rust/library/core/src/iter/range.rs
2021-12-14 16:40:43 +01:00

1255 lines
40 KiB
Rust

use crate::char;
use crate::convert::TryFrom;
use crate::mem;
use crate::ops::{self, Try};
use super::{
FusedIterator, TrustedLen, TrustedRandomAccess, TrustedRandomAccessNoCoerce, TrustedStep,
};
// Safety: All invariants are upheld.
macro_rules! unsafe_impl_trusted_step {
($($type:ty)*) => {$(
#[unstable(feature = "trusted_step", issue = "85731")]
unsafe impl TrustedStep for $type {}
)*};
}
unsafe_impl_trusted_step![char i8 i16 i32 i64 i128 isize u8 u16 u32 u64 u128 usize];
/// Objects that have a notion of *successor* and *predecessor* operations.
///
/// The *successor* operation moves towards values that compare greater.
/// The *predecessor* operation moves towards values that compare lesser.
#[unstable(feature = "step_trait", reason = "recently redesigned", issue = "42168")]
pub trait Step: Clone + PartialOrd + Sized {
/// Returns the number of *successor* steps required to get from `start` to `end`.
///
/// Returns `None` if the number of steps would overflow `usize`
/// (or is infinite, or if `end` would never be reached).
///
/// # Invariants
///
/// For any `a`, `b`, and `n`:
///
/// * `steps_between(&a, &b) == Some(n)` if and only if `Step::forward_checked(&a, n) == Some(b)`
/// * `steps_between(&a, &b) == Some(n)` if and only if `Step::backward_checked(&b, n) == Some(a)`
/// * `steps_between(&a, &b) == Some(n)` only if `a <= b`
/// * Corollary: `steps_between(&a, &b) == Some(0)` if and only if `a == b`
/// * Note that `a <= b` does _not_ imply `steps_between(&a, &b) != None`;
/// this is the case when it would require more than `usize::MAX` steps to get to `b`
/// * `steps_between(&a, &b) == None` if `a > b`
fn steps_between(start: &Self, end: &Self) -> Option<usize>;
/// Returns the value that would be obtained by taking the *successor*
/// of `self` `count` times.
///
/// If this would overflow the range of values supported by `Self`, returns `None`.
///
/// # Invariants
///
/// For any `a`, `n`, and `m`:
///
/// * `Step::forward_checked(a, n).and_then(|x| Step::forward_checked(x, m)) == Step::forward_checked(a, m).and_then(|x| Step::forward_checked(x, n))`
///
/// For any `a`, `n`, and `m` where `n + m` does not overflow:
///
/// * `Step::forward_checked(a, n).and_then(|x| Step::forward_checked(x, m)) == Step::forward_checked(a, n + m)`
///
/// For any `a` and `n`:
///
/// * `Step::forward_checked(a, n) == (0..n).try_fold(a, |x, _| Step::forward_checked(&x, 1))`
/// * Corollary: `Step::forward_checked(&a, 0) == Some(a)`
fn forward_checked(start: Self, count: usize) -> Option<Self>;
/// Returns the value that would be obtained by taking the *successor*
/// of `self` `count` times.
///
/// If this would overflow the range of values supported by `Self`,
/// this function is allowed to panic, wrap, or saturate.
/// The suggested behavior is to panic when debug assertions are enabled,
/// and to wrap or saturate otherwise.
///
/// Unsafe code should not rely on the correctness of behavior after overflow.
///
/// # Invariants
///
/// For any `a`, `n`, and `m`, where no overflow occurs:
///
/// * `Step::forward(Step::forward(a, n), m) == Step::forward(a, n + m)`
///
/// For any `a` and `n`, where no overflow occurs:
///
/// * `Step::forward_checked(a, n) == Some(Step::forward(a, n))`
/// * `Step::forward(a, n) == (0..n).fold(a, |x, _| Step::forward(x, 1))`
/// * Corollary: `Step::forward(a, 0) == a`
/// * `Step::forward(a, n) >= a`
/// * `Step::backward(Step::forward(a, n), n) == a`
fn forward(start: Self, count: usize) -> Self {
Step::forward_checked(start, count).expect("overflow in `Step::forward`")
}
/// Returns the value that would be obtained by taking the *successor*
/// of `self` `count` times.
///
/// # Safety
///
/// It is undefined behavior for this operation to overflow the
/// range of values supported by `Self`. If you cannot guarantee that this
/// will not overflow, use `forward` or `forward_checked` instead.
///
/// # Invariants
///
/// For any `a`:
///
/// * if there exists `b` such that `b > a`, it is safe to call `Step::forward_unchecked(a, 1)`
/// * if there exists `b`, `n` such that `steps_between(&a, &b) == Some(n)`,
/// it is safe to call `Step::forward_unchecked(a, m)` for any `m <= n`.
///
/// For any `a` and `n`, where no overflow occurs:
///
/// * `Step::forward_unchecked(a, n)` is equivalent to `Step::forward(a, n)`
unsafe fn forward_unchecked(start: Self, count: usize) -> Self {
Step::forward(start, count)
}
/// Returns the value that would be obtained by taking the *predecessor*
/// of `self` `count` times.
///
/// If this would overflow the range of values supported by `Self`, returns `None`.
///
/// # Invariants
///
/// For any `a`, `n`, and `m`:
///
/// * `Step::backward_checked(a, n).and_then(|x| Step::backward_checked(x, m)) == n.checked_add(m).and_then(|x| Step::backward_checked(a, x))`
/// * `Step::backward_checked(a, n).and_then(|x| Step::backward_checked(x, m)) == try { Step::backward_checked(a, n.checked_add(m)?) }`
///
/// For any `a` and `n`:
///
/// * `Step::backward_checked(a, n) == (0..n).try_fold(a, |x, _| Step::backward_checked(&x, 1))`
/// * Corollary: `Step::backward_checked(&a, 0) == Some(a)`
fn backward_checked(start: Self, count: usize) -> Option<Self>;
/// Returns the value that would be obtained by taking the *predecessor*
/// of `self` `count` times.
///
/// If this would overflow the range of values supported by `Self`,
/// this function is allowed to panic, wrap, or saturate.
/// The suggested behavior is to panic when debug assertions are enabled,
/// and to wrap or saturate otherwise.
///
/// Unsafe code should not rely on the correctness of behavior after overflow.
///
/// # Invariants
///
/// For any `a`, `n`, and `m`, where no overflow occurs:
///
/// * `Step::backward(Step::backward(a, n), m) == Step::backward(a, n + m)`
///
/// For any `a` and `n`, where no overflow occurs:
///
/// * `Step::backward_checked(a, n) == Some(Step::backward(a, n))`
/// * `Step::backward(a, n) == (0..n).fold(a, |x, _| Step::backward(x, 1))`
/// * Corollary: `Step::backward(a, 0) == a`
/// * `Step::backward(a, n) <= a`
/// * `Step::forward(Step::backward(a, n), n) == a`
fn backward(start: Self, count: usize) -> Self {
Step::backward_checked(start, count).expect("overflow in `Step::backward`")
}
/// Returns the value that would be obtained by taking the *predecessor*
/// of `self` `count` times.
///
/// # Safety
///
/// It is undefined behavior for this operation to overflow the
/// range of values supported by `Self`. If you cannot guarantee that this
/// will not overflow, use `backward` or `backward_checked` instead.
///
/// # Invariants
///
/// For any `a`:
///
/// * if there exists `b` such that `b < a`, it is safe to call `Step::backward_unchecked(a, 1)`
/// * if there exists `b`, `n` such that `steps_between(&b, &a) == Some(n)`,
/// it is safe to call `Step::backward_unchecked(a, m)` for any `m <= n`.
///
/// For any `a` and `n`, where no overflow occurs:
///
/// * `Step::backward_unchecked(a, n)` is equivalent to `Step::backward(a, n)`
unsafe fn backward_unchecked(start: Self, count: usize) -> Self {
Step::backward(start, count)
}
}
// These are still macro-generated because the integer literals resolve to different types.
macro_rules! step_identical_methods {
() => {
#[inline]
unsafe fn forward_unchecked(start: Self, n: usize) -> Self {
// SAFETY: the caller has to guarantee that `start + n` doesn't overflow.
unsafe { start.unchecked_add(n as Self) }
}
#[inline]
unsafe fn backward_unchecked(start: Self, n: usize) -> Self {
// SAFETY: the caller has to guarantee that `start - n` doesn't overflow.
unsafe { start.unchecked_sub(n as Self) }
}
#[inline]
#[allow(arithmetic_overflow)]
#[rustc_inherit_overflow_checks]
fn forward(start: Self, n: usize) -> Self {
// In debug builds, trigger a panic on overflow.
// This should optimize completely out in release builds.
if Self::forward_checked(start, n).is_none() {
let _ = Self::MAX + 1;
}
// Do wrapping math to allow e.g. `Step::forward(-128i8, 255)`.
start.wrapping_add(n as Self)
}
#[inline]
#[allow(arithmetic_overflow)]
#[rustc_inherit_overflow_checks]
fn backward(start: Self, n: usize) -> Self {
// In debug builds, trigger a panic on overflow.
// This should optimize completely out in release builds.
if Self::backward_checked(start, n).is_none() {
let _ = Self::MIN - 1;
}
// Do wrapping math to allow e.g. `Step::backward(127i8, 255)`.
start.wrapping_sub(n as Self)
}
};
}
macro_rules! step_integer_impls {
{
narrower than or same width as usize:
$( [ $u_narrower:ident $i_narrower:ident ] ),+;
wider than usize:
$( [ $u_wider:ident $i_wider:ident ] ),+;
} => {
$(
#[allow(unreachable_patterns)]
#[unstable(feature = "step_trait", reason = "recently redesigned", issue = "42168")]
impl Step for $u_narrower {
step_identical_methods!();
#[inline]
fn steps_between(start: &Self, end: &Self) -> Option<usize> {
if *start <= *end {
// This relies on $u_narrower <= usize
Some((*end - *start) as usize)
} else {
None
}
}
#[inline]
fn forward_checked(start: Self, n: usize) -> Option<Self> {
match Self::try_from(n) {
Ok(n) => start.checked_add(n),
Err(_) => None, // if n is out of range, `unsigned_start + n` is too
}
}
#[inline]
fn backward_checked(start: Self, n: usize) -> Option<Self> {
match Self::try_from(n) {
Ok(n) => start.checked_sub(n),
Err(_) => None, // if n is out of range, `unsigned_start - n` is too
}
}
}
#[allow(unreachable_patterns)]
#[unstable(feature = "step_trait", reason = "recently redesigned", issue = "42168")]
impl Step for $i_narrower {
step_identical_methods!();
#[inline]
fn steps_between(start: &Self, end: &Self) -> Option<usize> {
if *start <= *end {
// This relies on $i_narrower <= usize
//
// Casting to isize extends the width but preserves the sign.
// Use wrapping_sub in isize space and cast to usize to compute
// the difference that might not fit inside the range of isize.
Some((*end as isize).wrapping_sub(*start as isize) as usize)
} else {
None
}
}
#[inline]
fn forward_checked(start: Self, n: usize) -> Option<Self> {
match $u_narrower::try_from(n) {
Ok(n) => {
// Wrapping handles cases like
// `Step::forward(-120_i8, 200) == Some(80_i8)`,
// even though 200 is out of range for i8.
let wrapped = start.wrapping_add(n as Self);
if wrapped >= start {
Some(wrapped)
} else {
None // Addition overflowed
}
}
// If n is out of range of e.g. u8,
// then it is bigger than the entire range for i8 is wide
// so `any_i8 + n` necessarily overflows i8.
Err(_) => None,
}
}
#[inline]
fn backward_checked(start: Self, n: usize) -> Option<Self> {
match $u_narrower::try_from(n) {
Ok(n) => {
// Wrapping handles cases like
// `Step::forward(-120_i8, 200) == Some(80_i8)`,
// even though 200 is out of range for i8.
let wrapped = start.wrapping_sub(n as Self);
if wrapped <= start {
Some(wrapped)
} else {
None // Subtraction overflowed
}
}
// If n is out of range of e.g. u8,
// then it is bigger than the entire range for i8 is wide
// so `any_i8 - n` necessarily overflows i8.
Err(_) => None,
}
}
}
)+
$(
#[allow(unreachable_patterns)]
#[unstable(feature = "step_trait", reason = "recently redesigned", issue = "42168")]
impl Step for $u_wider {
step_identical_methods!();
#[inline]
fn steps_between(start: &Self, end: &Self) -> Option<usize> {
if *start <= *end {
usize::try_from(*end - *start).ok()
} else {
None
}
}
#[inline]
fn forward_checked(start: Self, n: usize) -> Option<Self> {
start.checked_add(n as Self)
}
#[inline]
fn backward_checked(start: Self, n: usize) -> Option<Self> {
start.checked_sub(n as Self)
}
}
#[allow(unreachable_patterns)]
#[unstable(feature = "step_trait", reason = "recently redesigned", issue = "42168")]
impl Step for $i_wider {
step_identical_methods!();
#[inline]
fn steps_between(start: &Self, end: &Self) -> Option<usize> {
if *start <= *end {
match end.checked_sub(*start) {
Some(result) => usize::try_from(result).ok(),
// If the difference is too big for e.g. i128,
// it's also gonna be too big for usize with fewer bits.
None => None,
}
} else {
None
}
}
#[inline]
fn forward_checked(start: Self, n: usize) -> Option<Self> {
start.checked_add(n as Self)
}
#[inline]
fn backward_checked(start: Self, n: usize) -> Option<Self> {
start.checked_sub(n as Self)
}
}
)+
};
}
#[cfg(target_pointer_width = "64")]
step_integer_impls! {
narrower than or same width as usize: [u8 i8], [u16 i16], [u32 i32], [u64 i64], [usize isize];
wider than usize: [u128 i128];
}
#[cfg(target_pointer_width = "32")]
step_integer_impls! {
narrower than or same width as usize: [u8 i8], [u16 i16], [u32 i32], [usize isize];
wider than usize: [u64 i64], [u128 i128];
}
#[cfg(target_pointer_width = "16")]
step_integer_impls! {
narrower than or same width as usize: [u8 i8], [u16 i16], [usize isize];
wider than usize: [u32 i32], [u64 i64], [u128 i128];
}
#[unstable(feature = "step_trait", reason = "recently redesigned", issue = "42168")]
impl Step for char {
#[inline]
fn steps_between(&start: &char, &end: &char) -> Option<usize> {
let start = start as u32;
let end = end as u32;
if start <= end {
let count = end - start;
if start < 0xD800 && 0xE000 <= end {
usize::try_from(count - 0x800).ok()
} else {
usize::try_from(count).ok()
}
} else {
None
}
}
#[inline]
fn forward_checked(start: char, count: usize) -> Option<char> {
let start = start as u32;
let mut res = Step::forward_checked(start, count)?;
if start < 0xD800 && 0xD800 <= res {
res = Step::forward_checked(res, 0x800)?;
}
if res <= char::MAX as u32 {
// SAFETY: res is a valid unicode scalar
// (below 0x110000 and not in 0xD800..0xE000)
Some(unsafe { char::from_u32_unchecked(res) })
} else {
None
}
}
#[inline]
fn backward_checked(start: char, count: usize) -> Option<char> {
let start = start as u32;
let mut res = Step::backward_checked(start, count)?;
if start >= 0xE000 && 0xE000 > res {
res = Step::backward_checked(res, 0x800)?;
}
// SAFETY: res is a valid unicode scalar
// (below 0x110000 and not in 0xD800..0xE000)
Some(unsafe { char::from_u32_unchecked(res) })
}
#[inline]
unsafe fn forward_unchecked(start: char, count: usize) -> char {
let start = start as u32;
// SAFETY: the caller must guarantee that this doesn't overflow
// the range of values for a char.
let mut res = unsafe { Step::forward_unchecked(start, count) };
if start < 0xD800 && 0xD800 <= res {
// SAFETY: the caller must guarantee that this doesn't overflow
// the range of values for a char.
res = unsafe { Step::forward_unchecked(res, 0x800) };
}
// SAFETY: because of the previous contract, this is guaranteed
// by the caller to be a valid char.
unsafe { char::from_u32_unchecked(res) }
}
#[inline]
unsafe fn backward_unchecked(start: char, count: usize) -> char {
let start = start as u32;
// SAFETY: the caller must guarantee that this doesn't overflow
// the range of values for a char.
let mut res = unsafe { Step::backward_unchecked(start, count) };
if start >= 0xE000 && 0xE000 > res {
// SAFETY: the caller must guarantee that this doesn't overflow
// the range of values for a char.
res = unsafe { Step::backward_unchecked(res, 0x800) };
}
// SAFETY: because of the previous contract, this is guaranteed
// by the caller to be a valid char.
unsafe { char::from_u32_unchecked(res) }
}
}
macro_rules! range_exact_iter_impl {
($($t:ty)*) => ($(
#[stable(feature = "rust1", since = "1.0.0")]
impl ExactSizeIterator for ops::Range<$t> { }
)*)
}
/// Safety: This macro must only be used on types that are `Copy` and result in ranges
/// which have an exact `size_hint()` where the upper bound must not be `None`.
macro_rules! unsafe_range_trusted_random_access_impl {
($($t:ty)*) => ($(
#[doc(hidden)]
#[unstable(feature = "trusted_random_access", issue = "none")]
unsafe impl TrustedRandomAccess for ops::Range<$t> {}
#[doc(hidden)]
#[unstable(feature = "trusted_random_access", issue = "none")]
unsafe impl TrustedRandomAccessNoCoerce for ops::Range<$t> {
const MAY_HAVE_SIDE_EFFECT: bool = false;
}
)*)
}
macro_rules! range_incl_exact_iter_impl {
($($t:ty)*) => ($(
#[stable(feature = "inclusive_range", since = "1.26.0")]
impl ExactSizeIterator for ops::RangeInclusive<$t> { }
)*)
}
/// Specialization implementations for `Range`.
trait RangeIteratorImpl {
type Item;
// Iterator
fn spec_next(&mut self) -> Option<Self::Item>;
fn spec_nth(&mut self, n: usize) -> Option<Self::Item>;
fn spec_advance_by(&mut self, n: usize) -> Result<(), usize>;
// DoubleEndedIterator
fn spec_next_back(&mut self) -> Option<Self::Item>;
fn spec_nth_back(&mut self, n: usize) -> Option<Self::Item>;
fn spec_advance_back_by(&mut self, n: usize) -> Result<(), usize>;
}
impl<A: Step> RangeIteratorImpl for ops::Range<A> {
type Item = A;
#[inline]
default fn spec_next(&mut self) -> Option<A> {
if self.start < self.end {
let n =
Step::forward_checked(self.start.clone(), 1).expect("`Step` invariants not upheld");
Some(mem::replace(&mut self.start, n))
} else {
None
}
}
#[inline]
default fn spec_nth(&mut self, n: usize) -> Option<A> {
if let Some(plus_n) = Step::forward_checked(self.start.clone(), n) {
if plus_n < self.end {
self.start =
Step::forward_checked(plus_n.clone(), 1).expect("`Step` invariants not upheld");
return Some(plus_n);
}
}
self.start = self.end.clone();
None
}
#[inline]
default fn spec_advance_by(&mut self, n: usize) -> Result<(), usize> {
let available = if self.start <= self.end {
Step::steps_between(&self.start, &self.end).unwrap_or(usize::MAX)
} else {
0
};
let taken = available.min(n);
self.start =
Step::forward_checked(self.start.clone(), taken).expect("`Step` invariants not upheld");
if taken < n { Err(taken) } else { Ok(()) }
}
#[inline]
default fn spec_next_back(&mut self) -> Option<A> {
if self.start < self.end {
self.end =
Step::backward_checked(self.end.clone(), 1).expect("`Step` invariants not upheld");
Some(self.end.clone())
} else {
None
}
}
#[inline]
default fn spec_nth_back(&mut self, n: usize) -> Option<A> {
if let Some(minus_n) = Step::backward_checked(self.end.clone(), n) {
if minus_n > self.start {
self.end =
Step::backward_checked(minus_n, 1).expect("`Step` invariants not upheld");
return Some(self.end.clone());
}
}
self.end = self.start.clone();
None
}
#[inline]
default fn spec_advance_back_by(&mut self, n: usize) -> Result<(), usize> {
let available = if self.start <= self.end {
Step::steps_between(&self.start, &self.end).unwrap_or(usize::MAX)
} else {
0
};
let taken = available.min(n);
self.end =
Step::backward_checked(self.end.clone(), taken).expect("`Step` invariants not upheld");
if taken < n { Err(taken) } else { Ok(()) }
}
}
impl<T: TrustedStep> RangeIteratorImpl for ops::Range<T> {
#[inline]
fn spec_next(&mut self) -> Option<T> {
if self.start < self.end {
// SAFETY: just checked precondition
let n = unsafe { Step::forward_unchecked(self.start.clone(), 1) };
Some(mem::replace(&mut self.start, n))
} else {
None
}
}
#[inline]
fn spec_nth(&mut self, n: usize) -> Option<T> {
if let Some(plus_n) = Step::forward_checked(self.start.clone(), n) {
if plus_n < self.end {
// SAFETY: just checked precondition
self.start = unsafe { Step::forward_unchecked(plus_n.clone(), 1) };
return Some(plus_n);
}
}
self.start = self.end.clone();
None
}
#[inline]
fn spec_advance_by(&mut self, n: usize) -> Result<(), usize> {
let available = if self.start <= self.end {
Step::steps_between(&self.start, &self.end).unwrap_or(usize::MAX)
} else {
0
};
let taken = available.min(n);
// SAFETY: the conditions above ensure that the count is in bounds. If start <= end
// then steps_between either returns a bound to which we clamp or returns None which
// together with the initial inequality implies more than usize::MAX steps.
// Otherwise 0 is returned which always safe to use.
self.start = unsafe { Step::forward_unchecked(self.start.clone(), taken) };
if taken < n { Err(taken) } else { Ok(()) }
}
#[inline]
fn spec_next_back(&mut self) -> Option<T> {
if self.start < self.end {
// SAFETY: just checked precondition
self.end = unsafe { Step::backward_unchecked(self.end.clone(), 1) };
Some(self.end.clone())
} else {
None
}
}
#[inline]
fn spec_nth_back(&mut self, n: usize) -> Option<T> {
if let Some(minus_n) = Step::backward_checked(self.end.clone(), n) {
if minus_n > self.start {
// SAFETY: just checked precondition
self.end = unsafe { Step::backward_unchecked(minus_n, 1) };
return Some(self.end.clone());
}
}
self.end = self.start.clone();
None
}
#[inline]
fn spec_advance_back_by(&mut self, n: usize) -> Result<(), usize> {
let available = if self.start <= self.end {
Step::steps_between(&self.start, &self.end).unwrap_or(usize::MAX)
} else {
0
};
let taken = available.min(n);
// SAFETY: same as the spec_advance_by() implementation
self.end = unsafe { Step::backward_unchecked(self.end.clone(), taken) };
if taken < n { Err(taken) } else { Ok(()) }
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<A: Step> Iterator for ops::Range<A> {
type Item = A;
#[inline]
fn next(&mut self) -> Option<A> {
self.spec_next()
}
#[inline]
fn size_hint(&self) -> (usize, Option<usize>) {
if self.start < self.end {
let hint = Step::steps_between(&self.start, &self.end);
(hint.unwrap_or(usize::MAX), hint)
} else {
(0, Some(0))
}
}
#[inline]
fn nth(&mut self, n: usize) -> Option<A> {
self.spec_nth(n)
}
#[inline]
fn last(mut self) -> Option<A> {
self.next_back()
}
#[inline]
fn min(mut self) -> Option<A> {
self.next()
}
#[inline]
fn max(mut self) -> Option<A> {
self.next_back()
}
#[inline]
fn is_sorted(self) -> bool {
true
}
#[inline]
fn advance_by(&mut self, n: usize) -> Result<(), usize> {
self.spec_advance_by(n)
}
#[inline]
#[doc(hidden)]
unsafe fn __iterator_get_unchecked(&mut self, idx: usize) -> Self::Item
where
Self: TrustedRandomAccessNoCoerce,
{
// SAFETY: The TrustedRandomAccess contract requires that callers only pass an index
// that is in bounds.
// Additionally Self: TrustedRandomAccess is only implemented for Copy types
// which means even repeated reads of the same index would be safe.
unsafe { Step::forward_unchecked(self.start.clone(), idx) }
}
}
// These macros generate `ExactSizeIterator` impls for various range types.
//
// * `ExactSizeIterator::len` is required to always return an exact `usize`,
// so no range can be longer than `usize::MAX`.
// * For integer types in `Range<_>` this is the case for types narrower than or as wide as `usize`.
// For integer types in `RangeInclusive<_>`
// this is the case for types *strictly narrower* than `usize`
// since e.g. `(0..=u64::MAX).len()` would be `u64::MAX + 1`.
range_exact_iter_impl! {
usize u8 u16
isize i8 i16
// These are incorrect per the reasoning above,
// but removing them would be a breaking change as they were stabilized in Rust 1.0.0.
// So e.g. `(0..66_000_u32).len()` for example will compile without error or warnings
// on 16-bit platforms, but continue to give a wrong result.
u32
i32
}
unsafe_range_trusted_random_access_impl! {
usize u8 u16
isize i8 i16
}
#[cfg(target_pointer_width = "32")]
unsafe_range_trusted_random_access_impl! {
u32 i32
}
#[cfg(target_pointer_width = "64")]
unsafe_range_trusted_random_access_impl! {
u32 i32
u64 i64
}
range_incl_exact_iter_impl! {
u8
i8
// These are incorrect per the reasoning above,
// but removing them would be a breaking change as they were stabilized in Rust 1.26.0.
// So e.g. `(0..=u16::MAX).len()` for example will compile without error or warnings
// on 16-bit platforms, but continue to give a wrong result.
u16
i16
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<A: Step> DoubleEndedIterator for ops::Range<A> {
#[inline]
fn next_back(&mut self) -> Option<A> {
self.spec_next_back()
}
#[inline]
fn nth_back(&mut self, n: usize) -> Option<A> {
self.spec_nth_back(n)
}
#[inline]
fn advance_back_by(&mut self, n: usize) -> Result<(), usize> {
self.spec_advance_back_by(n)
}
}
// Safety:
// The following invariants for `Step::steps_between` exist:
//
// > * `steps_between(&a, &b) == Some(n)` only if `a <= b`
// > * Note that `a <= b` does _not_ imply `steps_between(&a, &b) != None`;
// > this is the case when it would require more than `usize::MAX` steps to
// > get to `b`
// > * `steps_between(&a, &b) == None` if `a > b`
//
// The first invariant is what is generally required for `TrustedLen` to be
// sound. The note addendum satisfies an additional `TrustedLen` invariant.
//
// > The upper bound must only be `None` if the actual iterator length is larger
// > than `usize::MAX`
//
// The second invariant logically follows the first so long as the `PartialOrd`
// implementation is correct; regardless it is explicitly stated. If `a < b`
// then `(0, Some(0))` is returned by `ops::Range<A: Step>::size_hint`. As such
// the second invariant is upheld.
#[unstable(feature = "trusted_len", issue = "37572")]
unsafe impl<A: TrustedStep> TrustedLen for ops::Range<A> {}
#[stable(feature = "fused", since = "1.26.0")]
impl<A: Step> FusedIterator for ops::Range<A> {}
#[stable(feature = "rust1", since = "1.0.0")]
impl<A: Step> Iterator for ops::RangeFrom<A> {
type Item = A;
#[inline]
fn next(&mut self) -> Option<A> {
let n = Step::forward(self.start.clone(), 1);
Some(mem::replace(&mut self.start, n))
}
#[inline]
fn size_hint(&self) -> (usize, Option<usize>) {
(usize::MAX, None)
}
#[inline]
fn nth(&mut self, n: usize) -> Option<A> {
let plus_n = Step::forward(self.start.clone(), n);
self.start = Step::forward(plus_n.clone(), 1);
Some(plus_n)
}
}
// Safety: See above implementation for `ops::Range<A>`
#[unstable(feature = "trusted_len", issue = "37572")]
unsafe impl<A: TrustedStep> TrustedLen for ops::RangeFrom<A> {}
#[stable(feature = "fused", since = "1.26.0")]
impl<A: Step> FusedIterator for ops::RangeFrom<A> {}
trait RangeInclusiveIteratorImpl {
type Item;
// Iterator
fn spec_next(&mut self) -> Option<Self::Item>;
fn spec_try_fold<B, F, R>(&mut self, init: B, f: F) -> R
where
Self: Sized,
F: FnMut(B, Self::Item) -> R,
R: Try<Output = B>;
// DoubleEndedIterator
fn spec_next_back(&mut self) -> Option<Self::Item>;
fn spec_try_rfold<B, F, R>(&mut self, init: B, f: F) -> R
where
Self: Sized,
F: FnMut(B, Self::Item) -> R,
R: Try<Output = B>;
}
impl<A: Step> RangeInclusiveIteratorImpl for ops::RangeInclusive<A> {
type Item = A;
#[inline]
default fn spec_next(&mut self) -> Option<A> {
if self.is_empty() {
return None;
}
let is_iterating = self.start < self.end;
Some(if is_iterating {
let n =
Step::forward_checked(self.start.clone(), 1).expect("`Step` invariants not upheld");
mem::replace(&mut self.start, n)
} else {
self.exhausted = true;
self.start.clone()
})
}
#[inline]
default fn spec_try_fold<B, F, R>(&mut self, init: B, mut f: F) -> R
where
Self: Sized,
F: FnMut(B, A) -> R,
R: Try<Output = B>,
{
if self.is_empty() {
return try { init };
}
let mut accum = init;
while self.start < self.end {
let n =
Step::forward_checked(self.start.clone(), 1).expect("`Step` invariants not upheld");
let n = mem::replace(&mut self.start, n);
accum = f(accum, n)?;
}
self.exhausted = true;
if self.start == self.end {
accum = f(accum, self.start.clone())?;
}
try { accum }
}
#[inline]
default fn spec_next_back(&mut self) -> Option<A> {
if self.is_empty() {
return None;
}
let is_iterating = self.start < self.end;
Some(if is_iterating {
let n =
Step::backward_checked(self.end.clone(), 1).expect("`Step` invariants not upheld");
mem::replace(&mut self.end, n)
} else {
self.exhausted = true;
self.end.clone()
})
}
#[inline]
default fn spec_try_rfold<B, F, R>(&mut self, init: B, mut f: F) -> R
where
Self: Sized,
F: FnMut(B, A) -> R,
R: Try<Output = B>,
{
if self.is_empty() {
return try { init };
}
let mut accum = init;
while self.start < self.end {
let n =
Step::backward_checked(self.end.clone(), 1).expect("`Step` invariants not upheld");
let n = mem::replace(&mut self.end, n);
accum = f(accum, n)?;
}
self.exhausted = true;
if self.start == self.end {
accum = f(accum, self.start.clone())?;
}
try { accum }
}
}
impl<T: TrustedStep> RangeInclusiveIteratorImpl for ops::RangeInclusive<T> {
#[inline]
fn spec_next(&mut self) -> Option<T> {
if self.is_empty() {
return None;
}
let is_iterating = self.start < self.end;
Some(if is_iterating {
// SAFETY: just checked precondition
let n = unsafe { Step::forward_unchecked(self.start.clone(), 1) };
mem::replace(&mut self.start, n)
} else {
self.exhausted = true;
self.start.clone()
})
}
#[inline]
fn spec_try_fold<B, F, R>(&mut self, init: B, mut f: F) -> R
where
Self: Sized,
F: FnMut(B, T) -> R,
R: Try<Output = B>,
{
if self.is_empty() {
return try { init };
}
let mut accum = init;
while self.start < self.end {
// SAFETY: just checked precondition
let n = unsafe { Step::forward_unchecked(self.start.clone(), 1) };
let n = mem::replace(&mut self.start, n);
accum = f(accum, n)?;
}
self.exhausted = true;
if self.start == self.end {
accum = f(accum, self.start.clone())?;
}
try { accum }
}
#[inline]
fn spec_next_back(&mut self) -> Option<T> {
if self.is_empty() {
return None;
}
let is_iterating = self.start < self.end;
Some(if is_iterating {
// SAFETY: just checked precondition
let n = unsafe { Step::backward_unchecked(self.end.clone(), 1) };
mem::replace(&mut self.end, n)
} else {
self.exhausted = true;
self.end.clone()
})
}
#[inline]
fn spec_try_rfold<B, F, R>(&mut self, init: B, mut f: F) -> R
where
Self: Sized,
F: FnMut(B, T) -> R,
R: Try<Output = B>,
{
if self.is_empty() {
return try { init };
}
let mut accum = init;
while self.start < self.end {
// SAFETY: just checked precondition
let n = unsafe { Step::backward_unchecked(self.end.clone(), 1) };
let n = mem::replace(&mut self.end, n);
accum = f(accum, n)?;
}
self.exhausted = true;
if self.start == self.end {
accum = f(accum, self.start.clone())?;
}
try { accum }
}
}
#[stable(feature = "inclusive_range", since = "1.26.0")]
impl<A: Step> Iterator for ops::RangeInclusive<A> {
type Item = A;
#[inline]
fn next(&mut self) -> Option<A> {
self.spec_next()
}
#[inline]
fn size_hint(&self) -> (usize, Option<usize>) {
if self.is_empty() {
return (0, Some(0));
}
match Step::steps_between(&self.start, &self.end) {
Some(hint) => (hint.saturating_add(1), hint.checked_add(1)),
None => (usize::MAX, None),
}
}
#[inline]
fn nth(&mut self, n: usize) -> Option<A> {
if self.is_empty() {
return None;
}
if let Some(plus_n) = Step::forward_checked(self.start.clone(), n) {
use crate::cmp::Ordering::*;
match plus_n.partial_cmp(&self.end) {
Some(Less) => {
self.start = Step::forward(plus_n.clone(), 1);
return Some(plus_n);
}
Some(Equal) => {
self.start = plus_n.clone();
self.exhausted = true;
return Some(plus_n);
}
_ => {}
}
}
self.start = self.end.clone();
self.exhausted = true;
None
}
#[inline]
fn try_fold<B, F, R>(&mut self, init: B, f: F) -> R
where
Self: Sized,
F: FnMut(B, Self::Item) -> R,
R: Try<Output = B>,
{
self.spec_try_fold(init, f)
}
#[inline]
fn fold<B, F>(mut self, init: B, f: F) -> B
where
Self: Sized,
F: FnMut(B, Self::Item) -> B,
{
#[inline]
fn ok<B, T>(mut f: impl FnMut(B, T) -> B) -> impl FnMut(B, T) -> Result<B, !> {
move |acc, x| Ok(f(acc, x))
}
self.try_fold(init, ok(f)).unwrap()
}
#[inline]
fn last(mut self) -> Option<A> {
self.next_back()
}
#[inline]
fn min(mut self) -> Option<A> {
self.next()
}
#[inline]
fn max(mut self) -> Option<A> {
self.next_back()
}
#[inline]
fn is_sorted(self) -> bool {
true
}
}
#[stable(feature = "inclusive_range", since = "1.26.0")]
impl<A: Step> DoubleEndedIterator for ops::RangeInclusive<A> {
#[inline]
fn next_back(&mut self) -> Option<A> {
self.spec_next_back()
}
#[inline]
fn nth_back(&mut self, n: usize) -> Option<A> {
if self.is_empty() {
return None;
}
if let Some(minus_n) = Step::backward_checked(self.end.clone(), n) {
use crate::cmp::Ordering::*;
match minus_n.partial_cmp(&self.start) {
Some(Greater) => {
self.end = Step::backward(minus_n.clone(), 1);
return Some(minus_n);
}
Some(Equal) => {
self.end = minus_n.clone();
self.exhausted = true;
return Some(minus_n);
}
_ => {}
}
}
self.end = self.start.clone();
self.exhausted = true;
None
}
#[inline]
fn try_rfold<B, F, R>(&mut self, init: B, f: F) -> R
where
Self: Sized,
F: FnMut(B, Self::Item) -> R,
R: Try<Output = B>,
{
self.spec_try_rfold(init, f)
}
#[inline]
fn rfold<B, F>(mut self, init: B, f: F) -> B
where
Self: Sized,
F: FnMut(B, Self::Item) -> B,
{
#[inline]
fn ok<B, T>(mut f: impl FnMut(B, T) -> B) -> impl FnMut(B, T) -> Result<B, !> {
move |acc, x| Ok(f(acc, x))
}
self.try_rfold(init, ok(f)).unwrap()
}
}
// Safety: See above implementation for `ops::Range<A>`
#[unstable(feature = "trusted_len", issue = "37572")]
unsafe impl<A: TrustedStep> TrustedLen for ops::RangeInclusive<A> {}
#[stable(feature = "fused", since = "1.26.0")]
impl<A: Step> FusedIterator for ops::RangeInclusive<A> {}