rust/src/librand/os.rs
2014-04-04 09:31:44 -07:00

240 lines
7.7 KiB
Rust

// Copyright 2013 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! Interfaces to the operating system provided random number
//! generators.
pub use self::imp::OSRng;
#[cfg(unix)]
mod imp {
use Rng;
use reader::ReaderRng;
use std::io::{IoResult, File};
/// A random number generator that retrieves randomness straight from
/// the operating system. Platform sources:
///
/// - Unix-like systems (Linux, Android, Mac OSX): read directly from
/// `/dev/urandom`.
/// - Windows: calls `CryptGenRandom`, using the default cryptographic
/// service provider with the `PROV_RSA_FULL` type.
///
/// This does not block.
#[cfg(unix)]
pub struct OSRng {
inner: ReaderRng<File>
}
impl OSRng {
/// Create a new `OSRng`.
pub fn new() -> IoResult<OSRng> {
let reader = try!(File::open(&Path::new("/dev/urandom")));
let reader_rng = ReaderRng::new(reader);
Ok(OSRng { inner: reader_rng })
}
}
impl Rng for OSRng {
fn next_u32(&mut self) -> u32 {
self.inner.next_u32()
}
fn next_u64(&mut self) -> u64 {
self.inner.next_u64()
}
fn fill_bytes(&mut self, v: &mut [u8]) {
self.inner.fill_bytes(v)
}
}
}
#[cfg(windows)]
mod imp {
extern crate libc;
use Rng;
use std::cast;
use std::io::{IoResult, IoError};
use std::os;
use std::rt::stack;
use self::libc::{c_ulong, DWORD, BYTE, LPCSTR, BOOL};
type HCRYPTPROV = c_ulong;
/// A random number generator that retrieves randomness straight from
/// the operating system. Platform sources:
///
/// - Unix-like systems (Linux, Android, Mac OSX): read directly from
/// `/dev/urandom`.
/// - Windows: calls `CryptGenRandom`, using the default cryptographic
/// service provider with the `PROV_RSA_FULL` type.
///
/// This does not block.
pub struct OSRng {
hcryptprov: HCRYPTPROV
}
static PROV_RSA_FULL: DWORD = 1;
static CRYPT_SILENT: DWORD = 64;
static CRYPT_VERIFYCONTEXT: DWORD = 0xF0000000;
static NTE_BAD_SIGNATURE: DWORD = 0x80090006;
extern "system" {
fn CryptAcquireContextA(phProv: *mut HCRYPTPROV,
pszContainer: LPCSTR,
pszProvider: LPCSTR,
dwProvType: DWORD,
dwFlags: DWORD) -> BOOL;
fn CryptGenRandom(hProv: HCRYPTPROV,
dwLen: DWORD,
pbBuffer: *mut BYTE) -> BOOL;
fn CryptReleaseContext(hProv: HCRYPTPROV, dwFlags: DWORD) -> BOOL;
}
impl OSRng {
/// Create a new `OSRng`.
pub fn new() -> IoResult<OSRng> {
let mut hcp = 0;
let mut ret = unsafe {
CryptAcquireContextA(&mut hcp, 0 as LPCSTR, 0 as LPCSTR,
PROV_RSA_FULL,
CRYPT_VERIFYCONTEXT | CRYPT_SILENT)
};
// It turns out that if we can't acquire a context with the
// NTE_BAD_SIGNATURE error code, the documentation states:
//
// The provider DLL signature could not be verified. Either the
// DLL or the digital signature has been tampered with.
//
// Sounds fishy, no? As it turns out, our signature can be bad
// because our Thread Information Block (TIB) isn't exactly what it
// expects. As to why, I have no idea. The only data we store in the
// TIB is the stack limit for each thread, but apparently that's
// enough to make the signature valid.
//
// Furthermore, this error only happens the *first* time we call
// CryptAcquireContext, so we don't have to worry about future
// calls.
//
// Anyway, the fix employed here is that if we see this error, we
// pray that we're not close to the end of the stack, temporarily
// set the stack limit to 0 (what the TIB originally was), acquire a
// context, and then reset the stack limit.
//
// Again, I'm not sure why this is the fix, nor why we're getting
// this error. All I can say is that this seems to allow libnative
// to progress where it otherwise would be hindered. Who knew?
if ret == 0 && os::errno() as DWORD == NTE_BAD_SIGNATURE {
unsafe {
let limit = stack::get_sp_limit();
stack::record_sp_limit(0);
ret = CryptAcquireContextA(&mut hcp, 0 as LPCSTR, 0 as LPCSTR,
PROV_RSA_FULL,
CRYPT_VERIFYCONTEXT | CRYPT_SILENT);
stack::record_sp_limit(limit);
}
}
if ret == 0 {
Err(IoError::last_error())
} else {
Ok(OSRng { hcryptprov: hcp })
}
}
}
impl Rng for OSRng {
fn next_u32(&mut self) -> u32 {
let mut v = [0u8, .. 4];
self.fill_bytes(v);
unsafe { cast::transmute(v) }
}
fn next_u64(&mut self) -> u64 {
let mut v = [0u8, .. 8];
self.fill_bytes(v);
unsafe { cast::transmute(v) }
}
fn fill_bytes(&mut self, v: &mut [u8]) {
let ret = unsafe {
CryptGenRandom(self.hcryptprov, v.len() as DWORD,
v.as_mut_ptr())
};
if ret == 0 {
fail!("couldn't generate random bytes: {}", os::last_os_error());
}
}
}
impl Drop for OSRng {
fn drop(&mut self) {
let ret = unsafe {
CryptReleaseContext(self.hcryptprov, 0)
};
if ret == 0 {
fail!("couldn't release context: {}", os::last_os_error());
}
}
}
}
#[cfg(test)]
mod test {
use super::OSRng;
use Rng;
use std::task;
#[test]
fn test_os_rng() {
let mut r = OSRng::new().unwrap();
r.next_u32();
r.next_u64();
let mut v = [0u8, .. 1000];
r.fill_bytes(v);
}
#[test]
fn test_os_rng_tasks() {
let mut txs = vec!();
for _ in range(0, 20) {
let (tx, rx) = channel();
txs.push(tx);
task::spawn(proc() {
// wait until all the tasks are ready to go.
rx.recv();
// deschedule to attempt to interleave things as much
// as possible (XXX: is this a good test?)
let mut r = OSRng::new().unwrap();
task::deschedule();
let mut v = [0u8, .. 1000];
for _ in range(0, 100) {
r.next_u32();
task::deschedule();
r.next_u64();
task::deschedule();
r.fill_bytes(v);
task::deschedule();
}
})
}
// start all the tasks
for tx in txs.iter() {
tx.send(())
}
}
}