rust/src/librustc_trans/trans/debuginfo.rs
2015-01-03 22:54:18 -05:00

4194 lines
169 KiB
Rust

// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! # Debug Info Module
//!
//! This module serves the purpose of generating debug symbols. We use LLVM's
//! [source level debugging](http://llvm.org/docs/SourceLevelDebugging.html)
//! features for generating the debug information. The general principle is this:
//!
//! Given the right metadata in the LLVM IR, the LLVM code generator is able to
//! create DWARF debug symbols for the given code. The
//! [metadata](http://llvm.org/docs/LangRef.html#metadata-type) is structured much
//! like DWARF *debugging information entries* (DIE), representing type information
//! such as datatype layout, function signatures, block layout, variable location
//! and scope information, etc. It is the purpose of this module to generate correct
//! metadata and insert it into the LLVM IR.
//!
//! As the exact format of metadata trees may change between different LLVM
//! versions, we now use LLVM
//! [DIBuilder](http://llvm.org/docs/doxygen/html/classllvm_1_1DIBuilder.html) to
//! create metadata where possible. This will hopefully ease the adaption of this
//! module to future LLVM versions.
//!
//! The public API of the module is a set of functions that will insert the correct
//! metadata into the LLVM IR when called with the right parameters. The module is
//! thus driven from an outside client with functions like
//! `debuginfo::create_local_var_metadata(bcx: block, local: &ast::local)`.
//!
//! Internally the module will try to reuse already created metadata by utilizing a
//! cache. The way to get a shared metadata node when needed is thus to just call
//! the corresponding function in this module:
//!
//! let file_metadata = file_metadata(crate_context, path);
//!
//! The function will take care of probing the cache for an existing node for that
//! exact file path.
//!
//! All private state used by the module is stored within either the
//! CrateDebugContext struct (owned by the CrateContext) or the FunctionDebugContext
//! (owned by the FunctionContext).
//!
//! This file consists of three conceptual sections:
//! 1. The public interface of the module
//! 2. Module-internal metadata creation functions
//! 3. Minor utility functions
//!
//!
//! ## Recursive Types
//!
//! Some kinds of types, such as structs and enums can be recursive. That means that
//! the type definition of some type X refers to some other type which in turn
//! (transitively) refers to X. This introduces cycles into the type referral graph.
//! A naive algorithm doing an on-demand, depth-first traversal of this graph when
//! describing types, can get trapped in an endless loop when it reaches such a
//! cycle.
//!
//! For example, the following simple type for a singly-linked list...
//!
//! ```
//! struct List {
//! value: int,
//! tail: Option<Box<List>>,
//! }
//! ```
//!
//! will generate the following callstack with a naive DFS algorithm:
//!
//! ```
//! describe(t = List)
//! describe(t = int)
//! describe(t = Option<Box<List>>)
//! describe(t = Box<List>)
//! describe(t = List) // at the beginning again...
//! ...
//! ```
//!
//! To break cycles like these, we use "forward declarations". That is, when the
//! algorithm encounters a possibly recursive type (any struct or enum), it
//! immediately creates a type description node and inserts it into the cache
//! *before* describing the members of the type. This type description is just a
//! stub (as type members are not described and added to it yet) but it allows the
//! algorithm to already refer to the type. After the stub is inserted into the
//! cache, the algorithm continues as before. If it now encounters a recursive
//! reference, it will hit the cache and does not try to describe the type anew.
//!
//! This behaviour is encapsulated in the 'RecursiveTypeDescription' enum, which
//! represents a kind of continuation, storing all state needed to continue
//! traversal at the type members after the type has been registered with the cache.
//! (This implementation approach might be a tad over-engineered and may change in
//! the future)
//!
//!
//! ## Source Locations and Line Information
//!
//! In addition to data type descriptions the debugging information must also allow
//! to map machine code locations back to source code locations in order to be useful.
//! This functionality is also handled in this module. The following functions allow
//! to control source mappings:
//!
//! + set_source_location()
//! + clear_source_location()
//! + start_emitting_source_locations()
//!
//! `set_source_location()` allows to set the current source location. All IR
//! instructions created after a call to this function will be linked to the given
//! source location, until another location is specified with
//! `set_source_location()` or the source location is cleared with
//! `clear_source_location()`. In the later case, subsequent IR instruction will not
//! be linked to any source location. As you can see, this is a stateful API
//! (mimicking the one in LLVM), so be careful with source locations set by previous
//! calls. It's probably best to not rely on any specific state being present at a
//! given point in code.
//!
//! One topic that deserves some extra attention is *function prologues*. At the
//! beginning of a function's machine code there are typically a few instructions
//! for loading argument values into allocas and checking if there's enough stack
//! space for the function to execute. This *prologue* is not visible in the source
//! code and LLVM puts a special PROLOGUE END marker into the line table at the
//! first non-prologue instruction of the function. In order to find out where the
//! prologue ends, LLVM looks for the first instruction in the function body that is
//! linked to a source location. So, when generating prologue instructions we have
//! to make sure that we don't emit source location information until the 'real'
//! function body begins. For this reason, source location emission is disabled by
//! default for any new function being translated and is only activated after a call
//! to the third function from the list above, `start_emitting_source_locations()`.
//! This function should be called right before regularly starting to translate the
//! top-level block of the given function.
//!
//! There is one exception to the above rule: `llvm.dbg.declare` instruction must be
//! linked to the source location of the variable being declared. For function
//! parameters these `llvm.dbg.declare` instructions typically occur in the middle
//! of the prologue, however, they are ignored by LLVM's prologue detection. The
//! `create_argument_metadata()` and related functions take care of linking the
//! `llvm.dbg.declare` instructions to the correct source locations even while
//! source location emission is still disabled, so there is no need to do anything
//! special with source location handling here.
//!
//! ## Unique Type Identification
//!
//! In order for link-time optimization to work properly, LLVM needs a unique type
//! identifier that tells it across compilation units which types are the same as
//! others. This type identifier is created by TypeMap::get_unique_type_id_of_type()
//! using the following algorithm:
//!
//! (1) Primitive types have their name as ID
//! (2) Structs, enums and traits have a multipart identifier
//!
//! (1) The first part is the SVH (strict version hash) of the crate they were
//! originally defined in
//!
//! (2) The second part is the ast::NodeId of the definition in their original
//! crate
//!
//! (3) The final part is a concatenation of the type IDs of their concrete type
//! arguments if they are generic types.
//!
//! (3) Tuple-, pointer and function types are structurally identified, which means
//! that they are equivalent if their component types are equivalent (i.e. (int,
//! int) is the same regardless in which crate it is used).
//!
//! This algorithm also provides a stable ID for types that are defined in one crate
//! but instantiated from metadata within another crate. We just have to take care
//! to always map crate and node IDs back to the original crate context.
//!
//! As a side-effect these unique type IDs also help to solve a problem arising from
//! lifetime parameters. Since lifetime parameters are completely omitted in
//! debuginfo, more than one `Ty` instance may map to the same debuginfo type
//! metadata, that is, some struct `Struct<'a>` may have N instantiations with
//! different concrete substitutions for `'a`, and thus there will be N `Ty`
//! instances for the type `Struct<'a>` even though it is not generic otherwise.
//! Unfortunately this means that we cannot use `ty::type_id()` as cheap identifier
//! for type metadata---we have done this in the past, but it led to unnecessary
//! metadata duplication in the best case and LLVM assertions in the worst. However,
//! the unique type ID as described above *can* be used as identifier. Since it is
//! comparatively expensive to construct, though, `ty::type_id()` is still used
//! additionally as an optimization for cases where the exact same type has been
//! seen before (which is most of the time).
use self::VariableAccess::*;
use self::VariableKind::*;
use self::MemberOffset::*;
use self::MemberDescriptionFactory::*;
use self::RecursiveTypeDescription::*;
use self::EnumDiscriminantInfo::*;
use self::DebugLocation::*;
use llvm;
use llvm::{ModuleRef, ContextRef, ValueRef};
use llvm::debuginfo::*;
use metadata::csearch;
use middle::subst::{self, Substs};
use trans::{self, adt, machine, type_of};
use trans::common::*;
use trans::_match::{BindingInfo, TrByCopy, TrByMove, TrByRef};
use trans::monomorphize;
use trans::type_::Type;
use middle::ty::{self, Ty, UnboxedClosureTyper};
use middle::pat_util;
use session::config::{self, FullDebugInfo, LimitedDebugInfo, NoDebugInfo};
use util::nodemap::{DefIdMap, NodeMap, FnvHashMap, FnvHashSet};
use util::ppaux;
use libc::c_uint;
use std::c_str::{CString, ToCStr};
use std::cell::{Cell, RefCell};
use std::ptr;
use std::rc::{Rc, Weak};
use syntax::util::interner::Interner;
use syntax::codemap::{Span, Pos};
use syntax::{ast, codemap, ast_util, ast_map, attr};
use syntax::ast_util::PostExpansionMethod;
use syntax::parse::token::{self, special_idents};
const DW_LANG_RUST: c_uint = 0x9000;
#[allow(non_upper_case_globals)]
const DW_TAG_auto_variable: c_uint = 0x100;
#[allow(non_upper_case_globals)]
const DW_TAG_arg_variable: c_uint = 0x101;
#[allow(non_upper_case_globals)]
const DW_ATE_boolean: c_uint = 0x02;
#[allow(non_upper_case_globals)]
const DW_ATE_float: c_uint = 0x04;
#[allow(non_upper_case_globals)]
const DW_ATE_signed: c_uint = 0x05;
#[allow(non_upper_case_globals)]
const DW_ATE_unsigned: c_uint = 0x07;
#[allow(non_upper_case_globals)]
const DW_ATE_unsigned_char: c_uint = 0x08;
const UNKNOWN_LINE_NUMBER: c_uint = 0;
const UNKNOWN_COLUMN_NUMBER: c_uint = 0;
// ptr::null() doesn't work :(
const UNKNOWN_FILE_METADATA: DIFile = (0 as DIFile);
const UNKNOWN_SCOPE_METADATA: DIScope = (0 as DIScope);
const FLAGS_NONE: c_uint = 0;
//=-----------------------------------------------------------------------------
// Public Interface of debuginfo module
//=-----------------------------------------------------------------------------
#[derive(Copy, Show, Hash, Eq, PartialEq, Clone)]
struct UniqueTypeId(ast::Name);
// The TypeMap is where the CrateDebugContext holds the type metadata nodes
// created so far. The metadata nodes are indexed by UniqueTypeId, and, for
// faster lookup, also by Ty. The TypeMap is responsible for creating
// UniqueTypeIds.
struct TypeMap<'tcx> {
// The UniqueTypeIds created so far
unique_id_interner: Interner<Rc<String>>,
// A map from UniqueTypeId to debuginfo metadata for that type. This is a 1:1 mapping.
unique_id_to_metadata: FnvHashMap<UniqueTypeId, DIType>,
// A map from types to debuginfo metadata. This is a N:1 mapping.
type_to_metadata: FnvHashMap<Ty<'tcx>, DIType>,
// A map from types to UniqueTypeId. This is a N:1 mapping.
type_to_unique_id: FnvHashMap<Ty<'tcx>, UniqueTypeId>
}
impl<'tcx> TypeMap<'tcx> {
fn new() -> TypeMap<'tcx> {
TypeMap {
unique_id_interner: Interner::new(),
type_to_metadata: FnvHashMap::new(),
unique_id_to_metadata: FnvHashMap::new(),
type_to_unique_id: FnvHashMap::new(),
}
}
// Adds a Ty to metadata mapping to the TypeMap. The method will fail if
// the mapping already exists.
fn register_type_with_metadata<'a>(&mut self,
cx: &CrateContext<'a, 'tcx>,
type_: Ty<'tcx>,
metadata: DIType) {
if self.type_to_metadata.insert(type_, metadata).is_some() {
cx.sess().bug(format!("Type metadata for Ty '{}' is already in the TypeMap!",
ppaux::ty_to_string(cx.tcx(), type_))[]);
}
}
// Adds a UniqueTypeId to metadata mapping to the TypeMap. The method will
// fail if the mapping already exists.
fn register_unique_id_with_metadata(&mut self,
cx: &CrateContext,
unique_type_id: UniqueTypeId,
metadata: DIType) {
if self.unique_id_to_metadata.insert(unique_type_id, metadata).is_some() {
let unique_type_id_str = self.get_unique_type_id_as_string(unique_type_id);
cx.sess().bug(format!("Type metadata for unique id '{}' is already in the TypeMap!",
unique_type_id_str[])[]);
}
}
fn find_metadata_for_type(&self, type_: Ty<'tcx>) -> Option<DIType> {
self.type_to_metadata.get(&type_).cloned()
}
fn find_metadata_for_unique_id(&self, unique_type_id: UniqueTypeId) -> Option<DIType> {
self.unique_id_to_metadata.get(&unique_type_id).cloned()
}
// Get the string representation of a UniqueTypeId. This method will fail if
// the id is unknown.
fn get_unique_type_id_as_string(&self, unique_type_id: UniqueTypeId) -> Rc<String> {
let UniqueTypeId(interner_key) = unique_type_id;
self.unique_id_interner.get(interner_key)
}
// Get the UniqueTypeId for the given type. If the UniqueTypeId for the given
// type has been requested before, this is just a table lookup. Otherwise an
// ID will be generated and stored for later lookup.
fn get_unique_type_id_of_type<'a>(&mut self, cx: &CrateContext<'a, 'tcx>,
type_: Ty<'tcx>) -> UniqueTypeId {
// basic type -> {:name of the type:}
// tuple -> {tuple_(:param-uid:)*}
// struct -> {struct_:svh: / :node-id:_<(:param-uid:),*> }
// enum -> {enum_:svh: / :node-id:_<(:param-uid:),*> }
// enum variant -> {variant_:variant-name:_:enum-uid:}
// reference (&) -> {& :pointee-uid:}
// mut reference (&mut) -> {&mut :pointee-uid:}
// ptr (*) -> {* :pointee-uid:}
// mut ptr (*mut) -> {*mut :pointee-uid:}
// unique ptr (~) -> {~ :pointee-uid:}
// @-ptr (@) -> {@ :pointee-uid:}
// sized vec ([T; x]) -> {[:size:] :element-uid:}
// unsized vec ([T]) -> {[] :element-uid:}
// trait (T) -> {trait_:svh: / :node-id:_<(:param-uid:),*> }
// closure -> {<unsafe_> <once_> :store-sigil: |(:param-uid:),* <,_...>| -> \
// :return-type-uid: : (:bounds:)*}
// function -> {<unsafe_> <abi_> fn( (:param-uid:)* <,_...> ) -> \
// :return-type-uid:}
// unique vec box (~[]) -> {HEAP_VEC_BOX<:pointee-uid:>}
// gc box -> {GC_BOX<:pointee-uid:>}
match self.type_to_unique_id.get(&type_).cloned() {
Some(unique_type_id) => return unique_type_id,
None => { /* generate one */}
};
let mut unique_type_id = String::with_capacity(256);
unique_type_id.push('{');
match type_.sty {
ty::ty_bool |
ty::ty_char |
ty::ty_str |
ty::ty_int(_) |
ty::ty_uint(_) |
ty::ty_float(_) => {
push_debuginfo_type_name(cx, type_, false, &mut unique_type_id);
},
ty::ty_enum(def_id, substs) => {
unique_type_id.push_str("enum ");
from_def_id_and_substs(self, cx, def_id, substs, &mut unique_type_id);
},
ty::ty_struct(def_id, substs) => {
unique_type_id.push_str("struct ");
from_def_id_and_substs(self, cx, def_id, substs, &mut unique_type_id);
},
ty::ty_tup(ref component_types) if component_types.is_empty() => {
push_debuginfo_type_name(cx, type_, false, &mut unique_type_id);
},
ty::ty_tup(ref component_types) => {
unique_type_id.push_str("tuple ");
for &component_type in component_types.iter() {
let component_type_id =
self.get_unique_type_id_of_type(cx, component_type);
let component_type_id =
self.get_unique_type_id_as_string(component_type_id);
unique_type_id.push_str(component_type_id[]);
}
},
ty::ty_uniq(inner_type) => {
unique_type_id.push('~');
let inner_type_id = self.get_unique_type_id_of_type(cx, inner_type);
let inner_type_id = self.get_unique_type_id_as_string(inner_type_id);
unique_type_id.push_str(inner_type_id[]);
},
ty::ty_ptr(ty::mt { ty: inner_type, mutbl } ) => {
unique_type_id.push('*');
if mutbl == ast::MutMutable {
unique_type_id.push_str("mut");
}
let inner_type_id = self.get_unique_type_id_of_type(cx, inner_type);
let inner_type_id = self.get_unique_type_id_as_string(inner_type_id);
unique_type_id.push_str(inner_type_id[]);
},
ty::ty_rptr(_, ty::mt { ty: inner_type, mutbl }) => {
unique_type_id.push('&');
if mutbl == ast::MutMutable {
unique_type_id.push_str("mut");
}
let inner_type_id = self.get_unique_type_id_of_type(cx, inner_type);
let inner_type_id = self.get_unique_type_id_as_string(inner_type_id);
unique_type_id.push_str(inner_type_id[]);
},
ty::ty_vec(inner_type, optional_length) => {
match optional_length {
Some(len) => {
unique_type_id.push_str(format!("[{}]", len)[]);
}
None => {
unique_type_id.push_str("[]");
}
};
let inner_type_id = self.get_unique_type_id_of_type(cx, inner_type);
let inner_type_id = self.get_unique_type_id_as_string(inner_type_id);
unique_type_id.push_str(inner_type_id[]);
},
ty::ty_trait(ref trait_data) => {
unique_type_id.push_str("trait ");
from_def_id_and_substs(self,
cx,
trait_data.principal_def_id(),
trait_data.principal.0.substs,
&mut unique_type_id);
},
ty::ty_bare_fn(_, &ty::BareFnTy{ unsafety, abi, ref sig } ) => {
if unsafety == ast::Unsafety::Unsafe {
unique_type_id.push_str("unsafe ");
}
unique_type_id.push_str(abi.name());
unique_type_id.push_str(" fn(");
for &parameter_type in sig.0.inputs.iter() {
let parameter_type_id =
self.get_unique_type_id_of_type(cx, parameter_type);
let parameter_type_id =
self.get_unique_type_id_as_string(parameter_type_id);
unique_type_id.push_str(parameter_type_id[]);
unique_type_id.push(',');
}
if sig.0.variadic {
unique_type_id.push_str("...");
}
unique_type_id.push_str(")->");
match sig.0.output {
ty::FnConverging(ret_ty) => {
let return_type_id = self.get_unique_type_id_of_type(cx, ret_ty);
let return_type_id = self.get_unique_type_id_as_string(return_type_id);
unique_type_id.push_str(return_type_id[]);
}
ty::FnDiverging => {
unique_type_id.push_str("!");
}
}
},
ty::ty_closure(box ref closure_ty) => {
self.get_unique_type_id_of_closure_type(cx,
closure_ty.clone(),
&mut unique_type_id);
},
ty::ty_unboxed_closure(def_id, _, substs) => {
let typer = NormalizingUnboxedClosureTyper::new(cx.tcx());
let closure_ty = typer.unboxed_closure_type(def_id, substs);
self.get_unique_type_id_of_closure_type(cx,
closure_ty,
&mut unique_type_id);
},
_ => {
cx.sess().bug(format!("get_unique_type_id_of_type() - unexpected type: {}, {}",
ppaux::ty_to_string(cx.tcx(), type_)[],
type_.sty)[])
}
};
unique_type_id.push('}');
// Trim to size before storing permanently
unique_type_id.shrink_to_fit();
let key = self.unique_id_interner.intern(Rc::new(unique_type_id));
self.type_to_unique_id.insert(type_, UniqueTypeId(key));
return UniqueTypeId(key);
fn from_def_id_and_substs<'a, 'tcx>(type_map: &mut TypeMap<'tcx>,
cx: &CrateContext<'a, 'tcx>,
def_id: ast::DefId,
substs: &subst::Substs<'tcx>,
output: &mut String) {
// First, find out the 'real' def_id of the type. Items inlined from
// other crates have to be mapped back to their source.
let source_def_id = if def_id.krate == ast::LOCAL_CRATE {
match cx.external_srcs().borrow().get(&def_id.node).cloned() {
Some(source_def_id) => {
// The given def_id identifies the inlined copy of a
// type definition, let's take the source of the copy.
source_def_id
}
None => def_id
}
} else {
def_id
};
// Get the crate hash as first part of the identifier.
let crate_hash = if source_def_id.krate == ast::LOCAL_CRATE {
cx.link_meta().crate_hash.clone()
} else {
cx.sess().cstore.get_crate_hash(source_def_id.krate)
};
output.push_str(crate_hash.as_str());
output.push_str("/");
output.push_str(format!("{:x}", def_id.node)[]);
// Maybe check that there is no self type here.
let tps = substs.types.get_slice(subst::TypeSpace);
if tps.len() > 0 {
output.push('<');
for &type_parameter in tps.iter() {
let param_type_id =
type_map.get_unique_type_id_of_type(cx, type_parameter);
let param_type_id =
type_map.get_unique_type_id_as_string(param_type_id);
output.push_str(param_type_id[]);
output.push(',');
}
output.push('>');
}
}
}
fn get_unique_type_id_of_closure_type<'a>(&mut self,
cx: &CrateContext<'a, 'tcx>,
closure_ty: ty::ClosureTy<'tcx>,
unique_type_id: &mut String) {
let ty::ClosureTy { unsafety,
onceness,
store,
ref bounds,
ref sig,
abi: _ } = closure_ty;
if unsafety == ast::Unsafety::Unsafe {
unique_type_id.push_str("unsafe ");
}
if onceness == ast::Once {
unique_type_id.push_str("once ");
}
match store {
ty::UniqTraitStore => unique_type_id.push_str("~|"),
ty::RegionTraitStore(_, ast::MutMutable) => {
unique_type_id.push_str("&mut|")
}
ty::RegionTraitStore(_, ast::MutImmutable) => {
unique_type_id.push_str("&|")
}
};
for &parameter_type in sig.0.inputs.iter() {
let parameter_type_id =
self.get_unique_type_id_of_type(cx, parameter_type);
let parameter_type_id =
self.get_unique_type_id_as_string(parameter_type_id);
unique_type_id.push_str(parameter_type_id[]);
unique_type_id.push(',');
}
if sig.0.variadic {
unique_type_id.push_str("...");
}
unique_type_id.push_str("|->");
match sig.0.output {
ty::FnConverging(ret_ty) => {
let return_type_id = self.get_unique_type_id_of_type(cx, ret_ty);
let return_type_id = self.get_unique_type_id_as_string(return_type_id);
unique_type_id.push_str(return_type_id[]);
}
ty::FnDiverging => {
unique_type_id.push_str("!");
}
}
unique_type_id.push(':');
for bound in bounds.builtin_bounds.iter() {
match bound {
ty::BoundSend => unique_type_id.push_str("Send"),
ty::BoundSized => unique_type_id.push_str("Sized"),
ty::BoundCopy => unique_type_id.push_str("Copy"),
ty::BoundSync => unique_type_id.push_str("Sync"),
};
unique_type_id.push('+');
}
}
// Get the UniqueTypeId for an enum variant. Enum variants are not really
// types of their own, so they need special handling. We still need a
// UniqueTypeId for them, since to debuginfo they *are* real types.
fn get_unique_type_id_of_enum_variant<'a>(&mut self,
cx: &CrateContext<'a, 'tcx>,
enum_type: Ty<'tcx>,
variant_name: &str)
-> UniqueTypeId {
let enum_type_id = self.get_unique_type_id_of_type(cx, enum_type);
let enum_variant_type_id = format!("{}::{}",
self.get_unique_type_id_as_string(enum_type_id)
[],
variant_name);
let interner_key = self.unique_id_interner.intern(Rc::new(enum_variant_type_id));
UniqueTypeId(interner_key)
}
}
// Returns from the enclosing function if the type metadata with the given
// unique id can be found in the type map
macro_rules! return_if_metadata_created_in_meantime {
($cx: expr, $unique_type_id: expr) => (
match debug_context($cx).type_map
.borrow()
.find_metadata_for_unique_id($unique_type_id) {
Some(metadata) => return MetadataCreationResult::new(metadata, true),
None => { /* proceed normally */ }
};
)
}
/// A context object for maintaining all state needed by the debuginfo module.
pub struct CrateDebugContext<'tcx> {
llcontext: ContextRef,
builder: DIBuilderRef,
current_debug_location: Cell<DebugLocation>,
created_files: RefCell<FnvHashMap<String, DIFile>>,
created_enum_disr_types: RefCell<DefIdMap<DIType>>,
type_map: RefCell<TypeMap<'tcx>>,
namespace_map: RefCell<FnvHashMap<Vec<ast::Name>, Rc<NamespaceTreeNode>>>,
// This collection is used to assert that composite types (structs, enums,
// ...) have their members only set once:
composite_types_completed: RefCell<FnvHashSet<DIType>>,
}
impl<'tcx> CrateDebugContext<'tcx> {
pub fn new(llmod: ModuleRef) -> CrateDebugContext<'tcx> {
debug!("CrateDebugContext::new");
let builder = unsafe { llvm::LLVMDIBuilderCreate(llmod) };
// DIBuilder inherits context from the module, so we'd better use the same one
let llcontext = unsafe { llvm::LLVMGetModuleContext(llmod) };
return CrateDebugContext {
llcontext: llcontext,
builder: builder,
current_debug_location: Cell::new(UnknownLocation),
created_files: RefCell::new(FnvHashMap::new()),
created_enum_disr_types: RefCell::new(DefIdMap::new()),
type_map: RefCell::new(TypeMap::new()),
namespace_map: RefCell::new(FnvHashMap::new()),
composite_types_completed: RefCell::new(FnvHashSet::new()),
};
}
}
pub enum FunctionDebugContext {
RegularContext(Box<FunctionDebugContextData>),
DebugInfoDisabled,
FunctionWithoutDebugInfo,
}
impl FunctionDebugContext {
fn get_ref<'a>(&'a self,
cx: &CrateContext,
span: Span)
-> &'a FunctionDebugContextData {
match *self {
FunctionDebugContext::RegularContext(box ref data) => data,
FunctionDebugContext::DebugInfoDisabled => {
cx.sess().span_bug(span,
FunctionDebugContext::debuginfo_disabled_message());
}
FunctionDebugContext::FunctionWithoutDebugInfo => {
cx.sess().span_bug(span,
FunctionDebugContext::should_be_ignored_message());
}
}
}
fn debuginfo_disabled_message() -> &'static str {
"debuginfo: Error trying to access FunctionDebugContext although debug info is disabled!"
}
fn should_be_ignored_message() -> &'static str {
"debuginfo: Error trying to access FunctionDebugContext for function that should be \
ignored by debug info!"
}
}
struct FunctionDebugContextData {
scope_map: RefCell<NodeMap<DIScope>>,
fn_metadata: DISubprogram,
argument_counter: Cell<uint>,
source_locations_enabled: Cell<bool>,
}
enum VariableAccess<'a> {
// The llptr given is an alloca containing the variable's value
DirectVariable { alloca: ValueRef },
// The llptr given is an alloca containing the start of some pointer chain
// leading to the variable's content.
IndirectVariable { alloca: ValueRef, address_operations: &'a [ValueRef] }
}
enum VariableKind {
ArgumentVariable(uint /*index*/),
LocalVariable,
CapturedVariable,
}
/// Create any deferred debug metadata nodes
pub fn finalize(cx: &CrateContext) {
if cx.dbg_cx().is_none() {
return;
}
debug!("finalize");
let _ = compile_unit_metadata(cx);
if needs_gdb_debug_scripts_section(cx) {
// Add a .debug_gdb_scripts section to this compile-unit. This will
// cause GDB to try and load the gdb_load_rust_pretty_printers.py file,
// which activates the Rust pretty printers for binary this section is
// contained in.
get_or_insert_gdb_debug_scripts_section_global(cx);
}
unsafe {
llvm::LLVMDIBuilderFinalize(DIB(cx));
llvm::LLVMDIBuilderDispose(DIB(cx));
// Debuginfo generation in LLVM by default uses a higher
// version of dwarf than OS X currently understands. We can
// instruct LLVM to emit an older version of dwarf, however,
// for OS X to understand. For more info see #11352
// This can be overridden using --llvm-opts -dwarf-version,N.
if cx.sess().target.target.options.is_like_osx {
"Dwarf Version".with_c_str(
|s| llvm::LLVMRustAddModuleFlag(cx.llmod(), s, 2));
}
// Prevent bitcode readers from deleting the debug info.
"Debug Info Version".with_c_str(
|s| llvm::LLVMRustAddModuleFlag(cx.llmod(), s,
llvm::LLVMRustDebugMetadataVersion));
};
}
/// Creates debug information for the given global variable.
///
/// Adds the created metadata nodes directly to the crate's IR.
pub fn create_global_var_metadata(cx: &CrateContext,
node_id: ast::NodeId,
global: ValueRef) {
if cx.dbg_cx().is_none() {
return;
}
// Don't create debuginfo for globals inlined from other crates. The other
// crate should already contain debuginfo for it. More importantly, the
// global might not even exist in un-inlined form anywhere which would lead
// to a linker errors.
if cx.external_srcs().borrow().contains_key(&node_id) {
return;
}
let var_item = cx.tcx().map.get(node_id);
let (ident, span) = match var_item {
ast_map::NodeItem(item) => {
match item.node {
ast::ItemStatic(..) => (item.ident, item.span),
ast::ItemConst(..) => (item.ident, item.span),
_ => {
cx.sess()
.span_bug(item.span,
format!("debuginfo::\
create_global_var_metadata() -
Captured var-id refers to \
unexpected ast_item variant: {}",
var_item)[])
}
}
},
_ => cx.sess().bug(format!("debuginfo::create_global_var_metadata() \
- Captured var-id refers to unexpected \
ast_map variant: {}",
var_item)[])
};
let (file_metadata, line_number) = if span != codemap::DUMMY_SP {
let loc = span_start(cx, span);
(file_metadata(cx, loc.file.name[]), loc.line as c_uint)
} else {
(UNKNOWN_FILE_METADATA, UNKNOWN_LINE_NUMBER)
};
let is_local_to_unit = is_node_local_to_unit(cx, node_id);
let variable_type = ty::node_id_to_type(cx.tcx(), node_id);
let type_metadata = type_metadata(cx, variable_type, span);
let namespace_node = namespace_for_item(cx, ast_util::local_def(node_id));
let var_name = token::get_ident(ident).get().to_string();
let linkage_name =
namespace_node.mangled_name_of_contained_item(var_name[]);
let var_scope = namespace_node.scope;
var_name.with_c_str(|var_name| {
linkage_name.with_c_str(|linkage_name| {
unsafe {
llvm::LLVMDIBuilderCreateStaticVariable(DIB(cx),
var_scope,
var_name,
linkage_name,
file_metadata,
line_number,
type_metadata,
is_local_to_unit,
global,
ptr::null_mut());
}
})
});
}
/// Creates debug information for the given local variable.
///
/// This function assumes that there's a datum for each pattern component of the
/// local in `bcx.fcx.lllocals`.
/// Adds the created metadata nodes directly to the crate's IR.
pub fn create_local_var_metadata(bcx: Block, local: &ast::Local) {
if bcx.unreachable.get() || fn_should_be_ignored(bcx.fcx) {
return;
}
let cx = bcx.ccx();
let def_map = &cx.tcx().def_map;
let locals = bcx.fcx.lllocals.borrow();
pat_util::pat_bindings(def_map, &*local.pat, |_, node_id, span, var_ident| {
let datum = match locals.get(&node_id) {
Some(datum) => datum,
None => {
bcx.sess().span_bug(span,
format!("no entry in lllocals table for {}",
node_id)[]);
}
};
if unsafe { llvm::LLVMIsAAllocaInst(datum.val) } == ptr::null_mut() {
cx.sess().span_bug(span, "debuginfo::create_local_var_metadata() - \
Referenced variable location is not an alloca!");
}
let scope_metadata = scope_metadata(bcx.fcx, node_id, span);
declare_local(bcx,
var_ident.node,
datum.ty,
scope_metadata,
DirectVariable { alloca: datum.val },
LocalVariable,
span);
})
}
/// Creates debug information for a variable captured in a closure.
///
/// Adds the created metadata nodes directly to the crate's IR.
pub fn create_captured_var_metadata<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
node_id: ast::NodeId,
env_pointer: ValueRef,
env_index: uint,
captured_by_ref: bool,
span: Span) {
if bcx.unreachable.get() || fn_should_be_ignored(bcx.fcx) {
return;
}
let cx = bcx.ccx();
let ast_item = cx.tcx().map.find(node_id);
let variable_ident = match ast_item {
None => {
cx.sess().span_bug(span, "debuginfo::create_captured_var_metadata: node not found");
}
Some(ast_map::NodeLocal(pat)) | Some(ast_map::NodeArg(pat)) => {
match pat.node {
ast::PatIdent(_, ref path1, _) => {
path1.node
}
_ => {
cx.sess()
.span_bug(span,
format!(
"debuginfo::create_captured_var_metadata() - \
Captured var-id refers to unexpected \
ast_map variant: {}",
ast_item)[]);
}
}
}
_ => {
cx.sess()
.span_bug(span,
format!("debuginfo::create_captured_var_metadata() - \
Captured var-id refers to unexpected \
ast_map variant: {}",
ast_item)[]);
}
};
let variable_type = node_id_type(bcx, node_id);
let scope_metadata = bcx.fcx.debug_context.get_ref(cx, span).fn_metadata;
// env_pointer is the alloca containing the pointer to the environment,
// so it's type is **EnvironmentType. In order to find out the type of
// the environment we have to "dereference" two times.
let llvm_env_data_type = val_ty(env_pointer).element_type().element_type();
let byte_offset_of_var_in_env = machine::llelement_offset(cx,
llvm_env_data_type,
env_index);
let address_operations = unsafe {
[llvm::LLVMDIBuilderCreateOpDeref(Type::i64(cx).to_ref()),
llvm::LLVMDIBuilderCreateOpPlus(Type::i64(cx).to_ref()),
C_i64(cx, byte_offset_of_var_in_env as i64),
llvm::LLVMDIBuilderCreateOpDeref(Type::i64(cx).to_ref())]
};
let address_op_count = if captured_by_ref {
address_operations.len()
} else {
address_operations.len() - 1
};
let variable_access = IndirectVariable {
alloca: env_pointer,
address_operations: address_operations[..address_op_count]
};
declare_local(bcx,
variable_ident,
variable_type,
scope_metadata,
variable_access,
CapturedVariable,
span);
}
/// Creates debug information for a local variable introduced in the head of a
/// match-statement arm.
///
/// Adds the created metadata nodes directly to the crate's IR.
pub fn create_match_binding_metadata<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
variable_ident: ast::Ident,
binding: BindingInfo<'tcx>) {
if bcx.unreachable.get() || fn_should_be_ignored(bcx.fcx) {
return;
}
let scope_metadata = scope_metadata(bcx.fcx, binding.id, binding.span);
let aops = unsafe {
[llvm::LLVMDIBuilderCreateOpDeref(bcx.ccx().int_type().to_ref())]
};
// Regardless of the actual type (`T`) we're always passed the stack slot (alloca)
// for the binding. For ByRef bindings that's a `T*` but for ByMove bindings we
// actually have `T**`. So to get the actual variable we need to dereference once
// more. For ByCopy we just use the stack slot we created for the binding.
let var_access = match binding.trmode {
TrByCopy(llbinding) => DirectVariable {
alloca: llbinding
},
TrByMove => IndirectVariable {
alloca: binding.llmatch,
address_operations: &aops
},
TrByRef => DirectVariable {
alloca: binding.llmatch
}
};
declare_local(bcx,
variable_ident,
binding.ty,
scope_metadata,
var_access,
LocalVariable,
binding.span);
}
/// Creates debug information for the given function argument.
///
/// This function assumes that there's a datum for each pattern component of the
/// argument in `bcx.fcx.lllocals`.
/// Adds the created metadata nodes directly to the crate's IR.
pub fn create_argument_metadata(bcx: Block, arg: &ast::Arg) {
if bcx.unreachable.get() || fn_should_be_ignored(bcx.fcx) {
return;
}
let def_map = &bcx.tcx().def_map;
let scope_metadata = bcx
.fcx
.debug_context
.get_ref(bcx.ccx(), arg.pat.span)
.fn_metadata;
let locals = bcx.fcx.lllocals.borrow();
pat_util::pat_bindings(def_map, &*arg.pat, |_, node_id, span, var_ident| {
let datum = match locals.get(&node_id) {
Some(v) => v,
None => {
bcx.sess().span_bug(span,
format!("no entry in lllocals table for {}",
node_id)[]);
}
};
if unsafe { llvm::LLVMIsAAllocaInst(datum.val) } == ptr::null_mut() {
bcx.sess().span_bug(span, "debuginfo::create_argument_metadata() - \
Referenced variable location is not an alloca!");
}
let argument_index = {
let counter = &bcx
.fcx
.debug_context
.get_ref(bcx.ccx(), span)
.argument_counter;
let argument_index = counter.get();
counter.set(argument_index + 1);
argument_index
};
declare_local(bcx,
var_ident.node,
datum.ty,
scope_metadata,
DirectVariable { alloca: datum.val },
ArgumentVariable(argument_index),
span);
})
}
/// Creates debug information for the given for-loop variable.
///
/// This function assumes that there's a datum for each pattern component of the
/// loop variable in `bcx.fcx.lllocals`.
/// Adds the created metadata nodes directly to the crate's IR.
pub fn create_for_loop_var_metadata(bcx: Block, pat: &ast::Pat) {
if bcx.unreachable.get() || fn_should_be_ignored(bcx.fcx) {
return;
}
let def_map = &bcx.tcx().def_map;
let locals = bcx.fcx.lllocals.borrow();
pat_util::pat_bindings(def_map, pat, |_, node_id, span, var_ident| {
let datum = match locals.get(&node_id) {
Some(datum) => datum,
None => {
bcx.sess().span_bug(span,
format!("no entry in lllocals table for {}",
node_id).as_slice());
}
};
if unsafe { llvm::LLVMIsAAllocaInst(datum.val) } == ptr::null_mut() {
bcx.sess().span_bug(span, "debuginfo::create_for_loop_var_metadata() - \
Referenced variable location is not an alloca!");
}
let scope_metadata = scope_metadata(bcx.fcx, node_id, span);
declare_local(bcx,
var_ident.node,
datum.ty,
scope_metadata,
DirectVariable { alloca: datum.val },
LocalVariable,
span);
})
}
pub fn get_cleanup_debug_loc_for_ast_node<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>,
node_id: ast::NodeId,
node_span: Span,
is_block: bool)
-> NodeInfo {
// A debug location needs two things:
// (1) A span (of which only the beginning will actually be used)
// (2) An AST node-id which will be used to look up the lexical scope
// for the location in the functions scope-map
//
// This function will calculate the debug location for compiler-generated
// cleanup calls that are executed when control-flow leaves the
// scope identified by `node_id`.
//
// For everything but block-like things we can simply take id and span of
// the given expression, meaning that from a debugger's view cleanup code is
// executed at the same source location as the statement/expr itself.
//
// Blocks are a special case. Here we want the cleanup to be linked to the
// closing curly brace of the block. The *scope* the cleanup is executed in
// is up to debate: It could either still be *within* the block being
// cleaned up, meaning that locals from the block are still visible in the
// debugger.
// Or it could be in the scope that the block is contained in, so any locals
// from within the block are already considered out-of-scope and thus not
// accessible in the debugger anymore.
//
// The current implementation opts for the second option: cleanup of a block
// already happens in the parent scope of the block. The main reason for
// this decision is that scoping becomes controlflow dependent when variable
// shadowing is involved and it's impossible to decide statically which
// scope is actually left when the cleanup code is executed.
// In practice it shouldn't make much of a difference.
let mut cleanup_span = node_span;
if is_block {
// Not all blocks actually have curly braces (e.g. simple closure
// bodies), in which case we also just want to return the span of the
// whole expression.
let code_snippet = cx.sess().codemap().span_to_snippet(node_span);
if let Some(code_snippet) = code_snippet {
let bytes = code_snippet.as_bytes();
if bytes.len() > 0 && bytes[bytes.len()-1 ..] == b"}" {
cleanup_span = Span {
lo: node_span.hi - codemap::BytePos(1),
hi: node_span.hi,
expn_id: node_span.expn_id
};
}
}
}
NodeInfo {
id: node_id,
span: cleanup_span
}
}
/// Sets the current debug location at the beginning of the span.
///
/// Maps to a call to llvm::LLVMSetCurrentDebugLocation(...). The node_id
/// parameter is used to reliably find the correct visibility scope for the code
/// position.
pub fn set_source_location(fcx: &FunctionContext,
node_id: ast::NodeId,
span: Span) {
match fcx.debug_context {
FunctionDebugContext::DebugInfoDisabled => return,
FunctionDebugContext::FunctionWithoutDebugInfo => {
set_debug_location(fcx.ccx, UnknownLocation);
return;
}
FunctionDebugContext::RegularContext(box ref function_debug_context) => {
let cx = fcx.ccx;
debug!("set_source_location: {}", cx.sess().codemap().span_to_string(span));
if function_debug_context.source_locations_enabled.get() {
let loc = span_start(cx, span);
let scope = scope_metadata(fcx, node_id, span);
set_debug_location(cx, DebugLocation::new(scope,
loc.line,
loc.col.to_uint()));
} else {
set_debug_location(cx, UnknownLocation);
}
}
}
}
/// Clears the current debug location.
///
/// Instructions generated hereafter won't be assigned a source location.
pub fn clear_source_location(fcx: &FunctionContext) {
if fn_should_be_ignored(fcx) {
return;
}
set_debug_location(fcx.ccx, UnknownLocation);
}
/// Enables emitting source locations for the given functions.
///
/// Since we don't want source locations to be emitted for the function prelude,
/// they are disabled when beginning to translate a new function. This functions
/// switches source location emitting on and must therefore be called before the
/// first real statement/expression of the function is translated.
pub fn start_emitting_source_locations(fcx: &FunctionContext) {
match fcx.debug_context {
FunctionDebugContext::RegularContext(box ref data) => {
data.source_locations_enabled.set(true)
},
_ => { /* safe to ignore */ }
}
}
/// Creates the function-specific debug context.
///
/// Returns the FunctionDebugContext for the function which holds state needed
/// for debug info creation. The function may also return another variant of the
/// FunctionDebugContext enum which indicates why no debuginfo should be created
/// for the function.
pub fn create_function_debug_context<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>,
fn_ast_id: ast::NodeId,
param_substs: &Substs<'tcx>,
llfn: ValueRef) -> FunctionDebugContext {
if cx.sess().opts.debuginfo == NoDebugInfo {
return FunctionDebugContext::DebugInfoDisabled;
}
// Clear the debug location so we don't assign them in the function prelude.
// Do this here already, in case we do an early exit from this function.
set_debug_location(cx, UnknownLocation);
if fn_ast_id == ast::DUMMY_NODE_ID {
// This is a function not linked to any source location, so don't
// generate debuginfo for it.
return FunctionDebugContext::FunctionWithoutDebugInfo;
}
let empty_generics = ast_util::empty_generics();
let fnitem = cx.tcx().map.get(fn_ast_id);
let (ident, fn_decl, generics, top_level_block, span, has_path) = match fnitem {
ast_map::NodeItem(ref item) => {
if contains_nodebug_attribute(item.attrs.as_slice()) {
return FunctionDebugContext::FunctionWithoutDebugInfo;
}
match item.node {
ast::ItemFn(ref fn_decl, _, _, ref generics, ref top_level_block) => {
(item.ident, &**fn_decl, generics, &**top_level_block, item.span, true)
}
_ => {
cx.sess().span_bug(item.span,
"create_function_debug_context: item bound to non-function");
}
}
}
ast_map::NodeImplItem(ref item) => {
match **item {
ast::MethodImplItem(ref method) => {
if contains_nodebug_attribute(method.attrs.as_slice()) {
return FunctionDebugContext::FunctionWithoutDebugInfo;
}
(method.pe_ident(),
method.pe_fn_decl(),
method.pe_generics(),
method.pe_body(),
method.span,
true)
}
ast::TypeImplItem(ref typedef) => {
cx.sess().span_bug(typedef.span,
"create_function_debug_context() \
called on associated type?!")
}
}
}
ast_map::NodeExpr(ref expr) => {
match expr.node {
ast::ExprClosure(_, _, ref fn_decl, ref top_level_block) => {
let name = format!("fn{}", token::gensym("fn"));
let name = token::str_to_ident(name[]);
(name, &**fn_decl,
// This is not quite right. It should actually inherit
// the generics of the enclosing function.
&empty_generics,
&**top_level_block,
expr.span,
// Don't try to lookup the item path:
false)
}
_ => cx.sess().span_bug(expr.span,
"create_function_debug_context: expected an expr_fn_block here")
}
}
ast_map::NodeTraitItem(ref trait_method) => {
match **trait_method {
ast::ProvidedMethod(ref method) => {
if contains_nodebug_attribute(method.attrs.as_slice()) {
return FunctionDebugContext::FunctionWithoutDebugInfo;
}
(method.pe_ident(),
method.pe_fn_decl(),
method.pe_generics(),
method.pe_body(),
method.span,
true)
}
_ => {
cx.sess()
.bug(format!("create_function_debug_context: \
unexpected sort of node: {}",
fnitem)[])
}
}
}
ast_map::NodeForeignItem(..) |
ast_map::NodeVariant(..) |
ast_map::NodeStructCtor(..) => {
return FunctionDebugContext::FunctionWithoutDebugInfo;
}
_ => cx.sess().bug(format!("create_function_debug_context: \
unexpected sort of node: {}",
fnitem)[])
};
// This can be the case for functions inlined from another crate
if span == codemap::DUMMY_SP {
return FunctionDebugContext::FunctionWithoutDebugInfo;
}
let loc = span_start(cx, span);
let file_metadata = file_metadata(cx, loc.file.name[]);
let function_type_metadata = unsafe {
let fn_signature = get_function_signature(cx,
fn_ast_id,
&*fn_decl,
param_substs,
span);
llvm::LLVMDIBuilderCreateSubroutineType(DIB(cx), file_metadata, fn_signature)
};
// Get_template_parameters() will append a `<...>` clause to the function
// name if necessary.
let mut function_name = String::from_str(token::get_ident(ident).get());
let template_parameters = get_template_parameters(cx,
generics,
param_substs,
file_metadata,
&mut function_name);
// There is no ast_map::Path for ast::ExprClosure-type functions. For now,
// just don't put them into a namespace. In the future this could be improved
// somehow (storing a path in the ast_map, or construct a path using the
// enclosing function).
let (linkage_name, containing_scope) = if has_path {
let namespace_node = namespace_for_item(cx, ast_util::local_def(fn_ast_id));
let linkage_name = namespace_node.mangled_name_of_contained_item(
function_name[]);
let containing_scope = namespace_node.scope;
(linkage_name, containing_scope)
} else {
(function_name.clone(), file_metadata)
};
// Clang sets this parameter to the opening brace of the function's block,
// so let's do this too.
let scope_line = span_start(cx, top_level_block.span).line;
let is_local_to_unit = is_node_local_to_unit(cx, fn_ast_id);
let fn_metadata = function_name.with_c_str(|function_name| {
linkage_name.with_c_str(|linkage_name| {
unsafe {
llvm::LLVMDIBuilderCreateFunction(
DIB(cx),
containing_scope,
function_name,
linkage_name,
file_metadata,
loc.line as c_uint,
function_type_metadata,
is_local_to_unit,
true,
scope_line as c_uint,
FlagPrototyped as c_uint,
cx.sess().opts.optimize != config::No,
llfn,
template_parameters,
ptr::null_mut())
}
})
});
let scope_map = create_scope_map(cx,
fn_decl.inputs.as_slice(),
&*top_level_block,
fn_metadata,
fn_ast_id);
// Initialize fn debug context (including scope map and namespace map)
let fn_debug_context = box FunctionDebugContextData {
scope_map: RefCell::new(scope_map),
fn_metadata: fn_metadata,
argument_counter: Cell::new(1),
source_locations_enabled: Cell::new(false),
};
return FunctionDebugContext::RegularContext(fn_debug_context);
fn get_function_signature<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>,
fn_ast_id: ast::NodeId,
fn_decl: &ast::FnDecl,
param_substs: &Substs<'tcx>,
error_reporting_span: Span) -> DIArray {
if cx.sess().opts.debuginfo == LimitedDebugInfo {
return create_DIArray(DIB(cx), &[]);
}
let mut signature = Vec::with_capacity(fn_decl.inputs.len() + 1);
// Return type -- llvm::DIBuilder wants this at index 0
match fn_decl.output {
ast::Return(ref ret_ty) if ret_ty.node == ast::TyTup(vec![]) =>
signature.push(ptr::null_mut()),
_ => {
assert_type_for_node_id(cx, fn_ast_id, error_reporting_span);
let return_type = ty::node_id_to_type(cx.tcx(), fn_ast_id);
let return_type = monomorphize::apply_param_substs(cx.tcx(),
param_substs,
&return_type);
signature.push(type_metadata(cx, return_type, codemap::DUMMY_SP));
}
}
// Arguments types
for arg in fn_decl.inputs.iter() {
assert_type_for_node_id(cx, arg.pat.id, arg.pat.span);
let arg_type = ty::node_id_to_type(cx.tcx(), arg.pat.id);
let arg_type = monomorphize::apply_param_substs(cx.tcx(),
param_substs,
&arg_type);
signature.push(type_metadata(cx, arg_type, codemap::DUMMY_SP));
}
return create_DIArray(DIB(cx), signature[]);
}
fn get_template_parameters<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>,
generics: &ast::Generics,
param_substs: &Substs<'tcx>,
file_metadata: DIFile,
name_to_append_suffix_to: &mut String)
-> DIArray
{
let self_type = param_substs.self_ty();
let self_type = monomorphize::normalize_associated_type(cx.tcx(), &self_type);
// Only true for static default methods:
let has_self_type = self_type.is_some();
if !generics.is_type_parameterized() && !has_self_type {
return create_DIArray(DIB(cx), &[]);
}
name_to_append_suffix_to.push('<');
// The list to be filled with template parameters:
let mut template_params: Vec<DIDescriptor> =
Vec::with_capacity(generics.ty_params.len() + 1);
// Handle self type
if has_self_type {
let actual_self_type = self_type.unwrap();
// Add self type name to <...> clause of function name
let actual_self_type_name = compute_debuginfo_type_name(
cx,
actual_self_type,
true);
name_to_append_suffix_to.push_str(actual_self_type_name[]);
if generics.is_type_parameterized() {
name_to_append_suffix_to.push_str(",");
}
// Only create type information if full debuginfo is enabled
if cx.sess().opts.debuginfo == FullDebugInfo {
let actual_self_type_metadata = type_metadata(cx,
actual_self_type,
codemap::DUMMY_SP);
let ident = special_idents::type_self;
let param_metadata = token::get_ident(ident).get()
.with_c_str(|name| {
unsafe {
llvm::LLVMDIBuilderCreateTemplateTypeParameter(
DIB(cx),
file_metadata,
name,
actual_self_type_metadata,
ptr::null_mut(),
0,
0)
}
});
template_params.push(param_metadata);
}
}
// Handle other generic parameters
let actual_types = param_substs.types.get_slice(subst::FnSpace);
for (index, &ast::TyParam{ ident, .. }) in generics.ty_params.iter().enumerate() {
let actual_type = actual_types[index];
// Add actual type name to <...> clause of function name
let actual_type_name = compute_debuginfo_type_name(cx,
actual_type,
true);
name_to_append_suffix_to.push_str(actual_type_name[]);
if index != generics.ty_params.len() - 1 {
name_to_append_suffix_to.push_str(",");
}
// Again, only create type information if full debuginfo is enabled
if cx.sess().opts.debuginfo == FullDebugInfo {
let actual_type_metadata = type_metadata(cx, actual_type, codemap::DUMMY_SP);
let param_metadata = token::get_ident(ident).get()
.with_c_str(|name| {
unsafe {
llvm::LLVMDIBuilderCreateTemplateTypeParameter(
DIB(cx),
file_metadata,
name,
actual_type_metadata,
ptr::null_mut(),
0,
0)
}
});
template_params.push(param_metadata);
}
}
name_to_append_suffix_to.push('>');
return create_DIArray(DIB(cx), template_params[]);
}
}
//=-----------------------------------------------------------------------------
// Module-Internal debug info creation functions
//=-----------------------------------------------------------------------------
fn is_node_local_to_unit(cx: &CrateContext, node_id: ast::NodeId) -> bool
{
// The is_local_to_unit flag indicates whether a function is local to the
// current compilation unit (i.e. if it is *static* in the C-sense). The
// *reachable* set should provide a good approximation of this, as it
// contains everything that might leak out of the current crate (by being
// externally visible or by being inlined into something externally visible).
// It might better to use the `exported_items` set from `driver::CrateAnalysis`
// in the future, but (atm) this set is not available in the translation pass.
!cx.reachable().contains(&node_id)
}
#[allow(non_snake_case)]
fn create_DIArray(builder: DIBuilderRef, arr: &[DIDescriptor]) -> DIArray {
return unsafe {
llvm::LLVMDIBuilderGetOrCreateArray(builder, arr.as_ptr(), arr.len() as u32)
};
}
fn compile_unit_metadata(cx: &CrateContext) -> DIDescriptor {
let work_dir = &cx.sess().working_dir;
let compile_unit_name = match cx.sess().local_crate_source_file {
None => fallback_path(cx),
Some(ref abs_path) => {
if abs_path.is_relative() {
cx.sess().warn("debuginfo: Invalid path to crate's local root source file!");
fallback_path(cx)
} else {
match abs_path.path_relative_from(work_dir) {
Some(ref p) if p.is_relative() => {
// prepend "./" if necessary
let dotdot = b"..";
let prefix = [dotdot[0], ::std::path::SEP_BYTE];
let mut path_bytes = p.as_vec().to_vec();
if path_bytes.slice_to(2) != prefix &&
path_bytes.slice_to(2) != dotdot {
path_bytes.insert(0, prefix[0]);
path_bytes.insert(1, prefix[1]);
}
path_bytes.to_c_str()
}
_ => fallback_path(cx)
}
}
}
};
debug!("compile_unit_metadata: {}", compile_unit_name);
let producer = format!("rustc version {}",
(option_env!("CFG_VERSION")).expect("CFG_VERSION"));
let compile_unit_name = compile_unit_name.as_ptr();
return work_dir.as_vec().with_c_str(|work_dir| {
producer.with_c_str(|producer| {
"".with_c_str(|flags| {
"".with_c_str(|split_name| {
unsafe {
llvm::LLVMDIBuilderCreateCompileUnit(
debug_context(cx).builder,
DW_LANG_RUST,
compile_unit_name,
work_dir,
producer,
cx.sess().opts.optimize != config::No,
flags,
0,
split_name)
}
})
})
})
});
fn fallback_path(cx: &CrateContext) -> CString {
cx.link_meta().crate_name.to_c_str()
}
}
fn declare_local<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
variable_ident: ast::Ident,
variable_type: Ty<'tcx>,
scope_metadata: DIScope,
variable_access: VariableAccess,
variable_kind: VariableKind,
span: Span) {
let cx: &CrateContext = bcx.ccx();
let filename = span_start(cx, span).file.name.clone();
let file_metadata = file_metadata(cx, filename[]);
let name = token::get_ident(variable_ident);
let loc = span_start(cx, span);
let type_metadata = type_metadata(cx, variable_type, span);
let (argument_index, dwarf_tag) = match variable_kind {
ArgumentVariable(index) => (index as c_uint, DW_TAG_arg_variable),
LocalVariable |
CapturedVariable => (0, DW_TAG_auto_variable)
};
let (var_alloca, var_metadata) = name.get().with_c_str(|name| {
match variable_access {
DirectVariable { alloca } => (
alloca,
unsafe {
llvm::LLVMDIBuilderCreateLocalVariable(
DIB(cx),
dwarf_tag,
scope_metadata,
name,
file_metadata,
loc.line as c_uint,
type_metadata,
cx.sess().opts.optimize != config::No,
0,
argument_index)
}
),
IndirectVariable { alloca, address_operations } => (
alloca,
unsafe {
llvm::LLVMDIBuilderCreateComplexVariable(
DIB(cx),
dwarf_tag,
scope_metadata,
name,
file_metadata,
loc.line as c_uint,
type_metadata,
address_operations.as_ptr(),
address_operations.len() as c_uint,
argument_index)
}
)
}
});
set_debug_location(cx, DebugLocation::new(scope_metadata,
loc.line,
loc.col.to_uint()));
unsafe {
let instr = llvm::LLVMDIBuilderInsertDeclareAtEnd(
DIB(cx),
var_alloca,
var_metadata,
bcx.llbb);
llvm::LLVMSetInstDebugLocation(trans::build::B(bcx).llbuilder, instr);
}
match variable_kind {
ArgumentVariable(_) | CapturedVariable => {
assert!(!bcx.fcx
.debug_context
.get_ref(cx, span)
.source_locations_enabled
.get());
set_debug_location(cx, UnknownLocation);
}
_ => { /* nothing to do */ }
}
}
fn file_metadata(cx: &CrateContext, full_path: &str) -> DIFile {
match debug_context(cx).created_files.borrow().get(full_path) {
Some(file_metadata) => return *file_metadata,
None => ()
}
debug!("file_metadata: {}", full_path);
// FIXME (#9639): This needs to handle non-utf8 paths
let work_dir = cx.sess().working_dir.as_str().unwrap();
let file_name =
if full_path.starts_with(work_dir) {
full_path[work_dir.len() + 1u..full_path.len()]
} else {
full_path
};
let file_metadata =
file_name.with_c_str(|file_name| {
work_dir.with_c_str(|work_dir| {
unsafe {
llvm::LLVMDIBuilderCreateFile(DIB(cx), file_name, work_dir)
}
})
});
let mut created_files = debug_context(cx).created_files.borrow_mut();
created_files.insert(full_path.to_string(), file_metadata);
return file_metadata;
}
/// Finds the scope metadata node for the given AST node.
fn scope_metadata(fcx: &FunctionContext,
node_id: ast::NodeId,
error_reporting_span: Span)
-> DIScope {
let scope_map = &fcx.debug_context
.get_ref(fcx.ccx, error_reporting_span)
.scope_map;
match scope_map.borrow().get(&node_id).cloned() {
Some(scope_metadata) => scope_metadata,
None => {
let node = fcx.ccx.tcx().map.get(node_id);
fcx.ccx.sess().span_bug(error_reporting_span,
format!("debuginfo: Could not find scope info for node {}",
node)[]);
}
}
}
fn diverging_type_metadata(cx: &CrateContext) -> DIType {
"!".with_c_str(|name| {
unsafe {
llvm::LLVMDIBuilderCreateBasicType(
DIB(cx),
name,
bytes_to_bits(0),
bytes_to_bits(0),
DW_ATE_unsigned)
}
})
}
fn basic_type_metadata<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>,
t: Ty<'tcx>) -> DIType {
debug!("basic_type_metadata: {}", t);
let (name, encoding) = match t.sty {
ty::ty_tup(ref elements) if elements.is_empty() =>
("()".to_string(), DW_ATE_unsigned),
ty::ty_bool => ("bool".to_string(), DW_ATE_boolean),
ty::ty_char => ("char".to_string(), DW_ATE_unsigned_char),
ty::ty_int(int_ty) => match int_ty {
ast::TyI => ("int".to_string(), DW_ATE_signed),
ast::TyI8 => ("i8".to_string(), DW_ATE_signed),
ast::TyI16 => ("i16".to_string(), DW_ATE_signed),
ast::TyI32 => ("i32".to_string(), DW_ATE_signed),
ast::TyI64 => ("i64".to_string(), DW_ATE_signed)
},
ty::ty_uint(uint_ty) => match uint_ty {
ast::TyU => ("uint".to_string(), DW_ATE_unsigned),
ast::TyU8 => ("u8".to_string(), DW_ATE_unsigned),
ast::TyU16 => ("u16".to_string(), DW_ATE_unsigned),
ast::TyU32 => ("u32".to_string(), DW_ATE_unsigned),
ast::TyU64 => ("u64".to_string(), DW_ATE_unsigned)
},
ty::ty_float(float_ty) => match float_ty {
ast::TyF32 => ("f32".to_string(), DW_ATE_float),
ast::TyF64 => ("f64".to_string(), DW_ATE_float),
},
_ => cx.sess().bug("debuginfo::basic_type_metadata - t is invalid type")
};
let llvm_type = type_of::type_of(cx, t);
let (size, align) = size_and_align_of(cx, llvm_type);
let ty_metadata = name.with_c_str(|name| {
unsafe {
llvm::LLVMDIBuilderCreateBasicType(
DIB(cx),
name,
bytes_to_bits(size),
bytes_to_bits(align),
encoding)
}
});
return ty_metadata;
}
fn pointer_type_metadata<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>,
pointer_type: Ty<'tcx>,
pointee_type_metadata: DIType)
-> DIType {
let pointer_llvm_type = type_of::type_of(cx, pointer_type);
let (pointer_size, pointer_align) = size_and_align_of(cx, pointer_llvm_type);
let name = compute_debuginfo_type_name(cx, pointer_type, false);
let ptr_metadata = name.with_c_str(|name| {
unsafe {
llvm::LLVMDIBuilderCreatePointerType(
DIB(cx),
pointee_type_metadata,
bytes_to_bits(pointer_size),
bytes_to_bits(pointer_align),
name)
}
});
return ptr_metadata;
}
//=-----------------------------------------------------------------------------
// Common facilities for record-like types (structs, enums, tuples)
//=-----------------------------------------------------------------------------
enum MemberOffset {
FixedMemberOffset { bytes: uint },
// For ComputedMemberOffset, the offset is read from the llvm type definition
ComputedMemberOffset
}
// Description of a type member, which can either be a regular field (as in
// structs or tuples) or an enum variant
struct MemberDescription {
name: String,
llvm_type: Type,
type_metadata: DIType,
offset: MemberOffset,
flags: c_uint
}
// A factory for MemberDescriptions. It produces a list of member descriptions
// for some record-like type. MemberDescriptionFactories are used to defer the
// creation of type member descriptions in order to break cycles arising from
// recursive type definitions.
enum MemberDescriptionFactory<'tcx> {
StructMDF(StructMemberDescriptionFactory<'tcx>),
TupleMDF(TupleMemberDescriptionFactory<'tcx>),
EnumMDF(EnumMemberDescriptionFactory<'tcx>),
VariantMDF(VariantMemberDescriptionFactory<'tcx>)
}
impl<'tcx> MemberDescriptionFactory<'tcx> {
fn create_member_descriptions<'a>(&self, cx: &CrateContext<'a, 'tcx>)
-> Vec<MemberDescription> {
match *self {
StructMDF(ref this) => {
this.create_member_descriptions(cx)
}
TupleMDF(ref this) => {
this.create_member_descriptions(cx)
}
EnumMDF(ref this) => {
this.create_member_descriptions(cx)
}
VariantMDF(ref this) => {
this.create_member_descriptions(cx)
}
}
}
}
// A description of some recursive type. It can either be already finished (as
// with FinalMetadata) or it is not yet finished, but contains all information
// needed to generate the missing parts of the description. See the documentation
// section on Recursive Types at the top of this file for more information.
enum RecursiveTypeDescription<'tcx> {
UnfinishedMetadata {
unfinished_type: Ty<'tcx>,
unique_type_id: UniqueTypeId,
metadata_stub: DICompositeType,
llvm_type: Type,
member_description_factory: MemberDescriptionFactory<'tcx>,
},
FinalMetadata(DICompositeType)
}
fn create_and_register_recursive_type_forward_declaration<'a, 'tcx>(
cx: &CrateContext<'a, 'tcx>,
unfinished_type: Ty<'tcx>,
unique_type_id: UniqueTypeId,
metadata_stub: DICompositeType,
llvm_type: Type,
member_description_factory: MemberDescriptionFactory<'tcx>)
-> RecursiveTypeDescription<'tcx> {
// Insert the stub into the TypeMap in order to allow for recursive references
let mut type_map = debug_context(cx).type_map.borrow_mut();
type_map.register_unique_id_with_metadata(cx, unique_type_id, metadata_stub);
type_map.register_type_with_metadata(cx, unfinished_type, metadata_stub);
UnfinishedMetadata {
unfinished_type: unfinished_type,
unique_type_id: unique_type_id,
metadata_stub: metadata_stub,
llvm_type: llvm_type,
member_description_factory: member_description_factory,
}
}
impl<'tcx> RecursiveTypeDescription<'tcx> {
// Finishes up the description of the type in question (mostly by providing
// descriptions of the fields of the given type) and returns the final type metadata.
fn finalize<'a>(&self, cx: &CrateContext<'a, 'tcx>) -> MetadataCreationResult {
match *self {
FinalMetadata(metadata) => MetadataCreationResult::new(metadata, false),
UnfinishedMetadata {
unfinished_type,
unique_type_id,
metadata_stub,
llvm_type,
ref member_description_factory,
..
} => {
// Make sure that we have a forward declaration of the type in
// the TypeMap so that recursive references are possible. This
// will always be the case if the RecursiveTypeDescription has
// been properly created through the
// create_and_register_recursive_type_forward_declaration() function.
{
let type_map = debug_context(cx).type_map.borrow();
if type_map.find_metadata_for_unique_id(unique_type_id).is_none() ||
type_map.find_metadata_for_type(unfinished_type).is_none() {
cx.sess().bug(format!("Forward declaration of potentially recursive type \
'{}' was not found in TypeMap!",
ppaux::ty_to_string(cx.tcx(), unfinished_type))
[]);
}
}
// ... then create the member descriptions ...
let member_descriptions =
member_description_factory.create_member_descriptions(cx);
// ... and attach them to the stub to complete it.
set_members_of_composite_type(cx,
metadata_stub,
llvm_type,
member_descriptions[]);
return MetadataCreationResult::new(metadata_stub, true);
}
}
}
}
//=-----------------------------------------------------------------------------
// Structs
//=-----------------------------------------------------------------------------
// Creates MemberDescriptions for the fields of a struct
struct StructMemberDescriptionFactory<'tcx> {
fields: Vec<ty::field<'tcx>>,
is_simd: bool,
span: Span,
}
impl<'tcx> StructMemberDescriptionFactory<'tcx> {
fn create_member_descriptions<'a>(&self, cx: &CrateContext<'a, 'tcx>)
-> Vec<MemberDescription> {
if self.fields.len() == 0 {
return Vec::new();
}
let field_size = if self.is_simd {
machine::llsize_of_alloc(cx, type_of::type_of(cx, self.fields[0].mt.ty)) as uint
} else {
0xdeadbeef
};
self.fields.iter().enumerate().map(|(i, field)| {
let name = if field.name == special_idents::unnamed_field.name {
"".to_string()
} else {
token::get_name(field.name).get().to_string()
};
let offset = if self.is_simd {
assert!(field_size != 0xdeadbeef);
FixedMemberOffset { bytes: i * field_size }
} else {
ComputedMemberOffset
};
MemberDescription {
name: name,
llvm_type: type_of::type_of(cx, field.mt.ty),
type_metadata: type_metadata(cx, field.mt.ty, self.span),
offset: offset,
flags: FLAGS_NONE,
}
}).collect()
}
}
fn prepare_struct_metadata<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>,
struct_type: Ty<'tcx>,
def_id: ast::DefId,
substs: &subst::Substs<'tcx>,
unique_type_id: UniqueTypeId,
span: Span)
-> RecursiveTypeDescription<'tcx> {
let struct_name = compute_debuginfo_type_name(cx, struct_type, false);
let struct_llvm_type = type_of::type_of(cx, struct_type);
let (containing_scope, _) = get_namespace_and_span_for_item(cx, def_id);
let struct_metadata_stub = create_struct_stub(cx,
struct_llvm_type,
struct_name[],
unique_type_id,
containing_scope);
let fields = ty::struct_fields(cx.tcx(), def_id, substs);
create_and_register_recursive_type_forward_declaration(
cx,
struct_type,
unique_type_id,
struct_metadata_stub,
struct_llvm_type,
StructMDF(StructMemberDescriptionFactory {
fields: fields,
is_simd: ty::type_is_simd(cx.tcx(), struct_type),
span: span,
})
)
}
//=-----------------------------------------------------------------------------
// Tuples
//=-----------------------------------------------------------------------------
// Creates MemberDescriptions for the fields of a tuple
struct TupleMemberDescriptionFactory<'tcx> {
component_types: Vec<Ty<'tcx>>,
span: Span,
}
impl<'tcx> TupleMemberDescriptionFactory<'tcx> {
fn create_member_descriptions<'a>(&self, cx: &CrateContext<'a, 'tcx>)
-> Vec<MemberDescription> {
self.component_types.iter().map(|&component_type| {
MemberDescription {
name: "".to_string(),
llvm_type: type_of::type_of(cx, component_type),
type_metadata: type_metadata(cx, component_type, self.span),
offset: ComputedMemberOffset,
flags: FLAGS_NONE,
}
}).collect()
}
}
fn prepare_tuple_metadata<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>,
tuple_type: Ty<'tcx>,
component_types: &[Ty<'tcx>],
unique_type_id: UniqueTypeId,
span: Span)
-> RecursiveTypeDescription<'tcx> {
let tuple_name = compute_debuginfo_type_name(cx, tuple_type, false);
let tuple_llvm_type = type_of::type_of(cx, tuple_type);
create_and_register_recursive_type_forward_declaration(
cx,
tuple_type,
unique_type_id,
create_struct_stub(cx,
tuple_llvm_type,
tuple_name[],
unique_type_id,
UNKNOWN_SCOPE_METADATA),
tuple_llvm_type,
TupleMDF(TupleMemberDescriptionFactory {
component_types: component_types.to_vec(),
span: span,
})
)
}
//=-----------------------------------------------------------------------------
// Enums
//=-----------------------------------------------------------------------------
// Describes the members of an enum value: An enum is described as a union of
// structs in DWARF. This MemberDescriptionFactory provides the description for
// the members of this union; so for every variant of the given enum, this factory
// will produce one MemberDescription (all with no name and a fixed offset of
// zero bytes).
struct EnumMemberDescriptionFactory<'tcx> {
enum_type: Ty<'tcx>,
type_rep: Rc<adt::Repr<'tcx>>,
variants: Rc<Vec<Rc<ty::VariantInfo<'tcx>>>>,
discriminant_type_metadata: Option<DIType>,
containing_scope: DIScope,
file_metadata: DIFile,
span: Span,
}
impl<'tcx> EnumMemberDescriptionFactory<'tcx> {
fn create_member_descriptions<'a>(&self, cx: &CrateContext<'a, 'tcx>)
-> Vec<MemberDescription> {
match *self.type_rep {
adt::General(_, ref struct_defs, _) => {
let discriminant_info = RegularDiscriminant(self.discriminant_type_metadata
.expect(""));
struct_defs
.iter()
.enumerate()
.map(|(i, struct_def)| {
let (variant_type_metadata,
variant_llvm_type,
member_desc_factory) =
describe_enum_variant(cx,
self.enum_type,
struct_def,
&*(*self.variants)[i],
discriminant_info,
self.containing_scope,
self.span);
let member_descriptions = member_desc_factory
.create_member_descriptions(cx);
set_members_of_composite_type(cx,
variant_type_metadata,
variant_llvm_type,
member_descriptions[]);
MemberDescription {
name: "".to_string(),
llvm_type: variant_llvm_type,
type_metadata: variant_type_metadata,
offset: FixedMemberOffset { bytes: 0 },
flags: FLAGS_NONE
}
}).collect()
},
adt::Univariant(ref struct_def, _) => {
assert!(self.variants.len() <= 1);
if self.variants.len() == 0 {
vec![]
} else {
let (variant_type_metadata,
variant_llvm_type,
member_description_factory) =
describe_enum_variant(cx,
self.enum_type,
struct_def,
&*(*self.variants)[0],
NoDiscriminant,
self.containing_scope,
self.span);
let member_descriptions =
member_description_factory.create_member_descriptions(cx);
set_members_of_composite_type(cx,
variant_type_metadata,
variant_llvm_type,
member_descriptions[]);
vec![
MemberDescription {
name: "".to_string(),
llvm_type: variant_llvm_type,
type_metadata: variant_type_metadata,
offset: FixedMemberOffset { bytes: 0 },
flags: FLAGS_NONE
}
]
}
}
adt::RawNullablePointer { nndiscr: non_null_variant_index, nnty, .. } => {
// As far as debuginfo is concerned, the pointer this enum
// represents is still wrapped in a struct. This is to make the
// DWARF representation of enums uniform.
// First create a description of the artificial wrapper struct:
let non_null_variant = &(*self.variants)[non_null_variant_index as uint];
let non_null_variant_name = token::get_name(non_null_variant.name);
// The llvm type and metadata of the pointer
let non_null_llvm_type = type_of::type_of(cx, nnty);
let non_null_type_metadata = type_metadata(cx, nnty, self.span);
// The type of the artificial struct wrapping the pointer
let artificial_struct_llvm_type = Type::struct_(cx,
&[non_null_llvm_type],
false);
// For the metadata of the wrapper struct, we need to create a
// MemberDescription of the struct's single field.
let sole_struct_member_description = MemberDescription {
name: match non_null_variant.arg_names {
Some(ref names) => token::get_ident(names[0]).get().to_string(),
None => "".to_string()
},
llvm_type: non_null_llvm_type,
type_metadata: non_null_type_metadata,
offset: FixedMemberOffset { bytes: 0 },
flags: FLAGS_NONE
};
let unique_type_id = debug_context(cx).type_map
.borrow_mut()
.get_unique_type_id_of_enum_variant(
cx,
self.enum_type,
non_null_variant_name.get());
// Now we can create the metadata of the artificial struct
let artificial_struct_metadata =
composite_type_metadata(cx,
artificial_struct_llvm_type,
non_null_variant_name.get(),
unique_type_id,
&[sole_struct_member_description],
self.containing_scope,
self.file_metadata,
codemap::DUMMY_SP);
// Encode the information about the null variant in the union
// member's name.
let null_variant_index = (1 - non_null_variant_index) as uint;
let null_variant_name = token::get_name((*self.variants)[null_variant_index].name);
let union_member_name = format!("RUST$ENCODED$ENUM${}${}",
0u,
null_variant_name);
// Finally create the (singleton) list of descriptions of union
// members.
vec![
MemberDescription {
name: union_member_name,
llvm_type: artificial_struct_llvm_type,
type_metadata: artificial_struct_metadata,
offset: FixedMemberOffset { bytes: 0 },
flags: FLAGS_NONE
}
]
},
adt::StructWrappedNullablePointer { nonnull: ref struct_def,
nndiscr,
ref discrfield, ..} => {
// Create a description of the non-null variant
let (variant_type_metadata, variant_llvm_type, member_description_factory) =
describe_enum_variant(cx,
self.enum_type,
struct_def,
&*(*self.variants)[nndiscr as uint],
OptimizedDiscriminant,
self.containing_scope,
self.span);
let variant_member_descriptions =
member_description_factory.create_member_descriptions(cx);
set_members_of_composite_type(cx,
variant_type_metadata,
variant_llvm_type,
variant_member_descriptions[]);
// Encode the information about the null variant in the union
// member's name.
let null_variant_index = (1 - nndiscr) as uint;
let null_variant_name = token::get_name((*self.variants)[null_variant_index].name);
let discrfield = discrfield.iter()
.skip(1)
.map(|x| x.to_string())
.collect::<Vec<_>>().connect("$");
let union_member_name = format!("RUST$ENCODED$ENUM${}${}",
discrfield,
null_variant_name);
// Create the (singleton) list of descriptions of union members.
vec![
MemberDescription {
name: union_member_name,
llvm_type: variant_llvm_type,
type_metadata: variant_type_metadata,
offset: FixedMemberOffset { bytes: 0 },
flags: FLAGS_NONE
}
]
},
adt::CEnum(..) => cx.sess().span_bug(self.span, "This should be unreachable.")
}
}
}
// Creates MemberDescriptions for the fields of a single enum variant.
struct VariantMemberDescriptionFactory<'tcx> {
args: Vec<(String, Ty<'tcx>)>,
discriminant_type_metadata: Option<DIType>,
span: Span,
}
impl<'tcx> VariantMemberDescriptionFactory<'tcx> {
fn create_member_descriptions<'a>(&self, cx: &CrateContext<'a, 'tcx>)
-> Vec<MemberDescription> {
self.args.iter().enumerate().map(|(i, &(ref name, ty))| {
MemberDescription {
name: name.to_string(),
llvm_type: type_of::type_of(cx, ty),
type_metadata: match self.discriminant_type_metadata {
Some(metadata) if i == 0 => metadata,
_ => type_metadata(cx, ty, self.span)
},
offset: ComputedMemberOffset,
flags: FLAGS_NONE
}
}).collect()
}
}
#[derive(Copy)]
enum EnumDiscriminantInfo {
RegularDiscriminant(DIType),
OptimizedDiscriminant,
NoDiscriminant
}
// Returns a tuple of (1) type_metadata_stub of the variant, (2) the llvm_type
// of the variant, and (3) a MemberDescriptionFactory for producing the
// descriptions of the fields of the variant. This is a rudimentary version of a
// full RecursiveTypeDescription.
fn describe_enum_variant<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>,
enum_type: Ty<'tcx>,
struct_def: &adt::Struct<'tcx>,
variant_info: &ty::VariantInfo<'tcx>,
discriminant_info: EnumDiscriminantInfo,
containing_scope: DIScope,
span: Span)
-> (DICompositeType, Type, MemberDescriptionFactory<'tcx>) {
let variant_llvm_type =
Type::struct_(cx, struct_def.fields
.iter()
.map(|&t| type_of::type_of(cx, t))
.collect::<Vec<_>>()
[],
struct_def.packed);
// Could do some consistency checks here: size, align, field count, discr type
let variant_name = token::get_name(variant_info.name);
let variant_name = variant_name.get();
let unique_type_id = debug_context(cx).type_map
.borrow_mut()
.get_unique_type_id_of_enum_variant(
cx,
enum_type,
variant_name);
let metadata_stub = create_struct_stub(cx,
variant_llvm_type,
variant_name,
unique_type_id,
containing_scope);
// Get the argument names from the enum variant info
let mut arg_names: Vec<_> = match variant_info.arg_names {
Some(ref names) => {
names.iter()
.map(|ident| {
token::get_ident(*ident).get().to_string()
}).collect()
}
None => variant_info.args.iter().map(|_| "".to_string()).collect()
};
// If this is not a univariant enum, there is also the discriminant field.
match discriminant_info {
RegularDiscriminant(_) => arg_names.insert(0, "RUST$ENUM$DISR".to_string()),
_ => { /* do nothing */ }
};
// Build an array of (field name, field type) pairs to be captured in the factory closure.
let args: Vec<(String, Ty)> = arg_names.iter()
.zip(struct_def.fields.iter())
.map(|(s, &t)| (s.to_string(), t))
.collect();
let member_description_factory =
VariantMDF(VariantMemberDescriptionFactory {
args: args,
discriminant_type_metadata: match discriminant_info {
RegularDiscriminant(discriminant_type_metadata) => {
Some(discriminant_type_metadata)
}
_ => None
},
span: span,
});
(metadata_stub, variant_llvm_type, member_description_factory)
}
fn prepare_enum_metadata<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>,
enum_type: Ty<'tcx>,
enum_def_id: ast::DefId,
unique_type_id: UniqueTypeId,
span: Span)
-> RecursiveTypeDescription<'tcx> {
let enum_name = compute_debuginfo_type_name(cx, enum_type, false);
let (containing_scope, definition_span) = get_namespace_and_span_for_item(cx, enum_def_id);
let loc = span_start(cx, definition_span);
let file_metadata = file_metadata(cx, loc.file.name[]);
let variants = ty::enum_variants(cx.tcx(), enum_def_id);
let enumerators_metadata: Vec<DIDescriptor> = variants
.iter()
.map(|v| {
token::get_name(v.name).get().with_c_str(|name| {
unsafe {
llvm::LLVMDIBuilderCreateEnumerator(
DIB(cx),
name,
v.disr_val as u64)
}
})
})
.collect();
let discriminant_type_metadata = |&: inttype| {
// We can reuse the type of the discriminant for all monomorphized
// instances of an enum because it doesn't depend on any type parameters.
// The def_id, uniquely identifying the enum's polytype acts as key in
// this cache.
let cached_discriminant_type_metadata = debug_context(cx).created_enum_disr_types
.borrow()
.get(&enum_def_id).cloned();
match cached_discriminant_type_metadata {
Some(discriminant_type_metadata) => discriminant_type_metadata,
None => {
let discriminant_llvm_type = adt::ll_inttype(cx, inttype);
let (discriminant_size, discriminant_align) =
size_and_align_of(cx, discriminant_llvm_type);
let discriminant_base_type_metadata =
type_metadata(cx,
adt::ty_of_inttype(cx.tcx(), inttype),
codemap::DUMMY_SP);
let discriminant_name = get_enum_discriminant_name(cx, enum_def_id);
let discriminant_type_metadata = discriminant_name.get().with_c_str(|name| {
unsafe {
llvm::LLVMDIBuilderCreateEnumerationType(
DIB(cx),
containing_scope,
name,
UNKNOWN_FILE_METADATA,
UNKNOWN_LINE_NUMBER,
bytes_to_bits(discriminant_size),
bytes_to_bits(discriminant_align),
create_DIArray(DIB(cx), enumerators_metadata[]),
discriminant_base_type_metadata)
}
});
debug_context(cx).created_enum_disr_types
.borrow_mut()
.insert(enum_def_id, discriminant_type_metadata);
discriminant_type_metadata
}
}
};
let type_rep = adt::represent_type(cx, enum_type);
let discriminant_type_metadata = match *type_rep {
adt::CEnum(inttype, _, _) => {
return FinalMetadata(discriminant_type_metadata(inttype))
},
adt::RawNullablePointer { .. } |
adt::StructWrappedNullablePointer { .. } |
adt::Univariant(..) => None,
adt::General(inttype, _, _) => Some(discriminant_type_metadata(inttype)),
};
let enum_llvm_type = type_of::type_of(cx, enum_type);
let (enum_type_size, enum_type_align) = size_and_align_of(cx, enum_llvm_type);
let unique_type_id_str = debug_context(cx)
.type_map
.borrow()
.get_unique_type_id_as_string(unique_type_id);
let enum_metadata = enum_name.with_c_str(|enum_name| {
unique_type_id_str.with_c_str(|unique_type_id_str| {
unsafe {
llvm::LLVMDIBuilderCreateUnionType(
DIB(cx),
containing_scope,
enum_name,
UNKNOWN_FILE_METADATA,
UNKNOWN_LINE_NUMBER,
bytes_to_bits(enum_type_size),
bytes_to_bits(enum_type_align),
0, // Flags
ptr::null_mut(),
0, // RuntimeLang
unique_type_id_str)
}
})
});
return create_and_register_recursive_type_forward_declaration(
cx,
enum_type,
unique_type_id,
enum_metadata,
enum_llvm_type,
EnumMDF(EnumMemberDescriptionFactory {
enum_type: enum_type,
type_rep: type_rep.clone(),
variants: variants,
discriminant_type_metadata: discriminant_type_metadata,
containing_scope: containing_scope,
file_metadata: file_metadata,
span: span,
}),
);
fn get_enum_discriminant_name(cx: &CrateContext,
def_id: ast::DefId)
-> token::InternedString {
let name = if def_id.krate == ast::LOCAL_CRATE {
cx.tcx().map.get_path_elem(def_id.node).name()
} else {
csearch::get_item_path(cx.tcx(), def_id).last().unwrap().name()
};
token::get_name(name)
}
}
/// Creates debug information for a composite type, that is, anything that
/// results in a LLVM struct.
///
/// Examples of Rust types to use this are: structs, tuples, boxes, vecs, and enums.
fn composite_type_metadata(cx: &CrateContext,
composite_llvm_type: Type,
composite_type_name: &str,
composite_type_unique_id: UniqueTypeId,
member_descriptions: &[MemberDescription],
containing_scope: DIScope,
// Ignore source location information as long as it
// can't be reconstructed for non-local crates.
_file_metadata: DIFile,
_definition_span: Span)
-> DICompositeType {
// Create the (empty) struct metadata node ...
let composite_type_metadata = create_struct_stub(cx,
composite_llvm_type,
composite_type_name,
composite_type_unique_id,
containing_scope);
// ... and immediately create and add the member descriptions.
set_members_of_composite_type(cx,
composite_type_metadata,
composite_llvm_type,
member_descriptions);
return composite_type_metadata;
}
fn set_members_of_composite_type(cx: &CrateContext,
composite_type_metadata: DICompositeType,
composite_llvm_type: Type,
member_descriptions: &[MemberDescription]) {
// In some rare cases LLVM metadata uniquing would lead to an existing type
// description being used instead of a new one created in create_struct_stub.
// This would cause a hard to trace assertion in DICompositeType::SetTypeArray().
// The following check makes sure that we get a better error message if this
// should happen again due to some regression.
{
let mut composite_types_completed =
debug_context(cx).composite_types_completed.borrow_mut();
if composite_types_completed.contains(&composite_type_metadata) {
let (llvm_version_major, llvm_version_minor) = unsafe {
(llvm::LLVMVersionMajor(), llvm::LLVMVersionMinor())
};
let actual_llvm_version = llvm_version_major * 1000000 + llvm_version_minor * 1000;
let min_supported_llvm_version = 3 * 1000000 + 4 * 1000;
if actual_llvm_version < min_supported_llvm_version {
cx.sess().warn(format!("This version of rustc was built with LLVM \
{}.{}. Rustc just ran into a known \
debuginfo corruption problem thatoften \
occurs with LLVM versions below 3.4. \
Please use a rustc built with anewer \
version of LLVM.",
llvm_version_major,
llvm_version_minor)[]);
} else {
cx.sess().bug("debuginfo::set_members_of_composite_type() - \
Already completed forward declaration re-encountered.");
}
} else {
composite_types_completed.insert(composite_type_metadata);
}
}
let member_metadata: Vec<DIDescriptor> = member_descriptions
.iter()
.enumerate()
.map(|(i, member_description)| {
let (member_size, member_align) = size_and_align_of(cx, member_description.llvm_type);
let member_offset = match member_description.offset {
FixedMemberOffset { bytes } => bytes as u64,
ComputedMemberOffset => machine::llelement_offset(cx, composite_llvm_type, i)
};
member_description.name.with_c_str(|member_name| {
unsafe {
llvm::LLVMDIBuilderCreateMemberType(
DIB(cx),
composite_type_metadata,
member_name,
UNKNOWN_FILE_METADATA,
UNKNOWN_LINE_NUMBER,
bytes_to_bits(member_size),
bytes_to_bits(member_align),
bytes_to_bits(member_offset),
member_description.flags,
member_description.type_metadata)
}
})
})
.collect();
unsafe {
let type_array = create_DIArray(DIB(cx), member_metadata[]);
llvm::LLVMDICompositeTypeSetTypeArray(composite_type_metadata, type_array);
}
}
// A convenience wrapper around LLVMDIBuilderCreateStructType(). Does not do any
// caching, does not add any fields to the struct. This can be done later with
// set_members_of_composite_type().
fn create_struct_stub(cx: &CrateContext,
struct_llvm_type: Type,
struct_type_name: &str,
unique_type_id: UniqueTypeId,
containing_scope: DIScope)
-> DICompositeType {
let (struct_size, struct_align) = size_and_align_of(cx, struct_llvm_type);
let unique_type_id_str = debug_context(cx).type_map
.borrow()
.get_unique_type_id_as_string(unique_type_id);
let metadata_stub = unsafe {
struct_type_name.with_c_str(|name| {
unique_type_id_str.with_c_str(|unique_type_id| {
// LLVMDIBuilderCreateStructType() wants an empty array. A null
// pointer will lead to hard to trace and debug LLVM assertions
// later on in llvm/lib/IR/Value.cpp.
let empty_array = create_DIArray(DIB(cx), &[]);
llvm::LLVMDIBuilderCreateStructType(
DIB(cx),
containing_scope,
name,
UNKNOWN_FILE_METADATA,
UNKNOWN_LINE_NUMBER,
bytes_to_bits(struct_size),
bytes_to_bits(struct_align),
0,
ptr::null_mut(),
empty_array,
0,
ptr::null_mut(),
unique_type_id)
})
})
};
return metadata_stub;
}
fn fixed_vec_metadata<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>,
unique_type_id: UniqueTypeId,
element_type: Ty<'tcx>,
len: uint,
span: Span)
-> MetadataCreationResult {
let element_type_metadata = type_metadata(cx, element_type, span);
return_if_metadata_created_in_meantime!(cx, unique_type_id);
let element_llvm_type = type_of::type_of(cx, element_type);
let (element_type_size, element_type_align) = size_and_align_of(cx, element_llvm_type);
let subrange = unsafe {
llvm::LLVMDIBuilderGetOrCreateSubrange(
DIB(cx),
0,
len as i64)
};
let subscripts = create_DIArray(DIB(cx), &[subrange]);
let metadata = unsafe {
llvm::LLVMDIBuilderCreateArrayType(
DIB(cx),
bytes_to_bits(element_type_size * (len as u64)),
bytes_to_bits(element_type_align),
element_type_metadata,
subscripts)
};
return MetadataCreationResult::new(metadata, false);
}
fn vec_slice_metadata<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>,
vec_type: Ty<'tcx>,
element_type: Ty<'tcx>,
unique_type_id: UniqueTypeId,
span: Span)
-> MetadataCreationResult {
let data_ptr_type = ty::mk_ptr(cx.tcx(), ty::mt {
ty: element_type,
mutbl: ast::MutImmutable
});
let element_type_metadata = type_metadata(cx, data_ptr_type, span);
return_if_metadata_created_in_meantime!(cx, unique_type_id);
let slice_llvm_type = type_of::type_of(cx, vec_type);
let slice_type_name = compute_debuginfo_type_name(cx, vec_type, true);
let member_llvm_types = slice_llvm_type.field_types();
assert!(slice_layout_is_correct(cx,
member_llvm_types[],
element_type));
let member_descriptions = [
MemberDescription {
name: "data_ptr".to_string(),
llvm_type: member_llvm_types[0],
type_metadata: element_type_metadata,
offset: ComputedMemberOffset,
flags: FLAGS_NONE
},
MemberDescription {
name: "length".to_string(),
llvm_type: member_llvm_types[1],
type_metadata: type_metadata(cx, cx.tcx().types.uint, span),
offset: ComputedMemberOffset,
flags: FLAGS_NONE
},
];
assert!(member_descriptions.len() == member_llvm_types.len());
let loc = span_start(cx, span);
let file_metadata = file_metadata(cx, loc.file.name[]);
let metadata = composite_type_metadata(cx,
slice_llvm_type,
slice_type_name[],
unique_type_id,
&member_descriptions,
UNKNOWN_SCOPE_METADATA,
file_metadata,
span);
return MetadataCreationResult::new(metadata, false);
fn slice_layout_is_correct<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>,
member_llvm_types: &[Type],
element_type: Ty<'tcx>)
-> bool {
member_llvm_types.len() == 2 &&
member_llvm_types[0] == type_of::type_of(cx, element_type).ptr_to() &&
member_llvm_types[1] == cx.int_type()
}
}
fn subroutine_type_metadata<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>,
unique_type_id: UniqueTypeId,
signature: &ty::PolyFnSig<'tcx>,
span: Span)
-> MetadataCreationResult {
let mut signature_metadata: Vec<DIType> = Vec::with_capacity(signature.0.inputs.len() + 1);
// return type
signature_metadata.push(match signature.0.output {
ty::FnConverging(ret_ty) => match ret_ty.sty {
ty::ty_tup(ref tys) if tys.is_empty() => ptr::null_mut(),
_ => type_metadata(cx, ret_ty, span)
},
ty::FnDiverging => diverging_type_metadata(cx)
});
// regular arguments
for &argument_type in signature.0.inputs.iter() {
signature_metadata.push(type_metadata(cx, argument_type, span));
}
return_if_metadata_created_in_meantime!(cx, unique_type_id);
return MetadataCreationResult::new(
unsafe {
llvm::LLVMDIBuilderCreateSubroutineType(
DIB(cx),
UNKNOWN_FILE_METADATA,
create_DIArray(DIB(cx), signature_metadata[]))
},
false);
}
// FIXME(1563) This is all a bit of a hack because 'trait pointer' is an ill-
// defined concept. For the case of an actual trait pointer (i.e., Box<Trait>,
// &Trait), trait_object_type should be the whole thing (e.g, Box<Trait>) and
// trait_type should be the actual trait (e.g., Trait). Where the trait is part
// of a DST struct, there is no trait_object_type and the results of this
// function will be a little bit weird.
fn trait_pointer_metadata<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>,
trait_type: Ty<'tcx>,
trait_object_type: Option<Ty<'tcx>>,
unique_type_id: UniqueTypeId)
-> DIType {
// The implementation provided here is a stub. It makes sure that the trait
// type is assigned the correct name, size, namespace, and source location.
// But it does not describe the trait's methods.
let def_id = match trait_type.sty {
ty::ty_trait(ref data) => data.principal_def_id(),
_ => {
let pp_type_name = ppaux::ty_to_string(cx.tcx(), trait_type);
cx.sess().bug(format!("debuginfo: Unexpected trait-object type in \
trait_pointer_metadata(): {}",
pp_type_name[])[]);
}
};
let trait_object_type = trait_object_type.unwrap_or(trait_type);
let trait_type_name =
compute_debuginfo_type_name(cx, trait_object_type, false);
let (containing_scope, _) = get_namespace_and_span_for_item(cx, def_id);
let trait_llvm_type = type_of::type_of(cx, trait_object_type);
composite_type_metadata(cx,
trait_llvm_type,
trait_type_name[],
unique_type_id,
&[],
containing_scope,
UNKNOWN_FILE_METADATA,
codemap::DUMMY_SP)
}
fn type_metadata<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>,
t: Ty<'tcx>,
usage_site_span: Span)
-> DIType {
// Get the unique type id of this type.
let unique_type_id = {
let mut type_map = debug_context(cx).type_map.borrow_mut();
// First, try to find the type in TypeMap. If we have seen it before, we
// can exit early here.
match type_map.find_metadata_for_type(t) {
Some(metadata) => {
return metadata;
},
None => {
// The Ty is not in the TypeMap but maybe we have already seen
// an equivalent type (e.g. only differing in region arguments).
// In order to find out, generate the unique type id and look
// that up.
let unique_type_id = type_map.get_unique_type_id_of_type(cx, t);
match type_map.find_metadata_for_unique_id(unique_type_id) {
Some(metadata) => {
// There is already an equivalent type in the TypeMap.
// Register this Ty as an alias in the cache and
// return the cached metadata.
type_map.register_type_with_metadata(cx, t, metadata);
return metadata;
},
None => {
// There really is no type metadata for this type, so
// proceed by creating it.
unique_type_id
}
}
}
}
};
debug!("type_metadata: {}", t);
let sty = &t.sty;
let MetadataCreationResult { metadata, already_stored_in_typemap } = match *sty {
ty::ty_bool |
ty::ty_char |
ty::ty_int(_) |
ty::ty_uint(_) |
ty::ty_float(_) => {
MetadataCreationResult::new(basic_type_metadata(cx, t), false)
}
ty::ty_tup(ref elements) if elements.is_empty() => {
MetadataCreationResult::new(basic_type_metadata(cx, t), false)
}
ty::ty_enum(def_id, _) => {
prepare_enum_metadata(cx, t, def_id, unique_type_id, usage_site_span).finalize(cx)
}
ty::ty_vec(typ, Some(len)) => {
fixed_vec_metadata(cx, unique_type_id, typ, len, usage_site_span)
}
// FIXME Can we do better than this for unsized vec/str fields?
ty::ty_vec(typ, None) => fixed_vec_metadata(cx, unique_type_id, typ, 0, usage_site_span),
ty::ty_str => fixed_vec_metadata(cx, unique_type_id, cx.tcx().types.i8, 0, usage_site_span),
ty::ty_trait(..) => {
MetadataCreationResult::new(
trait_pointer_metadata(cx, t, None, unique_type_id),
false)
}
ty::ty_uniq(ty) | ty::ty_ptr(ty::mt{ty, ..}) | ty::ty_rptr(_, ty::mt{ty, ..}) => {
match ty.sty {
ty::ty_vec(typ, None) => {
vec_slice_metadata(cx, t, typ, unique_type_id, usage_site_span)
}
ty::ty_str => {
vec_slice_metadata(cx, t, cx.tcx().types.u8, unique_type_id, usage_site_span)
}
ty::ty_trait(..) => {
MetadataCreationResult::new(
trait_pointer_metadata(cx, ty, Some(t), unique_type_id),
false)
}
_ => {
let pointee_metadata = type_metadata(cx, ty, usage_site_span);
match debug_context(cx).type_map
.borrow()
.find_metadata_for_unique_id(unique_type_id) {
Some(metadata) => return metadata,
None => { /* proceed normally */ }
};
MetadataCreationResult::new(pointer_type_metadata(cx, t, pointee_metadata),
false)
}
}
}
ty::ty_bare_fn(_, ref barefnty) => {
subroutine_type_metadata(cx, unique_type_id, &barefnty.sig, usage_site_span)
}
ty::ty_closure(ref closurety) => {
subroutine_type_metadata(cx, unique_type_id, &closurety.sig, usage_site_span)
}
ty::ty_unboxed_closure(def_id, _, substs) => {
let typer = NormalizingUnboxedClosureTyper::new(cx.tcx());
let sig = typer.unboxed_closure_type(def_id, substs).sig;
subroutine_type_metadata(cx, unique_type_id, &sig, usage_site_span)
}
ty::ty_struct(def_id, substs) => {
prepare_struct_metadata(cx,
t,
def_id,
substs,
unique_type_id,
usage_site_span).finalize(cx)
}
ty::ty_tup(ref elements) => {
prepare_tuple_metadata(cx,
t,
elements[],
unique_type_id,
usage_site_span).finalize(cx)
}
_ => {
cx.sess().bug(format!("debuginfo: unexpected type in type_metadata: {}",
sty)[])
}
};
{
let mut type_map = debug_context(cx).type_map.borrow_mut();
if already_stored_in_typemap {
// Also make sure that we already have a TypeMap entry entry for the unique type id.
let metadata_for_uid = match type_map.find_metadata_for_unique_id(unique_type_id) {
Some(metadata) => metadata,
None => {
let unique_type_id_str =
type_map.get_unique_type_id_as_string(unique_type_id);
let error_message = format!("Expected type metadata for unique \
type id '{}' to already be in \
the debuginfo::TypeMap but it \
was not. (Ty = {})",
unique_type_id_str[],
ppaux::ty_to_string(cx.tcx(), t));
cx.sess().span_bug(usage_site_span, error_message[]);
}
};
match type_map.find_metadata_for_type(t) {
Some(metadata) => {
if metadata != metadata_for_uid {
let unique_type_id_str =
type_map.get_unique_type_id_as_string(unique_type_id);
let error_message = format!("Mismatch between Ty and \
UniqueTypeId maps in \
debuginfo::TypeMap. \
UniqueTypeId={}, Ty={}",
unique_type_id_str[],
ppaux::ty_to_string(cx.tcx(), t));
cx.sess().span_bug(usage_site_span, error_message[]);
}
}
None => {
type_map.register_type_with_metadata(cx, t, metadata);
}
}
} else {
type_map.register_type_with_metadata(cx, t, metadata);
type_map.register_unique_id_with_metadata(cx, unique_type_id, metadata);
}
}
metadata
}
struct MetadataCreationResult {
metadata: DIType,
already_stored_in_typemap: bool
}
impl MetadataCreationResult {
fn new(metadata: DIType, already_stored_in_typemap: bool) -> MetadataCreationResult {
MetadataCreationResult {
metadata: metadata,
already_stored_in_typemap: already_stored_in_typemap
}
}
}
#[derive(Copy, PartialEq)]
enum DebugLocation {
KnownLocation { scope: DIScope, line: uint, col: uint },
UnknownLocation
}
impl DebugLocation {
fn new(scope: DIScope, line: uint, col: uint) -> DebugLocation {
KnownLocation {
scope: scope,
line: line,
col: col,
}
}
}
fn set_debug_location(cx: &CrateContext, debug_location: DebugLocation) {
if debug_location == debug_context(cx).current_debug_location.get() {
return;
}
let metadata_node;
match debug_location {
KnownLocation { scope, line, .. } => {
// Always set the column to zero like Clang and GCC
let col = UNKNOWN_COLUMN_NUMBER;
debug!("setting debug location to {} {}", line, col);
let elements = [C_i32(cx, line as i32), C_i32(cx, col as i32),
scope, ptr::null_mut()];
unsafe {
metadata_node = llvm::LLVMMDNodeInContext(debug_context(cx).llcontext,
elements.as_ptr(),
elements.len() as c_uint);
}
}
UnknownLocation => {
debug!("clearing debug location ");
metadata_node = ptr::null_mut();
}
};
unsafe {
llvm::LLVMSetCurrentDebugLocation(cx.raw_builder(), metadata_node);
}
debug_context(cx).current_debug_location.set(debug_location);
}
//=-----------------------------------------------------------------------------
// Utility Functions
//=-----------------------------------------------------------------------------
fn contains_nodebug_attribute(attributes: &[ast::Attribute]) -> bool {
attributes.iter().any(|attr| {
let meta_item: &ast::MetaItem = &*attr.node.value;
match meta_item.node {
ast::MetaWord(ref value) => value.get() == "no_debug",
_ => false
}
})
}
/// Return codemap::Loc corresponding to the beginning of the span
fn span_start(cx: &CrateContext, span: Span) -> codemap::Loc {
cx.sess().codemap().lookup_char_pos(span.lo)
}
fn size_and_align_of(cx: &CrateContext, llvm_type: Type) -> (u64, u64) {
(machine::llsize_of_alloc(cx, llvm_type), machine::llalign_of_min(cx, llvm_type) as u64)
}
fn bytes_to_bits(bytes: u64) -> u64 {
bytes * 8
}
#[inline]
fn debug_context<'a, 'tcx>(cx: &'a CrateContext<'a, 'tcx>)
-> &'a CrateDebugContext<'tcx> {
let debug_context: &'a CrateDebugContext<'tcx> = cx.dbg_cx().as_ref().unwrap();
debug_context
}
#[inline]
#[allow(non_snake_case)]
fn DIB(cx: &CrateContext) -> DIBuilderRef {
cx.dbg_cx().as_ref().unwrap().builder
}
fn fn_should_be_ignored(fcx: &FunctionContext) -> bool {
match fcx.debug_context {
FunctionDebugContext::RegularContext(_) => false,
_ => true
}
}
fn assert_type_for_node_id(cx: &CrateContext,
node_id: ast::NodeId,
error_reporting_span: Span) {
if !cx.tcx().node_types.borrow().contains_key(&node_id) {
cx.sess().span_bug(error_reporting_span,
"debuginfo: Could not find type for node id!");
}
}
fn get_namespace_and_span_for_item(cx: &CrateContext, def_id: ast::DefId)
-> (DIScope, Span) {
let containing_scope = namespace_for_item(cx, def_id).scope;
let definition_span = if def_id.krate == ast::LOCAL_CRATE {
cx.tcx().map.span(def_id.node)
} else {
// For external items there is no span information
codemap::DUMMY_SP
};
(containing_scope, definition_span)
}
// This procedure builds the *scope map* for a given function, which maps any
// given ast::NodeId in the function's AST to the correct DIScope metadata instance.
//
// This builder procedure walks the AST in execution order and keeps track of
// what belongs to which scope, creating DIScope DIEs along the way, and
// introducing *artificial* lexical scope descriptors where necessary. These
// artificial scopes allow GDB to correctly handle name shadowing.
fn create_scope_map(cx: &CrateContext,
args: &[ast::Arg],
fn_entry_block: &ast::Block,
fn_metadata: DISubprogram,
fn_ast_id: ast::NodeId)
-> NodeMap<DIScope> {
let mut scope_map = NodeMap::new();
let def_map = &cx.tcx().def_map;
struct ScopeStackEntry {
scope_metadata: DIScope,
ident: Option<ast::Ident>
}
let mut scope_stack = vec!(ScopeStackEntry { scope_metadata: fn_metadata,
ident: None });
scope_map.insert(fn_ast_id, fn_metadata);
// Push argument identifiers onto the stack so arguments integrate nicely
// with variable shadowing.
for arg in args.iter() {
pat_util::pat_bindings(def_map, &*arg.pat, |_, node_id, _, path1| {
scope_stack.push(ScopeStackEntry { scope_metadata: fn_metadata,
ident: Some(path1.node) });
scope_map.insert(node_id, fn_metadata);
})
}
// Clang creates a separate scope for function bodies, so let's do this too.
with_new_scope(cx,
fn_entry_block.span,
&mut scope_stack,
&mut scope_map,
|cx, scope_stack, scope_map| {
walk_block(cx, fn_entry_block, scope_stack, scope_map);
});
return scope_map;
// local helper functions for walking the AST.
fn with_new_scope<F>(cx: &CrateContext,
scope_span: Span,
scope_stack: &mut Vec<ScopeStackEntry> ,
scope_map: &mut NodeMap<DIScope>,
inner_walk: F) where
F: FnOnce(&CrateContext, &mut Vec<ScopeStackEntry>, &mut NodeMap<DIScope>),
{
// Create a new lexical scope and push it onto the stack
let loc = cx.sess().codemap().lookup_char_pos(scope_span.lo);
let file_metadata = file_metadata(cx, loc.file.name[]);
let parent_scope = scope_stack.last().unwrap().scope_metadata;
let scope_metadata = unsafe {
llvm::LLVMDIBuilderCreateLexicalBlock(
DIB(cx),
parent_scope,
file_metadata,
loc.line as c_uint,
loc.col.to_uint() as c_uint)
};
scope_stack.push(ScopeStackEntry { scope_metadata: scope_metadata,
ident: None });
inner_walk(cx, scope_stack, scope_map);
// pop artificial scopes
while scope_stack.last().unwrap().ident.is_some() {
scope_stack.pop();
}
if scope_stack.last().unwrap().scope_metadata != scope_metadata {
cx.sess().span_bug(scope_span, "debuginfo: Inconsistency in scope management.");
}
scope_stack.pop();
}
fn walk_block(cx: &CrateContext,
block: &ast::Block,
scope_stack: &mut Vec<ScopeStackEntry> ,
scope_map: &mut NodeMap<DIScope>) {
scope_map.insert(block.id, scope_stack.last().unwrap().scope_metadata);
// The interesting things here are statements and the concluding expression.
for statement in block.stmts.iter() {
scope_map.insert(ast_util::stmt_id(&**statement),
scope_stack.last().unwrap().scope_metadata);
match statement.node {
ast::StmtDecl(ref decl, _) =>
walk_decl(cx, &**decl, scope_stack, scope_map),
ast::StmtExpr(ref exp, _) |
ast::StmtSemi(ref exp, _) =>
walk_expr(cx, &**exp, scope_stack, scope_map),
ast::StmtMac(..) => () // Ignore macros (which should be expanded anyway).
}
}
for exp in block.expr.iter() {
walk_expr(cx, &**exp, scope_stack, scope_map);
}
}
fn walk_decl(cx: &CrateContext,
decl: &ast::Decl,
scope_stack: &mut Vec<ScopeStackEntry> ,
scope_map: &mut NodeMap<DIScope>) {
match *decl {
codemap::Spanned { node: ast::DeclLocal(ref local), .. } => {
scope_map.insert(local.id, scope_stack.last().unwrap().scope_metadata);
walk_pattern(cx, &*local.pat, scope_stack, scope_map);
for exp in local.init.iter() {
walk_expr(cx, &**exp, scope_stack, scope_map);
}
}
_ => ()
}
}
fn walk_pattern(cx: &CrateContext,
pat: &ast::Pat,
scope_stack: &mut Vec<ScopeStackEntry> ,
scope_map: &mut NodeMap<DIScope>) {
let def_map = &cx.tcx().def_map;
// Unfortunately, we cannot just use pat_util::pat_bindings() or
// ast_util::walk_pat() here because we have to visit *all* nodes in
// order to put them into the scope map. The above functions don't do that.
match pat.node {
ast::PatIdent(_, ref path1, ref sub_pat_opt) => {
// Check if this is a binding. If so we need to put it on the
// scope stack and maybe introduce an artificial scope
if pat_util::pat_is_binding(def_map, &*pat) {
let ident = path1.node;
// LLVM does not properly generate 'DW_AT_start_scope' fields
// for variable DIEs. For this reason we have to introduce
// an artificial scope at bindings whenever a variable with
// the same name is declared in *any* parent scope.
//
// Otherwise the following error occurs:
//
// let x = 10;
//
// do_something(); // 'gdb print x' correctly prints 10
//
// {
// do_something(); // 'gdb print x' prints 0, because it
// // already reads the uninitialized 'x'
// // from the next line...
// let x = 100;
// do_something(); // 'gdb print x' correctly prints 100
// }
// Is there already a binding with that name?
// N.B.: this comparison must be UNhygienic... because
// gdb knows nothing about the context, so any two
// variables with the same name will cause the problem.
let need_new_scope = scope_stack
.iter()
.any(|entry| entry.ident.iter().any(|i| i.name == ident.name));
if need_new_scope {
// Create a new lexical scope and push it onto the stack
let loc = cx.sess().codemap().lookup_char_pos(pat.span.lo);
let file_metadata = file_metadata(cx, loc.file.name[]);
let parent_scope = scope_stack.last().unwrap().scope_metadata;
let scope_metadata = unsafe {
llvm::LLVMDIBuilderCreateLexicalBlock(
DIB(cx),
parent_scope,
file_metadata,
loc.line as c_uint,
loc.col.to_uint() as c_uint)
};
scope_stack.push(ScopeStackEntry {
scope_metadata: scope_metadata,
ident: Some(ident)
});
} else {
// Push a new entry anyway so the name can be found
let prev_metadata = scope_stack.last().unwrap().scope_metadata;
scope_stack.push(ScopeStackEntry {
scope_metadata: prev_metadata,
ident: Some(ident)
});
}
}
scope_map.insert(pat.id, scope_stack.last().unwrap().scope_metadata);
for sub_pat in sub_pat_opt.iter() {
walk_pattern(cx, &**sub_pat, scope_stack, scope_map);
}
}
ast::PatWild(_) => {
scope_map.insert(pat.id, scope_stack.last().unwrap().scope_metadata);
}
ast::PatEnum(_, ref sub_pats_opt) => {
scope_map.insert(pat.id, scope_stack.last().unwrap().scope_metadata);
for sub_pats in sub_pats_opt.iter() {
for p in sub_pats.iter() {
walk_pattern(cx, &**p, scope_stack, scope_map);
}
}
}
ast::PatStruct(_, ref field_pats, _) => {
scope_map.insert(pat.id, scope_stack.last().unwrap().scope_metadata);
for &codemap::Spanned {
node: ast::FieldPat { pat: ref sub_pat, .. },
..
} in field_pats.iter() {
walk_pattern(cx, &**sub_pat, scope_stack, scope_map);
}
}
ast::PatTup(ref sub_pats) => {
scope_map.insert(pat.id, scope_stack.last().unwrap().scope_metadata);
for sub_pat in sub_pats.iter() {
walk_pattern(cx, &**sub_pat, scope_stack, scope_map);
}
}
ast::PatBox(ref sub_pat) | ast::PatRegion(ref sub_pat) => {
scope_map.insert(pat.id, scope_stack.last().unwrap().scope_metadata);
walk_pattern(cx, &**sub_pat, scope_stack, scope_map);
}
ast::PatLit(ref exp) => {
scope_map.insert(pat.id, scope_stack.last().unwrap().scope_metadata);
walk_expr(cx, &**exp, scope_stack, scope_map);
}
ast::PatRange(ref exp1, ref exp2) => {
scope_map.insert(pat.id, scope_stack.last().unwrap().scope_metadata);
walk_expr(cx, &**exp1, scope_stack, scope_map);
walk_expr(cx, &**exp2, scope_stack, scope_map);
}
ast::PatVec(ref front_sub_pats, ref middle_sub_pats, ref back_sub_pats) => {
scope_map.insert(pat.id, scope_stack.last().unwrap().scope_metadata);
for sub_pat in front_sub_pats.iter() {
walk_pattern(cx, &**sub_pat, scope_stack, scope_map);
}
for sub_pat in middle_sub_pats.iter() {
walk_pattern(cx, &**sub_pat, scope_stack, scope_map);
}
for sub_pat in back_sub_pats.iter() {
walk_pattern(cx, &**sub_pat, scope_stack, scope_map);
}
}
ast::PatMac(_) => {
cx.sess().span_bug(pat.span, "debuginfo::create_scope_map() - \
Found unexpanded macro.");
}
}
}
fn walk_expr(cx: &CrateContext,
exp: &ast::Expr,
scope_stack: &mut Vec<ScopeStackEntry> ,
scope_map: &mut NodeMap<DIScope>) {
scope_map.insert(exp.id, scope_stack.last().unwrap().scope_metadata);
match exp.node {
ast::ExprLit(_) |
ast::ExprBreak(_) |
ast::ExprAgain(_) |
ast::ExprPath(_) => {}
ast::ExprCast(ref sub_exp, _) |
ast::ExprAddrOf(_, ref sub_exp) |
ast::ExprField(ref sub_exp, _) |
ast::ExprTupField(ref sub_exp, _) |
ast::ExprParen(ref sub_exp) =>
walk_expr(cx, &**sub_exp, scope_stack, scope_map),
ast::ExprBox(ref place, ref sub_expr) => {
place.as_ref().map(
|e| walk_expr(cx, &**e, scope_stack, scope_map));
walk_expr(cx, &**sub_expr, scope_stack, scope_map);
}
ast::ExprRet(ref exp_opt) => match *exp_opt {
Some(ref sub_exp) => walk_expr(cx, &**sub_exp, scope_stack, scope_map),
None => ()
},
ast::ExprUnary(_, ref sub_exp) => {
walk_expr(cx, &**sub_exp, scope_stack, scope_map);
}
ast::ExprAssignOp(_, ref lhs, ref rhs) |
ast::ExprIndex(ref lhs, ref rhs) |
ast::ExprBinary(_, ref lhs, ref rhs) => {
walk_expr(cx, &**lhs, scope_stack, scope_map);
walk_expr(cx, &**rhs, scope_stack, scope_map);
}
ast::ExprRange(ref start, ref end) => {
start.as_ref().map(|e| walk_expr(cx, &**e, scope_stack, scope_map));
end.as_ref().map(|e| walk_expr(cx, &**e, scope_stack, scope_map));
}
ast::ExprVec(ref init_expressions) |
ast::ExprTup(ref init_expressions) => {
for ie in init_expressions.iter() {
walk_expr(cx, &**ie, scope_stack, scope_map);
}
}
ast::ExprAssign(ref sub_exp1, ref sub_exp2) |
ast::ExprRepeat(ref sub_exp1, ref sub_exp2) => {
walk_expr(cx, &**sub_exp1, scope_stack, scope_map);
walk_expr(cx, &**sub_exp2, scope_stack, scope_map);
}
ast::ExprIf(ref cond_exp, ref then_block, ref opt_else_exp) => {
walk_expr(cx, &**cond_exp, scope_stack, scope_map);
with_new_scope(cx,
then_block.span,
scope_stack,
scope_map,
|cx, scope_stack, scope_map| {
walk_block(cx, &**then_block, scope_stack, scope_map);
});
match *opt_else_exp {
Some(ref else_exp) =>
walk_expr(cx, &**else_exp, scope_stack, scope_map),
_ => ()
}
}
ast::ExprIfLet(..) => {
cx.sess().span_bug(exp.span, "debuginfo::create_scope_map() - \
Found unexpanded if-let.");
}
ast::ExprWhile(ref cond_exp, ref loop_body, _) => {
walk_expr(cx, &**cond_exp, scope_stack, scope_map);
with_new_scope(cx,
loop_body.span,
scope_stack,
scope_map,
|cx, scope_stack, scope_map| {
walk_block(cx, &**loop_body, scope_stack, scope_map);
})
}
ast::ExprWhileLet(..) => {
cx.sess().span_bug(exp.span, "debuginfo::create_scope_map() - \
Found unexpanded while-let.");
}
ast::ExprForLoop(ref pattern, ref head, ref body, _) => {
walk_expr(cx, &**head, scope_stack, scope_map);
with_new_scope(cx,
exp.span,
scope_stack,
scope_map,
|cx, scope_stack, scope_map| {
scope_map.insert(exp.id,
scope_stack.last()
.unwrap()
.scope_metadata);
walk_pattern(cx,
&**pattern,
scope_stack,
scope_map);
walk_block(cx, &**body, scope_stack, scope_map);
})
}
ast::ExprMac(_) => {
cx.sess().span_bug(exp.span, "debuginfo::create_scope_map() - \
Found unexpanded macro.");
}
ast::ExprLoop(ref block, _) |
ast::ExprBlock(ref block) => {
with_new_scope(cx,
block.span,
scope_stack,
scope_map,
|cx, scope_stack, scope_map| {
walk_block(cx, &**block, scope_stack, scope_map);
})
}
ast::ExprClosure(_, _, ref decl, ref block) => {
with_new_scope(cx,
block.span,
scope_stack,
scope_map,
|cx, scope_stack, scope_map| {
for &ast::Arg { pat: ref pattern, .. } in decl.inputs.iter() {
walk_pattern(cx, &**pattern, scope_stack, scope_map);
}
walk_block(cx, &**block, scope_stack, scope_map);
})
}
ast::ExprCall(ref fn_exp, ref args) => {
walk_expr(cx, &**fn_exp, scope_stack, scope_map);
for arg_exp in args.iter() {
walk_expr(cx, &**arg_exp, scope_stack, scope_map);
}
}
ast::ExprMethodCall(_, _, ref args) => {
for arg_exp in args.iter() {
walk_expr(cx, &**arg_exp, scope_stack, scope_map);
}
}
ast::ExprMatch(ref discriminant_exp, ref arms, _) => {
walk_expr(cx, &**discriminant_exp, scope_stack, scope_map);
// For each arm we have to first walk the pattern as these might
// introduce new artificial scopes. It should be sufficient to
// walk only one pattern per arm, as they all must contain the
// same binding names.
for arm_ref in arms.iter() {
let arm_span = arm_ref.pats[0].span;
with_new_scope(cx,
arm_span,
scope_stack,
scope_map,
|cx, scope_stack, scope_map| {
for pat in arm_ref.pats.iter() {
walk_pattern(cx, &**pat, scope_stack, scope_map);
}
for guard_exp in arm_ref.guard.iter() {
walk_expr(cx, &**guard_exp, scope_stack, scope_map)
}
walk_expr(cx, &*arm_ref.body, scope_stack, scope_map);
})
}
}
ast::ExprStruct(_, ref fields, ref base_exp) => {
for &ast::Field { expr: ref exp, .. } in fields.iter() {
walk_expr(cx, &**exp, scope_stack, scope_map);
}
match *base_exp {
Some(ref exp) => walk_expr(cx, &**exp, scope_stack, scope_map),
None => ()
}
}
ast::ExprInlineAsm(ast::InlineAsm { ref inputs,
ref outputs,
.. }) => {
// inputs, outputs: Vec<(String, P<Expr>)>
for &(_, ref exp) in inputs.iter() {
walk_expr(cx, &**exp, scope_stack, scope_map);
}
for &(_, ref exp, _) in outputs.iter() {
walk_expr(cx, &**exp, scope_stack, scope_map);
}
}
}
}
}
//=-----------------------------------------------------------------------------
// Type Names for Debug Info
//=-----------------------------------------------------------------------------
// Compute the name of the type as it should be stored in debuginfo. Does not do
// any caching, i.e. calling the function twice with the same type will also do
// the work twice. The `qualified` parameter only affects the first level of the
// type name, further levels (i.e. type parameters) are always fully qualified.
fn compute_debuginfo_type_name<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>,
t: Ty<'tcx>,
qualified: bool)
-> String {
let mut result = String::with_capacity(64);
push_debuginfo_type_name(cx, t, qualified, &mut result);
result
}
// Pushes the name of the type as it should be stored in debuginfo on the
// `output` String. See also compute_debuginfo_type_name().
fn push_debuginfo_type_name<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>,
t: Ty<'tcx>,
qualified: bool,
output: &mut String) {
match t.sty {
ty::ty_bool => output.push_str("bool"),
ty::ty_char => output.push_str("char"),
ty::ty_str => output.push_str("str"),
ty::ty_int(ast::TyI) => output.push_str("int"),
ty::ty_int(ast::TyI8) => output.push_str("i8"),
ty::ty_int(ast::TyI16) => output.push_str("i16"),
ty::ty_int(ast::TyI32) => output.push_str("i32"),
ty::ty_int(ast::TyI64) => output.push_str("i64"),
ty::ty_uint(ast::TyU) => output.push_str("uint"),
ty::ty_uint(ast::TyU8) => output.push_str("u8"),
ty::ty_uint(ast::TyU16) => output.push_str("u16"),
ty::ty_uint(ast::TyU32) => output.push_str("u32"),
ty::ty_uint(ast::TyU64) => output.push_str("u64"),
ty::ty_float(ast::TyF32) => output.push_str("f32"),
ty::ty_float(ast::TyF64) => output.push_str("f64"),
ty::ty_struct(def_id, substs) |
ty::ty_enum(def_id, substs) => {
push_item_name(cx, def_id, qualified, output);
push_type_params(cx, substs, output);
},
ty::ty_tup(ref component_types) => {
output.push('(');
for &component_type in component_types.iter() {
push_debuginfo_type_name(cx, component_type, true, output);
output.push_str(", ");
}
if !component_types.is_empty() {
output.pop();
output.pop();
}
output.push(')');
},
ty::ty_uniq(inner_type) => {
output.push_str("Box<");
push_debuginfo_type_name(cx, inner_type, true, output);
output.push('>');
},
ty::ty_ptr(ty::mt { ty: inner_type, mutbl } ) => {
output.push('*');
match mutbl {
ast::MutImmutable => output.push_str("const "),
ast::MutMutable => output.push_str("mut "),
}
push_debuginfo_type_name(cx, inner_type, true, output);
},
ty::ty_rptr(_, ty::mt { ty: inner_type, mutbl }) => {
output.push('&');
if mutbl == ast::MutMutable {
output.push_str("mut ");
}
push_debuginfo_type_name(cx, inner_type, true, output);
},
ty::ty_vec(inner_type, optional_length) => {
output.push('[');
push_debuginfo_type_name(cx, inner_type, true, output);
match optional_length {
Some(len) => {
output.push_str(format!("; {}", len).as_slice());
}
None => { /* nothing to do */ }
};
output.push(']');
},
ty::ty_trait(ref trait_data) => {
push_item_name(cx, trait_data.principal_def_id(), false, output);
push_type_params(cx, trait_data.principal.0.substs, output);
},
ty::ty_bare_fn(_, &ty::BareFnTy{ unsafety, abi, ref sig } ) => {
if unsafety == ast::Unsafety::Unsafe {
output.push_str("unsafe ");
}
if abi != ::syntax::abi::Rust {
output.push_str("extern \"");
output.push_str(abi.name());
output.push_str("\" ");
}
output.push_str("fn(");
if sig.0.inputs.len() > 0 {
for &parameter_type in sig.0.inputs.iter() {
push_debuginfo_type_name(cx, parameter_type, true, output);
output.push_str(", ");
}
output.pop();
output.pop();
}
if sig.0.variadic {
if sig.0.inputs.len() > 0 {
output.push_str(", ...");
} else {
output.push_str("...");
}
}
output.push(')');
match sig.0.output {
ty::FnConverging(result_type) if ty::type_is_nil(result_type) => {}
ty::FnConverging(result_type) => {
output.push_str(" -> ");
push_debuginfo_type_name(cx, result_type, true, output);
}
ty::FnDiverging => {
output.push_str(" -> !");
}
}
},
ty::ty_closure(box ty::ClosureTy { unsafety,
onceness,
store,
ref sig,
.. // omitting bounds ...
}) => {
if unsafety == ast::Unsafety::Unsafe {
output.push_str("unsafe ");
}
if onceness == ast::Once {
output.push_str("once ");
}
let param_list_closing_char;
match store {
ty::UniqTraitStore => {
output.push_str("proc(");
param_list_closing_char = ')';
}
ty::RegionTraitStore(_, ast::MutMutable) => {
output.push_str("&mut|");
param_list_closing_char = '|';
}
ty::RegionTraitStore(_, ast::MutImmutable) => {
output.push_str("&|");
param_list_closing_char = '|';
}
};
if sig.0.inputs.len() > 0 {
for &parameter_type in sig.0.inputs.iter() {
push_debuginfo_type_name(cx, parameter_type, true, output);
output.push_str(", ");
}
output.pop();
output.pop();
}
if sig.0.variadic {
if sig.0.inputs.len() > 0 {
output.push_str(", ...");
} else {
output.push_str("...");
}
}
output.push(param_list_closing_char);
match sig.0.output {
ty::FnConverging(result_type) if ty::type_is_nil(result_type) => {}
ty::FnConverging(result_type) => {
output.push_str(" -> ");
push_debuginfo_type_name(cx, result_type, true, output);
}
ty::FnDiverging => {
output.push_str(" -> !");
}
}
},
ty::ty_unboxed_closure(..) => {
output.push_str("closure");
}
ty::ty_err |
ty::ty_infer(_) |
ty::ty_open(_) |
ty::ty_projection(..) |
ty::ty_param(_) => {
cx.sess().bug(format!("debuginfo: Trying to create type name for \
unexpected type: {}", ppaux::ty_to_string(cx.tcx(), t))[]);
}
}
fn push_item_name(cx: &CrateContext,
def_id: ast::DefId,
qualified: bool,
output: &mut String) {
ty::with_path(cx.tcx(), def_id, |mut path| {
if qualified {
if def_id.krate == ast::LOCAL_CRATE {
output.push_str(crate_root_namespace(cx));
output.push_str("::");
}
let mut path_element_count = 0u;
for path_element in path {
let name = token::get_name(path_element.name());
output.push_str(name.get());
output.push_str("::");
path_element_count += 1;
}
if path_element_count == 0 {
cx.sess().bug("debuginfo: Encountered empty item path!");
}
output.pop();
output.pop();
} else {
let name = token::get_name(path.last()
.expect("debuginfo: Empty item path?")
.name());
output.push_str(name.get());
}
});
}
// Pushes the type parameters in the given `Substs` to the output string.
// This ignores region parameters, since they can't reliably be
// reconstructed for items from non-local crates. For local crates, this
// would be possible but with inlining and LTO we have to use the least
// common denominator - otherwise we would run into conflicts.
fn push_type_params<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>,
substs: &subst::Substs<'tcx>,
output: &mut String) {
if substs.types.is_empty() {
return;
}
output.push('<');
for &type_parameter in substs.types.iter() {
push_debuginfo_type_name(cx, type_parameter, true, output);
output.push_str(", ");
}
output.pop();
output.pop();
output.push('>');
}
}
//=-----------------------------------------------------------------------------
// Namespace Handling
//=-----------------------------------------------------------------------------
struct NamespaceTreeNode {
name: ast::Name,
scope: DIScope,
parent: Option<Weak<NamespaceTreeNode>>,
}
impl NamespaceTreeNode {
fn mangled_name_of_contained_item(&self, item_name: &str) -> String {
fn fill_nested(node: &NamespaceTreeNode, output: &mut String) {
match node.parent {
Some(ref parent) => fill_nested(&*parent.upgrade().unwrap(), output),
None => {}
}
let string = token::get_name(node.name);
output.push_str(format!("{}", string.get().len())[]);
output.push_str(string.get());
}
let mut name = String::from_str("_ZN");
fill_nested(self, &mut name);
name.push_str(format!("{}", item_name.len())[]);
name.push_str(item_name);
name.push('E');
name
}
}
fn crate_root_namespace<'a>(cx: &'a CrateContext) -> &'a str {
cx.link_meta().crate_name[]
}
fn namespace_for_item(cx: &CrateContext, def_id: ast::DefId) -> Rc<NamespaceTreeNode> {
ty::with_path(cx.tcx(), def_id, |path| {
// prepend crate name if not already present
let krate = if def_id.krate == ast::LOCAL_CRATE {
let crate_namespace_ident = token::str_to_ident(crate_root_namespace(cx));
Some(ast_map::PathMod(crate_namespace_ident.name))
} else {
None
};
let mut path = krate.into_iter().chain(path).peekable();
let mut current_key = Vec::new();
let mut parent_node: Option<Rc<NamespaceTreeNode>> = None;
// Create/Lookup namespace for each element of the path.
loop {
// Emulate a for loop so we can use peek below.
let path_element = match path.next() {
Some(e) => e,
None => break
};
// Ignore the name of the item (the last path element).
if path.peek().is_none() {
break;
}
let name = path_element.name();
current_key.push(name);
let existing_node = debug_context(cx).namespace_map.borrow()
.get(&current_key).cloned();
let current_node = match existing_node {
Some(existing_node) => existing_node,
None => {
// create and insert
let parent_scope = match parent_node {
Some(ref node) => node.scope,
None => ptr::null_mut()
};
let namespace_name = token::get_name(name);
let scope = namespace_name.get().with_c_str(|namespace_name| {
unsafe {
llvm::LLVMDIBuilderCreateNameSpace(
DIB(cx),
parent_scope,
namespace_name,
// cannot reconstruct file ...
ptr::null_mut(),
// ... or line information, but that's not so important.
0)
}
});
let node = Rc::new(NamespaceTreeNode {
name: name,
scope: scope,
parent: parent_node.map(|parent| parent.downgrade()),
});
debug_context(cx).namespace_map.borrow_mut()
.insert(current_key.clone(), node.clone());
node
}
};
parent_node = Some(current_node);
}
match parent_node {
Some(node) => node,
None => {
cx.sess().bug(format!("debuginfo::namespace_for_item(): \
path too short for {}",
def_id)[]);
}
}
})
}
//=-----------------------------------------------------------------------------
// .debug_gdb_scripts binary section
//=-----------------------------------------------------------------------------
/// Inserts a side-effect free instruction sequence that makes sure that the
/// .debug_gdb_scripts global is referenced, so it isn't removed by the linker.
pub fn insert_reference_to_gdb_debug_scripts_section_global(ccx: &CrateContext) {
if needs_gdb_debug_scripts_section(ccx) {
let empty = b"".to_c_str();
let gdb_debug_scripts_section_global =
get_or_insert_gdb_debug_scripts_section_global(ccx);
unsafe {
let volative_load_instruction =
llvm::LLVMBuildLoad(ccx.raw_builder(),
gdb_debug_scripts_section_global,
empty.as_ptr());
llvm::LLVMSetVolatile(volative_load_instruction, llvm::True);
}
}
}
/// Allocates the global variable responsible for the .debug_gdb_scripts binary
/// section.
fn get_or_insert_gdb_debug_scripts_section_global(ccx: &CrateContext)
-> llvm::ValueRef {
let section_var_name = b"__rustc_debug_gdb_scripts_section__".to_c_str();
let section_var = unsafe {
llvm::LLVMGetNamedGlobal(ccx.llmod(), section_var_name.as_ptr())
};
if section_var == ptr::null_mut() {
let section_name = b".debug_gdb_scripts".to_c_str();
let section_contents = b"\x01gdb_load_rust_pretty_printers.py\0";
unsafe {
let llvm_type = Type::array(&Type::i8(ccx),
section_contents.len() as u64);
let section_var = llvm::LLVMAddGlobal(ccx.llmod(),
llvm_type.to_ref(),
section_var_name.as_ptr());
llvm::LLVMSetSection(section_var, section_name.as_ptr());
llvm::LLVMSetInitializer(section_var, C_bytes(ccx, section_contents));
llvm::LLVMSetGlobalConstant(section_var, llvm::True);
llvm::LLVMSetUnnamedAddr(section_var, llvm::True);
llvm::SetLinkage(section_var, llvm::Linkage::LinkOnceODRLinkage);
// This should make sure that the whole section is not larger than
// the string it contains. Otherwise we get a warning from GDB.
llvm::LLVMSetAlignment(section_var, 1);
section_var
}
} else {
section_var
}
}
fn needs_gdb_debug_scripts_section(ccx: &CrateContext) -> bool {
let omit_gdb_pretty_printer_section =
attr::contains_name(ccx.tcx()
.map
.krate()
.attrs
.as_slice(),
"omit_gdb_pretty_printer_section");
!omit_gdb_pretty_printer_section &&
!ccx.sess().target.target.options.is_like_osx &&
!ccx.sess().target.target.options.is_like_windows &&
ccx.sess().opts.debuginfo != NoDebugInfo
}