rust/src/stacked_borrows.rs

659 lines
24 KiB
Rust

use std::cell::RefCell;
use rustc::ty::{self, layout::Size};
use rustc::hir::{Mutability, MutMutable, MutImmutable};
use crate::{
EvalResult, EvalErrorKind, MiriEvalContext, HelpersEvalContextExt, Evaluator, MutValueVisitor,
MemoryKind, MiriMemoryKind, RangeMap, AllocId, Allocation, AllocationExtra, InboundsCheck,
Pointer, MemPlace, Scalar, Immediate, ImmTy, PlaceTy, MPlaceTy,
};
pub type Timestamp = u64;
/// Information about which kind of borrow was used to create the reference this is tagged
/// with.
#[derive(Copy, Clone, Debug, Hash, PartialEq, Eq)]
pub enum Borrow {
/// A unique (mutable) reference.
Uniq(Timestamp),
/// A shared reference. This is also used by raw pointers, which do not track details
/// of how or when they were created, hence the timestamp is optional.
/// Shr(Some(_)) does NOT mean that the destination of this reference is frozen;
/// that depends on the type! Only those parts outside of an `UnsafeCell` are actually
/// frozen.
Shr(Option<Timestamp>),
}
impl Borrow {
#[inline(always)]
pub fn is_shared(self) -> bool {
match self {
Borrow::Shr(_) => true,
_ => false,
}
}
#[inline(always)]
pub fn is_unique(self) -> bool {
match self {
Borrow::Uniq(_) => true,
_ => false,
}
}
}
impl Default for Borrow {
fn default() -> Self {
Borrow::Shr(None)
}
}
/// An item in the per-location borrow stack
#[derive(Copy, Clone, Debug, Hash, PartialEq, Eq)]
pub enum BorStackItem {
/// Indicates the unique reference that may mutate.
Uniq(Timestamp),
/// Indicates that the location has been shared. Used for raw pointers, but
/// also for shared references. The latter *additionally* get frozen
/// when there is no `UnsafeCell`.
Shr,
/// A barrier, tracking the function it belongs to by its index on the call stack
#[allow(dead_code)] // for future use
FnBarrier(usize)
}
impl BorStackItem {
#[inline(always)]
pub fn is_fn_barrier(self) -> bool {
match self {
BorStackItem::FnBarrier(_) => true,
_ => false,
}
}
}
/// Extra per-location state
#[derive(Clone, Debug)]
pub struct Stack {
borrows: Vec<BorStackItem>, // used as a stack; never empty
frozen_since: Option<Timestamp>, // virtual frozen "item" on top of the stack
}
impl Default for Stack {
fn default() -> Self {
Stack {
borrows: vec![BorStackItem::Shr],
frozen_since: None,
}
}
}
impl Stack {
#[inline(always)]
pub fn is_frozen(&self) -> bool {
self.frozen_since.is_some()
}
}
/// What kind of reference is being used?
#[derive(Copy, Clone, Debug, Hash, PartialEq, Eq)]
pub enum RefKind {
/// &mut
Unique,
/// & without interior mutability
Frozen,
/// * (raw pointer) or & to `UnsafeCell`
Raw,
}
/// Extra global machine state
#[derive(Clone, Debug)]
pub struct State {
clock: Timestamp
}
impl State {
pub fn new() -> State {
State { clock: 0 }
}
fn increment_clock(&mut self) -> Timestamp {
let val = self.clock;
self.clock = val + 1;
val
}
}
/// Extra per-allocation state
#[derive(Clone, Debug, Default)]
pub struct Stacks {
// Even reading memory can have effects on the stack, so we need a `RefCell` here.
stacks: RefCell<RangeMap<Stack>>,
}
/// Core per-location operations: deref, access, create.
/// We need to make at least the following things true:
///
/// U1: After creating a Uniq, it is at the top (+unfrozen).
/// U2: If the top is Uniq (+unfrozen), accesses must be through that Uniq or pop it.
/// U3: If an access (deref sufficient?) happens with a Uniq, it requires the Uniq to be in the stack.
///
/// F1: After creating a &, the parts outside `UnsafeCell` are frozen.
/// F2: If a write access happens, it unfreezes.
/// F3: If an access (well, a deref) happens with an & outside `UnsafeCell`, it requires the location to still be frozen.
impl<'tcx> Stack {
/// Deref `bor`: Check if the location is frozen and the tag in the stack.
/// This dos *not* constitute an access! "Deref" refers to the `*` operator
/// in Rust, and includs cases like `&*x` or `(*x).foo` where no or only part
/// of the memory actually gets accessed. Also we cannot know if we are
/// going to read or write.
/// Returns the index of the item we matched, `None` if it was the frozen one.
/// `kind` indicates which kind of reference is being dereferenced.
fn deref(&self, bor: Borrow, kind: RefKind) -> Result<Option<usize>, String> {
// Exclude unique ref and frozen tag.
match (kind, bor) {
(RefKind::Unique, Borrow::Shr(Some(_))) =>
return Err(format!("Encountered mutable reference with frozen tag")),
_ => {}
}
// Checks related to freezing
match bor {
Borrow::Shr(Some(bor_t)) if kind == RefKind::Frozen => {
// We need the location to be frozen. This ensures F3.
let frozen = self.frozen_since.map_or(false, |itm_t| itm_t <= bor_t);
return if frozen { Ok(None) } else {
Err(format!("Location is not frozen long enough"))
}
}
Borrow::Shr(_) if self.frozen_since.is_some() => {
return Ok(None) // Shared deref to frozen location, looking good
}
_ => {} // Not sufficient, go on looking.
}
// If we got here, we have to look for our item in the stack.
for (idx, &itm) in self.borrows.iter().enumerate().rev() {
match (itm, bor) {
(BorStackItem::FnBarrier(_), _) => break,
(BorStackItem::Uniq(itm_t), Borrow::Uniq(bor_t)) if itm_t == bor_t => {
// Found matching unique item. This satisfies U3.
return Ok(Some(idx))
}
(BorStackItem::Shr, Borrow::Shr(_)) => {
// Found matching shared/raw item.
return Ok(Some(idx))
}
// Go on looking.
_ => {}
}
}
// If we got here, we did not find our item. We have to error to satisfy U3.
Err(format!(
"Borrow being dereferenced ({:?}) does not exist on the stack, or is guarded by a barrier",
bor
))
}
/// Perform an actual memory access using `bor`. We do not know any types here
/// or whether things should be frozen, but we *do* know if this is reading
/// or writing.
fn access(&mut self, bor: Borrow, is_write: bool) -> EvalResult<'tcx> {
// Check if we can match the frozen "item".
// Not possible on writes!
if self.is_frozen() {
if !is_write {
// When we are frozen, we just accept all reads. No harm in this.
// The deref already checked that `Uniq` items are in the stack, and that
// the location is frozen if it should be.
return Ok(());
}
trace!("access: Unfreezing");
}
// Unfreeze on writes. This ensures F2.
self.frozen_since = None;
// Pop the stack until we have something matching.
while let Some(&itm) = self.borrows.last() {
match (itm, bor) {
(BorStackItem::FnBarrier(_), _) => break,
(BorStackItem::Uniq(itm_t), Borrow::Uniq(bor_t)) if itm_t == bor_t => {
// Found matching unique item.
return Ok(())
}
(BorStackItem::Shr, _) if !is_write => {
// When reading, everything can use a shared item!
// We do not want to do this when writing: Writing to an `&mut`
// should reaffirm its exclusivity (i.e., make sure it is
// on top of the stack).
return Ok(())
}
(BorStackItem::Shr, Borrow::Shr(_)) => {
// Found matching shared item.
return Ok(())
}
_ => {
// Pop this. This ensures U2.
let itm = self.borrows.pop().unwrap();
trace!("access: Popping {:?}", itm);
}
}
}
// If we got here, we did not find our item.
err!(MachineError(format!(
"Borrow being accessed ({:?}) does not exist on the stack, or is guarded by a barrier",
bor
)))
}
/// Initiate `bor`; mostly this means pushing.
/// This operation cannot fail; it is up to the caller to ensure that the precondition
/// is met: We cannot push `Uniq` onto frozen stacks.
/// `kind` indicates which kind of reference is being created.
fn create(&mut self, bor: Borrow, kind: RefKind) {
// First, push the item. We do this even if we will later freeze, because we
// will allow mutation of shared data at the expense of unfreezing.
if self.frozen_since.is_some() {
// A frozen location, this should be impossible!
bug!("We should never try pushing to a frozen stack");
}
// First, push.
let itm = match bor {
Borrow::Uniq(t) => BorStackItem::Uniq(t),
Borrow::Shr(_) => BorStackItem::Shr,
};
if *self.borrows.last().unwrap() == itm {
assert!(bor.is_shared());
trace!("create: Sharing a shared location is a NOP");
} else {
// This ensures U1.
trace!("create: Pushing {:?}", itm);
self.borrows.push(itm);
}
// Then, maybe freeze. This is part 2 of ensuring F1.
if kind == RefKind::Frozen {
let bor_t = match bor {
Borrow::Shr(Some(t)) => t,
_ => bug!("Creating illegal borrow {:?} for frozen ref", bor),
};
trace!("create: Freezing");
self.frozen_since = Some(bor_t);
}
}
}
/// Higher-level per-location operations: deref, access, reborrow.
impl<'tcx> Stacks {
/// Check that this stack is fine with being dereferenced
fn deref(
&self,
ptr: Pointer<Borrow>,
size: Size,
kind: RefKind,
) -> EvalResult<'tcx> {
trace!("deref for tag {:?} as {:?}: {:?}, size {}",
ptr.tag, kind, ptr, size.bytes());
let mut stacks = self.stacks.borrow_mut();
// We need `iter_mut` because `iter` would skip gaps!
for stack in stacks.iter_mut(ptr.offset, size) {
stack.deref(ptr.tag, kind).map_err(EvalErrorKind::MachineError)?;
}
Ok(())
}
/// `ptr` got used, reflect that in the stack.
fn access(
&self,
ptr: Pointer<Borrow>,
size: Size,
is_write: bool,
) -> EvalResult<'tcx> {
trace!("{} access of tag {:?}: {:?}, size {}",
if is_write { "read" } else { "write" },
ptr.tag, ptr, size.bytes());
// Even reads can have a side-effect, by invalidating other references.
// This is fundamentally necessary since `&mut` asserts that there
// are no accesses through other references, not even reads.
let mut stacks = self.stacks.borrow_mut();
for stack in stacks.iter_mut(ptr.offset, size) {
stack.access(ptr.tag, is_write)?;
}
Ok(())
}
/// Reborrow the given pointer to the new tag for the given kind of reference.
/// This works on `&self` because we might encounter references to constant memory.
fn reborrow(
&self,
ptr: Pointer<Borrow>,
size: Size,
new_bor: Borrow,
new_kind: RefKind,
) -> EvalResult<'tcx> {
assert_eq!(new_bor.is_unique(), new_kind == RefKind::Unique);
trace!("reborrow for tag {:?} to {:?} as {:?}: {:?}, size {}",
ptr.tag, new_bor, new_kind, ptr, size.bytes());
let mut stacks = self.stacks.borrow_mut();
for stack in stacks.iter_mut(ptr.offset, size) {
// Access source `ptr`, create new ref.
let ptr_idx = stack.deref(ptr.tag, new_kind).map_err(EvalErrorKind::MachineError)?;
// If we can deref the new tag already, and if that tag lives higher on
// the stack than the one we come from, just use that.
// IOW, we check if `new_bor` *already* is "derived from" `ptr.tag`.
// This also checks frozenness, if required.
let bor_redundant = match (ptr_idx, stack.deref(new_bor, new_kind)) {
// If the new borrow works with the frozen item, or else if it lives
// above the old one in the stack, our job here is done.
(_, Ok(None)) => true,
(Some(ptr_idx), Ok(Some(new_idx))) if new_idx >= ptr_idx => true,
// Otherwise we need to create a new borrow.
_ => false,
};
if bor_redundant {
assert!(new_bor.is_shared(), "A unique reborrow can never be redundant");
trace!("reborrow is redundant");
continue;
}
// We need to do some actual work.
stack.access(ptr.tag, new_kind == RefKind::Unique)?;
stack.create(new_bor, new_kind);
}
Ok(())
}
}
/// Hooks and glue
impl AllocationExtra<Borrow> for Stacks {
#[inline(always)]
fn memory_read<'tcx>(
alloc: &Allocation<Borrow, Stacks>,
ptr: Pointer<Borrow>,
size: Size,
) -> EvalResult<'tcx> {
alloc.extra.access(ptr, size, /*is_write*/false)
}
#[inline(always)]
fn memory_written<'tcx>(
alloc: &mut Allocation<Borrow, Stacks>,
ptr: Pointer<Borrow>,
size: Size,
) -> EvalResult<'tcx> {
alloc.extra.access(ptr, size, /*is_write*/true)
}
#[inline(always)]
fn memory_deallocated<'tcx>(
alloc: &mut Allocation<Borrow, Stacks>,
ptr: Pointer<Borrow>,
size: Size,
) -> EvalResult<'tcx> {
// This is like mutating
alloc.extra.access(ptr, size, /*is_write*/true)
// FIXME: Error out of there are any barriers?
}
}
impl<'tcx> Stacks {
/// Pushes the first item to the stacks.
pub fn first_item(
&mut self,
itm: BorStackItem,
size: Size
) {
assert!(!itm.is_fn_barrier());
for stack in self.stacks.get_mut().iter_mut(Size::ZERO, size) {
assert!(stack.borrows.len() == 1);
assert_eq!(stack.borrows.pop().unwrap(), BorStackItem::Shr);
stack.borrows.push(itm);
}
}
}
pub trait EvalContextExt<'tcx> {
fn ptr_dereference(
&self,
place: MPlaceTy<'tcx, Borrow>,
size: Size,
mutability: Option<Mutability>,
) -> EvalResult<'tcx>;
fn tag_new_allocation(
&mut self,
id: AllocId,
kind: MemoryKind<MiriMemoryKind>,
) -> Borrow;
/// Reborrow the given place, returning the newly tagged ptr to it.
fn reborrow(
&mut self,
place: MPlaceTy<'tcx, Borrow>,
size: Size,
new_bor: Borrow
) -> EvalResult<'tcx, Pointer<Borrow>>;
/// Retag an indidual pointer, returning the retagged version.
fn retag_reference(
&mut self,
ptr: ImmTy<'tcx, Borrow>,
mutbl: Mutability,
) -> EvalResult<'tcx, Immediate<Borrow>>;
fn retag(
&mut self,
fn_entry: bool,
place: PlaceTy<'tcx, Borrow>
) -> EvalResult<'tcx>;
fn escape_to_raw(
&mut self,
place: MPlaceTy<'tcx, Borrow>,
size: Size,
) -> EvalResult<'tcx>;
}
impl<'a, 'mir, 'tcx> EvalContextExt<'tcx> for MiriEvalContext<'a, 'mir, 'tcx> {
fn tag_new_allocation(
&mut self,
id: AllocId,
kind: MemoryKind<MiriMemoryKind>,
) -> Borrow {
let time = match kind {
MemoryKind::Stack => {
// New unique borrow. This `Uniq` is not accessible by the program,
// so it will only ever be used when using the local directly (i.e.,
// not through a pointer). IOW, whenever we directly use a local this will pop
// everything else off the stack, invalidating all previous pointers
// and, in particular, *all* raw pointers. This subsumes the explicit
// `reset` which the blog post [1] says to perform when accessing a local.
//
// [1] https://www.ralfj.de/blog/2018/08/07/stacked-borrows.html
self.machine.stacked_borrows.increment_clock()
}
_ => {
// Nothing to do for everything else
return Borrow::default()
}
};
// Make this the active borrow for this allocation
let alloc = self.memory_mut().get_mut(id).expect("This is a new allocation, it must still exist");
let size = Size::from_bytes(alloc.bytes.len() as u64);
alloc.extra.first_item(BorStackItem::Uniq(time), size);
Borrow::Uniq(time)
}
/// Called for value-to-place conversion. `mutability` is `None` for raw pointers.
///
/// Note that this does NOT mean that all this memory will actually get accessed/referenced!
/// We could be in the middle of `&(*var).1`.
fn ptr_dereference(
&self,
place: MPlaceTy<'tcx, Borrow>,
size: Size,
mutability: Option<Mutability>,
) -> EvalResult<'tcx> {
trace!("ptr_dereference: Accessing {} reference for {:?} (pointee {})",
if let Some(mutability) = mutability { format!("{:?}", mutability) } else { format!("raw") },
place.ptr, place.layout.ty);
let ptr = place.ptr.to_ptr()?;
if mutability.is_none() {
// No further checks on raw derefs -- only the access itself will be checked.
return Ok(());
}
// Get the allocation
self.memory().check_bounds(ptr, size, InboundsCheck::Live)?;
let alloc = self.memory().get(ptr.alloc_id).expect("We checked that the ptr is fine!");
// If we got here, we do some checking, *but* we leave the tag unchanged.
if let Borrow::Shr(Some(_)) = ptr.tag {
assert_eq!(mutability, Some(MutImmutable));
// We need a frozen-sensitive check
self.visit_freeze_sensitive(place, size, |cur_ptr, size, frozen| {
let kind = if frozen { RefKind::Frozen } else { RefKind::Raw };
alloc.extra.deref(cur_ptr, size, kind)
})?;
} else {
// Just treat this as one big chunk
let kind = if mutability == Some(MutMutable) { RefKind::Unique } else { RefKind::Raw };
alloc.extra.deref(ptr, size, kind)?;
}
// All is good
Ok(())
}
/// The given place may henceforth be accessed through raw pointers.
#[inline(always)]
fn escape_to_raw(
&mut self,
place: MPlaceTy<'tcx, Borrow>,
size: Size,
) -> EvalResult<'tcx> {
self.reborrow(place, size, Borrow::default())?;
Ok(())
}
fn reborrow(
&mut self,
place: MPlaceTy<'tcx, Borrow>,
size: Size,
new_bor: Borrow
) -> EvalResult<'tcx, Pointer<Borrow>> {
let ptr = place.ptr.to_ptr()?;
let new_ptr = Pointer::new_with_tag(ptr.alloc_id, ptr.offset, new_bor);
trace!("reborrow: Creating new reference for {:?} (pointee {}): {:?}",
ptr, place.layout.ty, new_bor);
// Get the allocation. It might not be mutable, so we cannot use `get_mut`.
self.memory().check_bounds(ptr, size, InboundsCheck::Live)?;
let alloc = self.memory().get(ptr.alloc_id).expect("We checked that the ptr is fine!");
// Update the stacks.
if let Borrow::Shr(Some(_)) = new_bor {
// Reference that cares about freezing. We need a frozen-sensitive reborrow.
self.visit_freeze_sensitive(place, size, |cur_ptr, size, frozen| {
let kind = if frozen { RefKind::Frozen } else { RefKind::Raw };
alloc.extra.reborrow(cur_ptr, size, new_bor, kind)
})?;
} else {
// Just treat this as one big chunk.
let kind = if new_bor.is_unique() { RefKind::Unique } else { RefKind::Raw };
alloc.extra.reborrow(ptr, size, new_bor, kind)?;
}
Ok(new_ptr)
}
fn retag_reference(
&mut self,
val: ImmTy<'tcx, Borrow>,
mutbl: Mutability,
) -> EvalResult<'tcx, Immediate<Borrow>> {
// We want a place for where the ptr *points to*, so we get one.
let place = self.ref_to_mplace(val)?;
let size = self.size_and_align_of_mplace(place)?
.map(|(size, _)| size)
.unwrap_or_else(|| place.layout.size);
if size == Size::ZERO {
// Nothing to do for ZSTs.
return Ok(*val);
}
// Compute new borrow.
let time = self.machine.stacked_borrows.increment_clock();
let new_bor = match mutbl {
MutMutable => Borrow::Uniq(time),
MutImmutable => Borrow::Shr(Some(time)),
};
// Reborrow.
let new_ptr = self.reborrow(place, size, new_bor)?;
// Return new ptr
let new_place = MemPlace { ptr: Scalar::Ptr(new_ptr), ..*place };
Ok(new_place.to_ref())
}
fn retag(
&mut self,
_fn_entry: bool,
place: PlaceTy<'tcx, Borrow>
) -> EvalResult<'tcx> {
// TODO: Honor `fn_entry`.
// We need a visitor to visit all references. However, that requires
// a `MemPlace`, so we have a fast path for reference types that
// avoids allocating.
// Cannot use `builtin_deref` because that reports *immutable* for `Box`,
// making it useless.
if let Some(mutbl) = match place.layout.ty.sty {
ty::Ref(_, _, mutbl) => Some(mutbl),
ty::Adt(..) if place.layout.ty.is_box() => Some(MutMutable),
_ => None, // handled with the general case below
} {
// fast path
let val = self.read_immediate(self.place_to_op(place)?)?;
let val = self.retag_reference(val, mutbl)?;
self.write_immediate(val, place)?;
return Ok(());
}
let place = self.force_allocation(place)?;
let mut visitor = RetagVisitor { ecx: self };
visitor.visit_value(place)?;
// The actual visitor
struct RetagVisitor<'ecx, 'a, 'mir, 'tcx> {
ecx: &'ecx mut MiriEvalContext<'a, 'mir, 'tcx>,
}
impl<'ecx, 'a, 'mir, 'tcx>
MutValueVisitor<'a, 'mir, 'tcx, Evaluator<'tcx>>
for
RetagVisitor<'ecx, 'a, 'mir, 'tcx>
{
type V = MPlaceTy<'tcx, Borrow>;
#[inline(always)]
fn ecx(&mut self) -> &mut MiriEvalContext<'a, 'mir, 'tcx> {
&mut self.ecx
}
// Primitives of reference type, that is the one thing we are interested in.
fn visit_primitive(&mut self, place: MPlaceTy<'tcx, Borrow>) -> EvalResult<'tcx>
{
// Cannot use `builtin_deref` because that reports *immutable* for `Box`,
// making it useless.
let mutbl = match place.layout.ty.sty {
ty::Ref(_, _, mutbl) => mutbl,
ty::Adt(..) if place.layout.ty.is_box() => MutMutable,
_ => return Ok(()), // nothing to do
};
let val = self.ecx.read_immediate(place.into())?;
let val = self.ecx.retag_reference(val, mutbl)?;
self.ecx.write_immediate(val, place.into())?;
Ok(())
}
}
Ok(())
}
}