"fn f() {1 + 2 + 3 + 4}",
expect![[r#"fn f() {4 + (3 + (2 + 1))}"#]],
);
}
#[test]
fn match_binary_op() {
assert_matches("$a + $b", "fn f() {1 + 2 + 3 + 4}", &["1 + 2", "1 + 2 + 3", "1 + 2 + 3 + 4"]);
}
#[test]
fn multiple_rules() {
assert_ssr_transforms(
&["$a + 1 ==>> add_one($a)", "$a + $b ==>> add($a, $b)"],
"fn add() {} fn add_one() {} fn f() -> i32 {3 + 2 + 1}",
expect![["fn add() {} fn add_one() {} fn f() -> i32 {add_one(add(3, 2))}"]],
)
}
#[test]
fn multiple_rules_with_nested_matches() {
assert_ssr_transforms(
&["foo1($a) ==>> bar1($a)", "foo2($a) ==>> bar2($a)"],
r#"
fn foo1() {} fn foo2() {} fn bar1() {} fn bar2() {}
fn f() {foo1(foo2(foo1(foo2(foo1(42)))))}
"#,
expect![[r#"
fn foo1() {} fn foo2() {} fn bar1() {} fn bar2() {}
fn f() {bar1(bar2(bar1(bar2(bar1(42)))))}
"#]],
)
}
#[test]
fn match_within_macro_invocation() {
let code = r#"
macro_rules! foo {
($a:stmt; $b:expr) => {
$b
};
}
struct A {}
impl A {
fn bar() {}
}
fn f1() {
let aaa = A {};
foo!(macro_ignores_this(); aaa.bar());
}
"#;
assert_matches("$a.bar()", code, &["aaa.bar()"]);
}
#[test]
fn replace_within_macro_expansion() {
assert_ssr_transform(
"$a.foo() ==>> bar($a)",
r#"
macro_rules! macro1 {
($a:expr) => {$a}
}
fn bar() {}
fn f() {macro1!(5.x().foo().o2())}
"#,
expect![[r#"
macro_rules! macro1 {
($a:expr) => {$a}
}
fn bar() {}
fn f() {macro1!(bar(5.x()).o2())}
"#]],
)
}
#[test]
fn replace_outside_and_within_macro_expansion() {
assert_ssr_transform(
"foo($a) ==>> bar($a)",
r#"
fn foo() {} fn bar() {}
macro_rules! macro1 {
($a:expr) => {$a}
}
fn f() {foo(foo(macro1!(foo(foo(42)))))}
"#,
expect![[r#"
fn foo() {} fn bar() {}
macro_rules! macro1 {
($a:expr) => {$a}
}
fn f() {bar(bar(macro1!(bar(bar(42)))))}
"#]],
)
}
#[test]
fn preserves_whitespace_within_macro_expansion() {
assert_ssr_transform(
"$a + $b ==>> $b - $a",
r#"
macro_rules! macro1 {
($a:expr) => {$a}
}
fn f() {macro1!(1 * 2 + 3 + 4)}
"#,
expect![[r#"
macro_rules! macro1 {
($a:expr) => {$a}
}
fn f() {macro1!(4 - (3 - 1 * 2))}
"#]],
)
}
#[test]
fn add_parenthesis_when_necessary() {
assert_ssr_transform(
"foo($a) ==>> $a.to_string()",
r#"
fn foo(_: i32) {}
fn bar3(v: i32) {
foo(1 + 2);
foo(-v);
}
"#,
expect![[r#"
fn foo(_: i32) {}
fn bar3(v: i32) {
(1 + 2).to_string();
(-v).to_string();
}
"#]],
)
}
#[test]
fn match_failure_reasons() {
let code = r#"
fn bar() {}
macro_rules! foo {
($a:expr) => {
1 + $a + 2
};
}
fn f1() {
bar(1, 2);
foo!(5 + 43.to_string() + 5);
}
"#;
assert_match_failure_reason(
"bar($a, 3)",
code,
"bar(1, 2)",
r#"Pattern wanted token '3' (INT_NUMBER), but code had token '2' (INT_NUMBER)"#,
);
assert_match_failure_reason(
"42.to_string()",
code,
"43.to_string()",
r#"Pattern wanted token '42' (INT_NUMBER), but code had token '43' (INT_NUMBER)"#,
);
}
#[test]
fn overlapping_possible_matches() {
// There are three possible matches here, however the middle one, `foo(foo(foo(42)))` shouldn't
// match because it overlaps with the outer match. The inner match is permitted since it's is
// contained entirely within the placeholder of the outer match.
assert_matches(
"foo(foo($a))",
"fn foo() {} fn main() {foo(foo(foo(foo(42))))}",
&["foo(foo(42))", "foo(foo(foo(foo(42))))"],
);
}
#[test]
fn use_declaration_with_braces() {
// It would be OK for a path rule to match and alter a use declaration. We shouldn't mess it up
// though. In particular, we must not change `use foo::{baz, bar}` to `use foo::{baz,
// foo2::bar2}`.
cov_mark::check!(use_declaration_with_braces);
assert_ssr_transform(
"foo::bar ==>> foo2::bar2",
r#"
mod foo { pub fn bar() {} pub fn baz() {} }
mod foo2 { pub fn bar2() {} }
use foo::{baz, bar};
fn main() { bar() }
"#,
expect![["
mod foo { pub fn bar() {} pub fn baz() {} }
mod foo2 { pub fn bar2() {} }
use foo::{baz, bar};
fn main() { foo2::bar2() }
"]],
)
}
#[test]
fn ufcs_matches_method_call() {
let code = r#"
struct Foo {}
impl Foo {
fn new(_: i32) -> Foo { Foo {} }
fn do_stuff(&self, _: i32) {}
}
struct Bar {}
impl Bar {
fn new(_: i32) -> Bar { Bar {} }
fn do_stuff(&self, v: i32) {}
}
fn main() {
let b = Bar {};
let f = Foo {};
b.do_stuff(1);
f.do_stuff(2);
Foo::new(4).do_stuff(3);
// Too many / too few args - should never match
f.do_stuff(2, 10);
f.do_stuff();
}
"#;
assert_matches("Foo::do_stuff($a, $b)", code, &["f.do_stuff(2)", "Foo::new(4).do_stuff(3)"]);
// The arguments needs special handling in the case of a function call matching a method call
// and the first argument is different.
assert_matches("Foo::do_stuff($a, 2)", code, &["f.do_stuff(2)"]);
assert_matches("Foo::do_stuff(Foo::new(4), $b)", code, &["Foo::new(4).do_stuff(3)"]);
assert_ssr_transform(
"Foo::do_stuff(Foo::new($a), $b) ==>> Bar::new($b).do_stuff($a)",
code,
expect![[r#"
struct Foo {}
impl Foo {
fn new(_: i32) -> Foo { Foo {} }
fn do_stuff(&self, _: i32) {}
}
struct Bar {}
impl Bar {
fn new(_: i32) -> Bar { Bar {} }
fn do_stuff(&self, v: i32) {}
}
fn main() {
let b = Bar {};
let f = Foo {};
b.do_stuff(1);
f.do_stuff(2);
Bar::new(3).do_stuff(4);
// Too many / too few args - should never match
f.do_stuff(2, 10);
f.do_stuff();
}
"#]],
);
}
#[test]
fn pattern_is_a_single_segment_path() {
cov_mark::check!(pattern_is_a_single_segment_path);
// The first function should not be altered because the `foo` in scope at the cursor position is
// a different `foo`. This case is special because "foo" can be parsed as a pattern (IDENT_PAT ->
// NAME -> IDENT), which contains no path. If we're not careful we'll end up matching the `foo`
// in `let foo` from the first function. Whether we should match the `let foo` in the second
// function is less clear. At the moment, we don't. Doing so sounds like a rename operation,
// which isn't really what SSR is for, especially since the replacement `bar` must be able to be
// resolved, which means if we rename `foo` we'll get a name collision.
assert_ssr_transform(
"foo ==>> bar",
r#"
fn f1() -> i32 {
let foo = 1;
let bar = 2;
foo
}
fn f1() -> i32 {
let foo = 1;
let bar = 2;
foo$0
}
"#,
expect![[r#"
fn f1() -> i32 {
let foo = 1;
let bar = 2;
foo
}
fn f1() -> i32 {
let foo = 1;
let bar = 2;
bar
}
"#]],
);
}
#[test]
fn replace_local_variable_reference() {
// The pattern references a local variable `foo` in the block containing the cursor. We should
// only replace references to this variable `foo`, not other variables that just happen to have
// the same name.
cov_mark::check!(cursor_after_semicolon);
assert_ssr_transform(
"foo + $a ==>> $a - foo",
r#"
fn bar1() -> i32 {
let mut res = 0;
let foo = 5;
res += foo + 1;
let foo = 10;
res += foo + 2;$0
res += foo + 3;
let foo = 15;
res += foo + 4;
res
}
"#,
expect![[r#"
fn bar1() -> i32 {
let mut res = 0;
let foo = 5;
res += foo + 1;
let foo = 10;
res += 2 - foo;
res += 3 - foo;
let foo = 15;
res += foo + 4;
res
}
"#]],
)
}
#[test]
fn replace_path_within_selection() {
assert_ssr_transform(
"foo ==>> bar",
r#"
fn main() {
let foo = 41;
let bar = 42;
do_stuff(foo);
do_stuff(foo);$0
do_stuff(foo);
do_stuff(foo);$0
do_stuff(foo);
}"#,
expect![[r#"
fn main() {
let foo = 41;
let bar = 42;
do_stuff(foo);
do_stuff(foo);
do_stuff(bar);
do_stuff(bar);
do_stuff(foo);
}"#]],
);
}
#[test]
fn replace_nonpath_within_selection() {
cov_mark::check!(replace_nonpath_within_selection);
assert_ssr_transform(
"$a + $b ==>> $b * $a",
r#"
fn main() {
let v = 1 + 2;$0
let v2 = 3 + 3;
let v3 = 4 + 5;$0
let v4 = 6 + 7;
}"#,
expect![[r#"
fn main() {
let v = 1 + 2;
let v2 = 3 * 3;
let v3 = 5 * 4;
let v4 = 6 + 7;
}"#]],
);
}
#[test]
fn replace_self() {
// `foo(self)` occurs twice in the code, however only the first occurrence is the `self` that's
// in scope where the rule is invoked.
assert_ssr_transform(
"foo(self) ==>> bar(self)",
r#"
struct S1 {}
fn foo(_: &S1) {}
fn bar(_: &S1) {}
impl S1 {
fn f1(&self) {
foo(self)$0
}
fn f2(&self) {
foo(self)
}
}
"#,
expect![[r#"
struct S1 {}
fn foo(_: &S1) {}
fn bar(_: &S1) {}
impl S1 {
fn f1(&self) {
bar(self)
}
fn f2(&self) {
foo(self)
}
}
"#]],
);
}
#[test]
fn match_trait_method_call() {
// `Bar::foo` and `Bar2::foo` resolve to the same function. Make sure we only match if the type
// matches what's in the pattern. Also checks that we handle autoderef.
let code = r#"
pub struct Bar {}
pub struct Bar2 {}
pub trait Foo {
fn foo(&self, _: i32) {}
}
impl Foo for Bar {}
impl Foo for Bar2 {}
fn main() {
let v1 = Bar {};
let v2 = Bar2 {};
let v1_ref = &v1;
let v2_ref = &v2;
v1.foo(1);
v2.foo(2);
Bar::foo(&v1, 3);
Bar2::foo(&v2, 4);
v1_ref.foo(5);
v2_ref.foo(6);
}
"#;
assert_matches("Bar::foo($a, $b)", code, &["v1.foo(1)", "Bar::foo(&v1, 3)", "v1_ref.foo(5)"]);
assert_matches("Bar2::foo($a, $b)", code, &["v2.foo(2)", "Bar2::foo(&v2, 4)", "v2_ref.foo(6)"]);
}
#[test]
fn replace_autoref_autoderef_capture() {
// Here we have several calls to `$a.foo()`. In the first case autoref is applied, in the
// second, we already have a reference, so it isn't. When $a is used in a context where autoref
// doesn't apply, we need to prefix it with `&`. Finally, we have some cases where autoderef
// needs to be applied.
cov_mark::check!(replace_autoref_autoderef_capture);
let code = r#"
struct Foo {}
impl Foo {
fn foo(&self) {}
fn foo2(&self) {}
}
fn bar(_: &Foo) {}
fn main() {
let f = Foo {};
let fr = &f;
let fr2 = &fr;
let fr3 = &fr2;
f.foo();
fr.foo();
fr2.foo();
fr3.foo();
}
"#;
assert_ssr_transform(
"Foo::foo($a) ==>> bar($a)",
code,
expect![[r#"
struct Foo {}
impl Foo {
fn foo(&self) {}
fn foo2(&self) {}
}
fn bar(_: &Foo) {}
fn main() {
let f = Foo {};
let fr = &f;
let fr2 = &fr;
let fr3 = &fr2;
bar(&f);
bar(&*fr);
bar(&**fr2);
bar(&***fr3);
}
"#]],
);
// If the placeholder is used as the receiver of another method call, then we don't need to
// explicitly autoderef or autoref.
assert_ssr_transform(
"Foo::foo($a) ==>> $a.foo2()",
code,
expect![[r#"
struct Foo {}
impl Foo {
fn foo(&self) {}
fn foo2(&self) {}
}
fn bar(_: &Foo) {}
fn main() {
let f = Foo {};
let fr = &f;
let fr2 = &fr;
let fr3 = &fr2;
f.foo2();
fr.foo2();
fr2.foo2();
fr3.foo2();
}
"#]],
);
}
#[test]
fn replace_autoref_mut() {
let code = r#"
struct Foo {}
impl Foo {
fn foo(&mut self) {}
}
fn bar(_: &mut Foo) {}
fn main() {
let mut f = Foo {};
f.foo();
let fr = &mut f;
fr.foo();
}
"#;
assert_ssr_transform(
"Foo::foo($a) ==>> bar($a)",
code,
expect![[r#"
struct Foo {}
impl Foo {
fn foo(&mut self) {}
}
fn bar(_: &mut Foo) {}
fn main() {
let mut f = Foo {};
bar(&mut f);
let fr = &mut f;
bar(&mut *fr);
}
"#]],
);
}