rust/clippy_utils/src/macros.rs
2022-10-17 11:36:05 +00:00

1056 lines
37 KiB
Rust
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

#![allow(clippy::similar_names)] // `expr` and `expn`
use crate::is_path_diagnostic_item;
use crate::source::snippet_opt;
use crate::visitors::{for_each_expr, Descend};
use arrayvec::ArrayVec;
use itertools::{izip, Either, Itertools};
use rustc_ast::ast::LitKind;
use rustc_hir::intravisit::{walk_expr, Visitor};
use rustc_hir::{self as hir, Expr, ExprField, ExprKind, HirId, Node, QPath};
use rustc_lexer::unescape::unescape_literal;
use rustc_lexer::{tokenize, unescape, LiteralKind, TokenKind};
use rustc_lint::LateContext;
use rustc_parse_format::{self as rpf, Alignment};
use rustc_span::def_id::DefId;
use rustc_span::hygiene::{self, MacroKind, SyntaxContext};
use rustc_span::{sym, BytePos, ExpnData, ExpnId, ExpnKind, Pos, Span, SpanData, Symbol};
use std::iter::{once, zip};
use std::ops::ControlFlow;
const FORMAT_MACRO_DIAG_ITEMS: &[Symbol] = &[
sym::assert_eq_macro,
sym::assert_macro,
sym::assert_ne_macro,
sym::debug_assert_eq_macro,
sym::debug_assert_macro,
sym::debug_assert_ne_macro,
sym::eprint_macro,
sym::eprintln_macro,
sym::format_args_macro,
sym::format_macro,
sym::print_macro,
sym::println_macro,
sym::std_panic_macro,
sym::write_macro,
sym::writeln_macro,
];
/// Returns true if a given Macro `DefId` is a format macro (e.g. `println!`)
pub fn is_format_macro(cx: &LateContext<'_>, macro_def_id: DefId) -> bool {
if let Some(name) = cx.tcx.get_diagnostic_name(macro_def_id) {
FORMAT_MACRO_DIAG_ITEMS.contains(&name)
} else {
false
}
}
/// A macro call, like `vec![1, 2, 3]`.
///
/// Use `tcx.item_name(macro_call.def_id)` to get the macro name.
/// Even better is to check if it is a diagnostic item.
///
/// This structure is similar to `ExpnData` but it precludes desugaring expansions.
#[derive(Debug)]
pub struct MacroCall {
/// Macro `DefId`
pub def_id: DefId,
/// Kind of macro
pub kind: MacroKind,
/// The expansion produced by the macro call
pub expn: ExpnId,
/// Span of the macro call site
pub span: Span,
}
impl MacroCall {
pub fn is_local(&self) -> bool {
span_is_local(self.span)
}
}
/// Returns an iterator of expansions that created the given span
pub fn expn_backtrace(mut span: Span) -> impl Iterator<Item = (ExpnId, ExpnData)> {
std::iter::from_fn(move || {
let ctxt = span.ctxt();
if ctxt == SyntaxContext::root() {
return None;
}
let expn = ctxt.outer_expn();
let data = expn.expn_data();
span = data.call_site;
Some((expn, data))
})
}
/// Checks whether the span is from the root expansion or a locally defined macro
pub fn span_is_local(span: Span) -> bool {
!span.from_expansion() || expn_is_local(span.ctxt().outer_expn())
}
/// Checks whether the expansion is the root expansion or a locally defined macro
pub fn expn_is_local(expn: ExpnId) -> bool {
if expn == ExpnId::root() {
return true;
}
let data = expn.expn_data();
let backtrace = expn_backtrace(data.call_site);
std::iter::once((expn, data))
.chain(backtrace)
.find_map(|(_, data)| data.macro_def_id)
.map_or(true, DefId::is_local)
}
/// Returns an iterator of macro expansions that created the given span.
/// Note that desugaring expansions are skipped.
pub fn macro_backtrace(span: Span) -> impl Iterator<Item = MacroCall> {
expn_backtrace(span).filter_map(|(expn, data)| match data {
ExpnData {
kind: ExpnKind::Macro(kind, _),
macro_def_id: Some(def_id),
call_site: span,
..
} => Some(MacroCall {
def_id,
kind,
expn,
span,
}),
_ => None,
})
}
/// If the macro backtrace of `span` has a macro call at the root expansion
/// (i.e. not a nested macro call), returns `Some` with the `MacroCall`
pub fn root_macro_call(span: Span) -> Option<MacroCall> {
macro_backtrace(span).last()
}
/// Like [`root_macro_call`], but only returns `Some` if `node` is the "first node"
/// produced by the macro call, as in [`first_node_in_macro`].
pub fn root_macro_call_first_node(cx: &LateContext<'_>, node: &impl HirNode) -> Option<MacroCall> {
if first_node_in_macro(cx, node) != Some(ExpnId::root()) {
return None;
}
root_macro_call(node.span())
}
/// Like [`macro_backtrace`], but only returns macro calls where `node` is the "first node" of the
/// macro call, as in [`first_node_in_macro`].
pub fn first_node_macro_backtrace(cx: &LateContext<'_>, node: &impl HirNode) -> impl Iterator<Item = MacroCall> {
let span = node.span();
first_node_in_macro(cx, node)
.into_iter()
.flat_map(move |expn| macro_backtrace(span).take_while(move |macro_call| macro_call.expn != expn))
}
/// If `node` is the "first node" in a macro expansion, returns `Some` with the `ExpnId` of the
/// macro call site (i.e. the parent of the macro expansion). This generally means that `node`
/// is the outermost node of an entire macro expansion, but there are some caveats noted below.
/// This is useful for finding macro calls while visiting the HIR without processing the macro call
/// at every node within its expansion.
///
/// If you already have immediate access to the parent node, it is simpler to
/// just check the context of that span directly (e.g. `parent.span.from_expansion()`).
///
/// If a macro call is in statement position, it expands to one or more statements.
/// In that case, each statement *and* their immediate descendants will all yield `Some`
/// with the `ExpnId` of the containing block.
///
/// A node may be the "first node" of multiple macro calls in a macro backtrace.
/// The expansion of the outermost macro call site is returned in such cases.
pub fn first_node_in_macro(cx: &LateContext<'_>, node: &impl HirNode) -> Option<ExpnId> {
// get the macro expansion or return `None` if not found
// `macro_backtrace` importantly ignores desugaring expansions
let expn = macro_backtrace(node.span()).next()?.expn;
// get the parent node, possibly skipping over a statement
// if the parent is not found, it is sensible to return `Some(root)`
let hir = cx.tcx.hir();
let mut parent_iter = hir.parent_iter(node.hir_id());
let (parent_id, _) = match parent_iter.next() {
None => return Some(ExpnId::root()),
Some((_, Node::Stmt(_))) => match parent_iter.next() {
None => return Some(ExpnId::root()),
Some(next) => next,
},
Some(next) => next,
};
// get the macro expansion of the parent node
let parent_span = hir.span(parent_id);
let Some(parent_macro_call) = macro_backtrace(parent_span).next() else {
// the parent node is not in a macro
return Some(ExpnId::root());
};
if parent_macro_call.expn.is_descendant_of(expn) {
// `node` is input to a macro call
return None;
}
Some(parent_macro_call.expn)
}
/* Specific Macro Utils */
/// Is `def_id` of `std::panic`, `core::panic` or any inner implementation macros
pub fn is_panic(cx: &LateContext<'_>, def_id: DefId) -> bool {
let Some(name) = cx.tcx.get_diagnostic_name(def_id) else { return false };
matches!(
name.as_str(),
"core_panic_macro"
| "std_panic_macro"
| "core_panic_2015_macro"
| "std_panic_2015_macro"
| "core_panic_2021_macro"
)
}
pub enum PanicExpn<'a> {
/// No arguments - `panic!()`
Empty,
/// A string literal or any `&str` - `panic!("message")` or `panic!(message)`
Str(&'a Expr<'a>),
/// A single argument that implements `Display` - `panic!("{}", object)`
Display(&'a Expr<'a>),
/// Anything else - `panic!("error {}: {}", a, b)`
Format(FormatArgsExpn<'a>),
}
impl<'a> PanicExpn<'a> {
pub fn parse(cx: &LateContext<'_>, expr: &'a Expr<'a>) -> Option<Self> {
if !macro_backtrace(expr.span).any(|macro_call| is_panic(cx, macro_call.def_id)) {
return None;
}
let ExprKind::Call(callee, [arg]) = &expr.kind else { return None };
let ExprKind::Path(QPath::Resolved(_, path)) = &callee.kind else { return None };
let result = match path.segments.last().unwrap().ident.as_str() {
"panic" if arg.span.ctxt() == expr.span.ctxt() => Self::Empty,
"panic" | "panic_str" => Self::Str(arg),
"panic_display" => {
let ExprKind::AddrOf(_, _, e) = &arg.kind else { return None };
Self::Display(e)
},
"panic_fmt" => Self::Format(FormatArgsExpn::parse(cx, arg)?),
_ => return None,
};
Some(result)
}
}
/// Finds the arguments of an `assert!` or `debug_assert!` macro call within the macro expansion
pub fn find_assert_args<'a>(
cx: &LateContext<'_>,
expr: &'a Expr<'a>,
expn: ExpnId,
) -> Option<(&'a Expr<'a>, PanicExpn<'a>)> {
find_assert_args_inner(cx, expr, expn).map(|([e], p)| (e, p))
}
/// Finds the arguments of an `assert_eq!` or `debug_assert_eq!` macro call within the macro
/// expansion
pub fn find_assert_eq_args<'a>(
cx: &LateContext<'_>,
expr: &'a Expr<'a>,
expn: ExpnId,
) -> Option<(&'a Expr<'a>, &'a Expr<'a>, PanicExpn<'a>)> {
find_assert_args_inner(cx, expr, expn).map(|([a, b], p)| (a, b, p))
}
fn find_assert_args_inner<'a, const N: usize>(
cx: &LateContext<'_>,
expr: &'a Expr<'a>,
expn: ExpnId,
) -> Option<([&'a Expr<'a>; N], PanicExpn<'a>)> {
let macro_id = expn.expn_data().macro_def_id?;
let (expr, expn) = match cx.tcx.item_name(macro_id).as_str().strip_prefix("debug_") {
None => (expr, expn),
Some(inner_name) => find_assert_within_debug_assert(cx, expr, expn, Symbol::intern(inner_name))?,
};
let mut args = ArrayVec::new();
let mut panic_expn = None;
let _: Option<!> = for_each_expr(expr, |e| {
if args.is_full() {
if panic_expn.is_none() && e.span.ctxt() != expr.span.ctxt() {
panic_expn = PanicExpn::parse(cx, e);
}
ControlFlow::Continue(Descend::from(panic_expn.is_none()))
} else if is_assert_arg(cx, e, expn) {
args.push(e);
ControlFlow::Continue(Descend::No)
} else {
ControlFlow::Continue(Descend::Yes)
}
});
let args = args.into_inner().ok()?;
// if no `panic!(..)` is found, use `PanicExpn::Empty`
// to indicate that the default assertion message is used
let panic_expn = panic_expn.unwrap_or(PanicExpn::Empty);
Some((args, panic_expn))
}
fn find_assert_within_debug_assert<'a>(
cx: &LateContext<'_>,
expr: &'a Expr<'a>,
expn: ExpnId,
assert_name: Symbol,
) -> Option<(&'a Expr<'a>, ExpnId)> {
for_each_expr(expr, |e| {
if !e.span.from_expansion() {
return ControlFlow::Continue(Descend::No);
}
let e_expn = e.span.ctxt().outer_expn();
if e_expn == expn {
ControlFlow::Continue(Descend::Yes)
} else if e_expn.expn_data().macro_def_id.map(|id| cx.tcx.item_name(id)) == Some(assert_name) {
ControlFlow::Break((e, e_expn))
} else {
ControlFlow::Continue(Descend::No)
}
})
}
fn is_assert_arg(cx: &LateContext<'_>, expr: &Expr<'_>, assert_expn: ExpnId) -> bool {
if !expr.span.from_expansion() {
return true;
}
let result = macro_backtrace(expr.span).try_for_each(|macro_call| {
if macro_call.expn == assert_expn {
ControlFlow::Break(false)
} else {
match cx.tcx.item_name(macro_call.def_id) {
// `cfg!(debug_assertions)` in `debug_assert!`
sym::cfg => ControlFlow::CONTINUE,
// assert!(other_macro!(..))
_ => ControlFlow::Break(true),
}
}
});
match result {
ControlFlow::Break(is_assert_arg) => is_assert_arg,
ControlFlow::Continue(()) => true,
}
}
/// The format string doesn't exist in the HIR, so we reassemble it from source code
#[derive(Debug)]
pub struct FormatString {
/// Span of the whole format string literal, including `[r#]"`.
pub span: Span,
/// Snippet of the whole format string literal, including `[r#]"`.
pub snippet: String,
/// If the string is raw `r"..."`/`r#""#`, how many `#`s does it have on each side.
pub style: Option<usize>,
/// The unescaped value of the format string, e.g. `"val {}"` for the literal
/// `"val \u{2013} {}"`.
pub unescaped: String,
/// The format string split by format args like `{..}`.
pub parts: Vec<Symbol>,
}
impl FormatString {
fn new(cx: &LateContext<'_>, pieces: &Expr<'_>) -> Option<Self> {
// format_args!(r"a {} b \", 1);
//
// expands to
//
// ::core::fmt::Arguments::new_v1(&["a ", " b \\"],
// &[::core::fmt::ArgumentV1::new_display(&1)]);
//
// where `pieces` is the expression `&["a ", " b \\"]`. It has the span of `r"a {} b \"`
let span = pieces.span;
let snippet = snippet_opt(cx, span)?;
let (inner, style) = match tokenize(&snippet).next()?.kind {
TokenKind::Literal { kind, .. } => {
let style = match kind {
LiteralKind::Str { .. } => None,
LiteralKind::RawStr { n_hashes: Some(n), .. } => Some(n.into()),
_ => return None,
};
let start = style.map_or(1, |n| 2 + n);
let end = snippet.len() - style.map_or(1, |n| 1 + n);
(&snippet[start..end], style)
},
_ => return None,
};
let mode = if style.is_some() {
unescape::Mode::RawStr
} else {
unescape::Mode::Str
};
let mut unescaped = String::with_capacity(inner.len());
unescape_literal(inner, mode, &mut |_, ch| match ch {
Ok(ch) => unescaped.push(ch),
Err(e) if !e.is_fatal() => (),
Err(e) => panic!("{e:?}"),
});
let mut parts = Vec::new();
let _: Option<!> = for_each_expr(pieces, |expr| {
if let ExprKind::Lit(lit) = &expr.kind
&& let LitKind::Str(symbol, _) = lit.node
{
parts.push(symbol);
}
ControlFlow::Continue(())
});
Some(Self {
span,
snippet,
style,
unescaped,
parts,
})
}
}
struct FormatArgsValues<'tcx> {
/// Values passed after the format string and implicit captures. `[1, z + 2, x]` for
/// `format!("{x} {} {}", 1, z + 2)`.
value_args: Vec<&'tcx Expr<'tcx>>,
/// Maps an `rt::v1::Argument::position` or an `rt::v1::Count::Param` to its index in
/// `value_args`
pos_to_value_index: Vec<usize>,
/// Used to check if a value is declared inline & to resolve `InnerSpan`s.
format_string_span: SpanData,
}
impl<'tcx> FormatArgsValues<'tcx> {
fn new(args: &'tcx Expr<'tcx>, format_string_span: SpanData) -> Self {
let mut pos_to_value_index = Vec::new();
let mut value_args = Vec::new();
let _: Option<!> = for_each_expr(args, |expr| {
if expr.span.ctxt() == args.span.ctxt() {
// ArgumentV1::new_<format_trait>(<val>)
// ArgumentV1::from_usize(<val>)
if let ExprKind::Call(callee, [val]) = expr.kind
&& let ExprKind::Path(QPath::TypeRelative(ty, _)) = callee.kind
&& let hir::TyKind::Path(QPath::Resolved(_, path)) = ty.kind
&& path.segments.last().unwrap().ident.name == sym::ArgumentV1
{
let val_idx = if val.span.ctxt() == expr.span.ctxt()
&& let ExprKind::Field(_, field) = val.kind
&& let Ok(idx) = field.name.as_str().parse()
{
// tuple index
idx
} else {
// assume the value expression is passed directly
pos_to_value_index.len()
};
pos_to_value_index.push(val_idx);
}
ControlFlow::Continue(Descend::Yes)
} else {
// assume that any expr with a differing span is a value
value_args.push(expr);
ControlFlow::Continue(Descend::No)
}
});
Self {
value_args,
pos_to_value_index,
format_string_span,
}
}
}
/// The positions of a format argument's value, precision and width
///
/// A position is an index into the second argument of `Arguments::new_v1[_formatted]`
#[derive(Debug, Default, Copy, Clone)]
struct ParamPosition {
/// The position stored in `rt::v1::Argument::position`.
value: usize,
/// The position stored in `rt::v1::FormatSpec::width` if it is a `Count::Param`.
width: Option<usize>,
/// The position stored in `rt::v1::FormatSpec::precision` if it is a `Count::Param`.
precision: Option<usize>,
}
impl<'tcx> Visitor<'tcx> for ParamPosition {
fn visit_expr_field(&mut self, field: &'tcx ExprField<'tcx>) {
fn parse_count(expr: &Expr<'_>) -> Option<usize> {
// ::core::fmt::rt::v1::Count::Param(1usize),
if let ExprKind::Call(ctor, [val]) = expr.kind
&& let ExprKind::Path(QPath::Resolved(_, path)) = ctor.kind
&& path.segments.last()?.ident.name == sym::Param
&& let ExprKind::Lit(lit) = &val.kind
&& let LitKind::Int(pos, _) = lit.node
{
Some(pos as usize)
} else {
None
}
}
match field.ident.name {
sym::position => {
if let ExprKind::Lit(lit) = &field.expr.kind
&& let LitKind::Int(pos, _) = lit.node
{
self.value = pos as usize;
}
},
sym::precision => {
self.precision = parse_count(field.expr);
},
sym::width => {
self.width = parse_count(field.expr);
},
_ => walk_expr(self, field.expr),
}
}
}
/// Parses the `fmt` arg of `Arguments::new_v1_formatted(pieces, args, fmt, _)`
fn parse_rt_fmt<'tcx>(fmt_arg: &'tcx Expr<'tcx>) -> Option<impl Iterator<Item = ParamPosition> + 'tcx> {
if let ExprKind::AddrOf(.., array) = fmt_arg.kind
&& let ExprKind::Array(specs) = array.kind
{
Some(specs.iter().map(|spec| {
let mut position = ParamPosition::default();
position.visit_expr(spec);
position
}))
} else {
None
}
}
/// `Span::from_inner`, but for `rustc_parse_format`'s `InnerSpan`
fn span_from_inner(base: SpanData, inner: rpf::InnerSpan) -> Span {
Span::new(
base.lo + BytePos::from_usize(inner.start),
base.lo + BytePos::from_usize(inner.end),
base.ctxt,
base.parent,
)
}
/// How a format parameter is used in the format string
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
pub enum FormatParamKind {
/// An implicit parameter , such as `{}` or `{:?}`.
Implicit,
/// A parameter with an explicit number, e.g. `{1}`, `{0:?}`, or `{:.0$}`
Numbered,
/// A parameter with an asterisk precision. e.g. `{:.*}`.
Starred,
/// A named parameter with a named `value_arg`, such as the `x` in `format!("{x}", x = 1)`.
Named(Symbol),
/// An implicit named parameter, such as the `y` in `format!("{y}")`.
NamedInline(Symbol),
}
/// Where a format parameter is being used in the format string
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
pub enum FormatParamUsage {
/// Appears as an argument, e.g. `format!("{}", foo)`
Argument,
/// Appears as a width, e.g. `format!("{:width$}", foo, width = 1)`
Width,
/// Appears as a precision, e.g. `format!("{:.precision$}", foo, precision = 1)`
Precision,
}
/// A `FormatParam` is any place in a `FormatArgument` that refers to a supplied value, e.g.
///
/// ```
/// let precision = 2;
/// format!("{:.precision$}", 0.1234);
/// ```
///
/// has two `FormatParam`s, a [`FormatParamKind::Implicit`] `.kind` with a `.value` of `0.1234`
/// and a [`FormatParamKind::NamedInline("precision")`] `.kind` with a `.value` of `2`
#[derive(Debug, Copy, Clone)]
pub struct FormatParam<'tcx> {
/// The expression this parameter refers to.
pub value: &'tcx Expr<'tcx>,
/// How this parameter refers to its `value`.
pub kind: FormatParamKind,
/// Where this format param is being used - argument/width/precision
pub usage: FormatParamUsage,
/// Span of the parameter, may be zero width. Includes the whitespace of implicit parameters.
///
/// ```text
/// format!("{}, { }, {0}, {name}", ...);
/// ^ ~~ ~ ~~~~
/// ```
pub span: Span,
}
impl<'tcx> FormatParam<'tcx> {
fn new(
mut kind: FormatParamKind,
usage: FormatParamUsage,
position: usize,
inner: rpf::InnerSpan,
values: &FormatArgsValues<'tcx>,
) -> Option<Self> {
let value_index = *values.pos_to_value_index.get(position)?;
let value = *values.value_args.get(value_index)?;
let span = span_from_inner(values.format_string_span, inner);
// if a param is declared inline, e.g. `format!("{x}")`, the generated expr's span points
// into the format string
if let FormatParamKind::Named(name) = kind && values.format_string_span.contains(value.span.data()) {
kind = FormatParamKind::NamedInline(name);
}
Some(Self {
value,
kind,
usage,
span,
})
}
}
/// Used by [width](https://doc.rust-lang.org/std/fmt/#width) and
/// [precision](https://doc.rust-lang.org/std/fmt/#precision) specifiers.
#[derive(Debug, Copy, Clone)]
pub enum Count<'tcx> {
/// Specified with a literal number, stores the value.
Is(usize, Span),
/// Specified using `$` and `*` syntaxes. The `*` format is still considered to be
/// `FormatParamKind::Numbered`.
Param(FormatParam<'tcx>),
/// Not specified.
Implied(Option<Span>),
}
impl<'tcx> Count<'tcx> {
fn new(
usage: FormatParamUsage,
count: rpf::Count<'_>,
position: Option<usize>,
inner: Option<rpf::InnerSpan>,
values: &FormatArgsValues<'tcx>,
) -> Option<Self> {
let span = inner.map(|inner| span_from_inner(values.format_string_span, inner));
Some(match count {
rpf::Count::CountIs(val) => Self::Is(val, span?),
rpf::Count::CountIsName(name, _) => Self::Param(FormatParam::new(
FormatParamKind::Named(Symbol::intern(name)),
usage,
position?,
inner?,
values,
)?),
rpf::Count::CountIsParam(_) => Self::Param(FormatParam::new(
FormatParamKind::Numbered,
usage,
position?,
inner?,
values,
)?),
rpf::Count::CountIsStar(_) => Self::Param(FormatParam::new(
FormatParamKind::Starred,
usage,
position?,
inner?,
values,
)?),
rpf::Count::CountImplied => Self::Implied(span),
})
}
pub fn is_implied(self) -> bool {
matches!(self, Count::Implied(_))
}
pub fn param(self) -> Option<FormatParam<'tcx>> {
match self {
Count::Param(param) => Some(param),
_ => None,
}
}
pub fn span(self) -> Option<Span> {
match self {
Count::Is(_, span) => Some(span),
Count::Param(param) => Some(param.span),
Count::Implied(span) => span,
}
}
}
/// Specification for the formatting of an argument in the format string. See
/// <https://doc.rust-lang.org/std/fmt/index.html#formatting-parameters> for the precise meanings.
#[derive(Debug)]
pub struct FormatSpec<'tcx> {
/// Optionally specified character to fill alignment with.
pub fill: Option<char>,
/// Optionally specified alignment.
pub align: Alignment,
/// Packed version of various flags provided, see [`rustc_parse_format::Flag`].
pub flags: u32,
/// Represents either the maximum width or the integer precision.
pub precision: Count<'tcx>,
/// The minimum width, will be padded according to `width`/`align`
pub width: Count<'tcx>,
/// The formatting trait used by the argument, e.g. `sym::Display` for `{}`, `sym::Debug` for
/// `{:?}`.
pub r#trait: Symbol,
pub trait_span: Option<Span>,
}
impl<'tcx> FormatSpec<'tcx> {
fn new(spec: rpf::FormatSpec<'_>, positions: ParamPosition, values: &FormatArgsValues<'tcx>) -> Option<Self> {
Some(Self {
fill: spec.fill,
align: spec.align,
flags: spec.flags,
precision: Count::new(
FormatParamUsage::Precision,
spec.precision,
positions.precision,
spec.precision_span,
values,
)?,
width: Count::new(
FormatParamUsage::Width,
spec.width,
positions.width,
spec.width_span,
values,
)?,
r#trait: match spec.ty {
"" => sym::Display,
"?" => sym::Debug,
"o" => sym!(Octal),
"x" => sym!(LowerHex),
"X" => sym!(UpperHex),
"p" => sym::Pointer,
"b" => sym!(Binary),
"e" => sym!(LowerExp),
"E" => sym!(UpperExp),
_ => return None,
},
trait_span: spec
.ty_span
.map(|span| span_from_inner(values.format_string_span, span)),
})
}
/// Returns true if this format spec is unchanged from the default. e.g. returns true for `{}`,
/// `{foo}` and `{2}`, but false for `{:?}`, `{foo:5}` and `{3:.5}`
pub fn is_default(&self) -> bool {
self.r#trait == sym::Display && self.is_default_for_trait()
}
/// Has no other formatting specifiers than setting the format trait. returns true for `{}`,
/// `{foo}`, `{:?}`, but false for `{foo:5}`, `{3:.5?}`
pub fn is_default_for_trait(&self) -> bool {
self.width.is_implied()
&& self.precision.is_implied()
&& self.align == Alignment::AlignUnknown
&& self.flags == 0
}
}
/// A format argument, such as `{}`, `{foo:?}`.
#[derive(Debug)]
pub struct FormatArg<'tcx> {
/// The parameter the argument refers to.
pub param: FormatParam<'tcx>,
/// How to format `param`.
pub format: FormatSpec<'tcx>,
/// span of the whole argument, `{..}`.
pub span: Span,
}
impl<'tcx> FormatArg<'tcx> {
/// Span of the `:` and format specifiers
///
/// ```ignore
/// format!("{:.}"), format!("{foo:.}")
/// ^^ ^^
/// ```
pub fn format_span(&self) -> Span {
let base = self.span.data();
// `base.hi` is `{...}|`, subtract 1 byte (the length of '}') so that it points before the closing
// brace `{...|}`
Span::new(self.param.span.hi(), base.hi - BytePos(1), base.ctxt, base.parent)
}
}
/// A parsed `format_args!` expansion.
#[derive(Debug)]
pub struct FormatArgsExpn<'tcx> {
/// The format string literal.
pub format_string: FormatString,
/// The format arguments, such as `{:?}`.
pub args: Vec<FormatArg<'tcx>>,
/// Has an added newline due to `println!()`/`writeln!()`/etc. The last format string part will
/// include this added newline.
pub newline: bool,
/// Spans of the commas between the format string and explicit values, excluding any trailing
/// comma
///
/// ```ignore
/// format!("..", 1, 2, 3,)
/// // ^ ^ ^
/// ```
comma_spans: Vec<Span>,
/// Explicit values passed after the format string, ignoring implicit captures. `[1, z + 2]` for
/// `format!("{x} {} {y}", 1, z + 2)`.
explicit_values: Vec<&'tcx Expr<'tcx>>,
}
impl<'tcx> FormatArgsExpn<'tcx> {
/// Gets the spans of the commas inbetween the format string and explicit args, not including
/// any trailing comma
///
/// ```ignore
/// format!("{} {}", a, b)
/// // ^ ^
/// ```
///
/// Ensures that the format string and values aren't coming from a proc macro that sets the
/// output span to that of its input
fn comma_spans(cx: &LateContext<'_>, explicit_values: &[&Expr<'_>], fmt_span: Span) -> Option<Vec<Span>> {
// `format!("{} {} {c}", "one", "two", c = "three")`
// ^^^^^ ^^^^^ ^^^^^^^
let value_spans = explicit_values
.iter()
.map(|val| hygiene::walk_chain(val.span, fmt_span.ctxt()));
// `format!("{} {} {c}", "one", "two", c = "three")`
// ^^ ^^ ^^^^^^
let between_spans = once(fmt_span)
.chain(value_spans)
.tuple_windows()
.map(|(start, end)| start.between(end));
let mut comma_spans = Vec::new();
for between_span in between_spans {
let mut offset = 0;
let mut seen_comma = false;
for token in tokenize(&snippet_opt(cx, between_span)?) {
match token.kind {
TokenKind::LineComment { .. } | TokenKind::BlockComment { .. } | TokenKind::Whitespace => {},
TokenKind::Comma if !seen_comma => {
seen_comma = true;
let base = between_span.data();
comma_spans.push(Span::new(
base.lo + BytePos(offset),
base.lo + BytePos(offset + 1),
base.ctxt,
base.parent,
));
},
// named arguments, `start_val, name = end_val`
// ^^^^^^^^^ between_span
TokenKind::Ident | TokenKind::Eq if seen_comma => {},
// An unexpected token usually indicates the format string or a value came from a proc macro output
// that sets the span of its output to an input, e.g. `println!(some_proc_macro!("input"), ..)` that
// emits a string literal with the span set to that of `"input"`
_ => return None,
}
offset += token.len;
}
if !seen_comma {
return None;
}
}
Some(comma_spans)
}
pub fn parse(cx: &LateContext<'_>, expr: &'tcx Expr<'tcx>) -> Option<Self> {
let macro_name = macro_backtrace(expr.span)
.map(|macro_call| cx.tcx.item_name(macro_call.def_id))
.find(|&name| matches!(name, sym::const_format_args | sym::format_args | sym::format_args_nl))?;
let newline = macro_name == sym::format_args_nl;
// ::core::fmt::Arguments::new_v1(pieces, args)
// ::core::fmt::Arguments::new_v1_formatted(pieces, args, fmt, _unsafe_arg)
if let ExprKind::Call(callee, [pieces, args, rest @ ..]) = expr.kind
&& let ExprKind::Path(QPath::TypeRelative(ty, seg)) = callee.kind
&& is_path_diagnostic_item(cx, ty, sym::Arguments)
&& matches!(seg.ident.as_str(), "new_v1" | "new_v1_formatted")
{
let format_string = FormatString::new(cx, pieces)?;
let mut parser = rpf::Parser::new(
&format_string.unescaped,
format_string.style,
Some(format_string.snippet.clone()),
// `format_string.unescaped` does not contain the appended newline
false,
rpf::ParseMode::Format,
);
let parsed_args = parser
.by_ref()
.filter_map(|piece| match piece {
rpf::Piece::NextArgument(a) => Some(a),
rpf::Piece::String(_) => None,
})
.collect_vec();
if !parser.errors.is_empty() {
return None;
}
let positions = if let Some(fmt_arg) = rest.first() {
// If the argument contains format specs, `new_v1_formatted(_, _, fmt, _)`, parse
// them.
Either::Left(parse_rt_fmt(fmt_arg)?)
} else {
// If no format specs are given, the positions are in the given order and there are
// no `precision`/`width`s to consider.
Either::Right((0..).map(|n| ParamPosition {
value: n,
width: None,
precision: None,
}))
};
let values = FormatArgsValues::new(args, format_string.span.data());
let args = izip!(positions, parsed_args, parser.arg_places)
.map(|(position, parsed_arg, arg_span)| {
Some(FormatArg {
param: FormatParam::new(
match parsed_arg.position {
rpf::Position::ArgumentImplicitlyIs(_) => FormatParamKind::Implicit,
rpf::Position::ArgumentIs(_) => FormatParamKind::Numbered,
// NamedInline is handled by `FormatParam::new()`
rpf::Position::ArgumentNamed(name) => FormatParamKind::Named(Symbol::intern(name)),
},
FormatParamUsage::Argument,
position.value,
parsed_arg.position_span,
&values,
)?,
format: FormatSpec::new(parsed_arg.format, position, &values)?,
span: span_from_inner(values.format_string_span, arg_span),
})
})
.collect::<Option<Vec<_>>>()?;
let mut explicit_values = values.value_args;
// remove values generated for implicitly captured vars
let len = explicit_values
.iter()
.take_while(|val| !format_string.span.contains(val.span))
.count();
explicit_values.truncate(len);
let comma_spans = Self::comma_spans(cx, &explicit_values, format_string.span)?;
Some(Self {
format_string,
args,
newline,
comma_spans,
explicit_values,
})
} else {
None
}
}
pub fn find_nested(cx: &LateContext<'tcx>, expr: &'tcx Expr<'tcx>, expn_id: ExpnId) -> Option<Self> {
for_each_expr(expr, |e| {
let e_ctxt = e.span.ctxt();
if e_ctxt == expr.span.ctxt() {
ControlFlow::Continue(Descend::Yes)
} else if e_ctxt.outer_expn().is_descendant_of(expn_id) {
if let Some(args) = FormatArgsExpn::parse(cx, e) {
ControlFlow::Break(args)
} else {
ControlFlow::Continue(Descend::No)
}
} else {
ControlFlow::Continue(Descend::No)
}
})
}
/// Source callsite span of all inputs
pub fn inputs_span(&self) -> Span {
match *self.explicit_values {
[] => self.format_string.span,
[.., last] => self
.format_string
.span
.to(hygiene::walk_chain(last.span, self.format_string.span.ctxt())),
}
}
/// Get the span of a value expanded to the previous comma, e.g. for the value `10`
///
/// ```ignore
/// format("{}.{}", 10, 11)
/// // ^^^^
/// ```
pub fn value_with_prev_comma_span(&self, value_id: HirId) -> Option<Span> {
for (comma_span, value) in zip(&self.comma_spans, &self.explicit_values) {
if value.hir_id == value_id {
return Some(comma_span.to(hygiene::walk_chain(value.span, comma_span.ctxt())));
}
}
None
}
/// Iterator of all format params, both values and those referenced by `width`/`precision`s.
pub fn params(&'tcx self) -> impl Iterator<Item = FormatParam<'tcx>> {
self.args
.iter()
.flat_map(|arg| [Some(arg.param), arg.format.precision.param(), arg.format.width.param()])
.flatten()
}
}
/// A node with a `HirId` and a `Span`
pub trait HirNode {
fn hir_id(&self) -> HirId;
fn span(&self) -> Span;
}
macro_rules! impl_hir_node {
($($t:ident),*) => {
$(impl HirNode for hir::$t<'_> {
fn hir_id(&self) -> HirId {
self.hir_id
}
fn span(&self) -> Span {
self.span
}
})*
};
}
impl_hir_node!(Expr, Pat);
impl HirNode for hir::Item<'_> {
fn hir_id(&self) -> HirId {
self.hir_id()
}
fn span(&self) -> Span {
self.span
}
}