1331 lines
54 KiB
Rust
1331 lines
54 KiB
Rust
use crate::cmp::Ordering;
|
|
use crate::convert::From;
|
|
use crate::fmt;
|
|
use crate::hash;
|
|
use crate::intrinsics;
|
|
use crate::intrinsics::assert_unsafe_precondition;
|
|
use crate::marker::Unsize;
|
|
use crate::mem::SizedTypeProperties;
|
|
use crate::mem::{self, MaybeUninit};
|
|
use crate::num::NonZeroUsize;
|
|
use crate::ops::{CoerceUnsized, DispatchFromDyn};
|
|
use crate::ptr;
|
|
use crate::ptr::Unique;
|
|
use crate::slice::{self, SliceIndex};
|
|
|
|
/// `*mut T` but non-zero and [covariant].
|
|
///
|
|
/// This is often the correct thing to use when building data structures using
|
|
/// raw pointers, but is ultimately more dangerous to use because of its additional
|
|
/// properties. If you're not sure if you should use `NonNull<T>`, just use `*mut T`!
|
|
///
|
|
/// Unlike `*mut T`, the pointer must always be non-null, even if the pointer
|
|
/// is never dereferenced. This is so that enums may use this forbidden value
|
|
/// as a discriminant -- `Option<NonNull<T>>` has the same size as `*mut T`.
|
|
/// However the pointer may still dangle if it isn't dereferenced.
|
|
///
|
|
/// Unlike `*mut T`, `NonNull<T>` was chosen to be covariant over `T`. This makes it
|
|
/// possible to use `NonNull<T>` when building covariant types, but introduces the
|
|
/// risk of unsoundness if used in a type that shouldn't actually be covariant.
|
|
/// (The opposite choice was made for `*mut T` even though technically the unsoundness
|
|
/// could only be caused by calling unsafe functions.)
|
|
///
|
|
/// Covariance is correct for most safe abstractions, such as `Box`, `Rc`, `Arc`, `Vec`,
|
|
/// and `LinkedList`. This is the case because they provide a public API that follows the
|
|
/// normal shared XOR mutable rules of Rust.
|
|
///
|
|
/// If your type cannot safely be covariant, you must ensure it contains some
|
|
/// additional field to provide invariance. Often this field will be a [`PhantomData`]
|
|
/// type like `PhantomData<Cell<T>>` or `PhantomData<&'a mut T>`.
|
|
///
|
|
/// Notice that `NonNull<T>` has a `From` instance for `&T`. However, this does
|
|
/// not change the fact that mutating through a (pointer derived from a) shared
|
|
/// reference is undefined behavior unless the mutation happens inside an
|
|
/// [`UnsafeCell<T>`]. The same goes for creating a mutable reference from a shared
|
|
/// reference. When using this `From` instance without an `UnsafeCell<T>`,
|
|
/// it is your responsibility to ensure that `as_mut` is never called, and `as_ptr`
|
|
/// is never used for mutation.
|
|
///
|
|
/// # Representation
|
|
///
|
|
/// Thanks to the [null pointer optimization],
|
|
/// `NonNull<T>` and `Option<NonNull<T>>`
|
|
/// are guaranteed to have the same size and alignment:
|
|
///
|
|
/// ```
|
|
/// # use std::mem::{size_of, align_of};
|
|
/// use std::ptr::NonNull;
|
|
///
|
|
/// assert_eq!(size_of::<NonNull<i16>>(), size_of::<Option<NonNull<i16>>>());
|
|
/// assert_eq!(align_of::<NonNull<i16>>(), align_of::<Option<NonNull<i16>>>());
|
|
///
|
|
/// assert_eq!(size_of::<NonNull<str>>(), size_of::<Option<NonNull<str>>>());
|
|
/// assert_eq!(align_of::<NonNull<str>>(), align_of::<Option<NonNull<str>>>());
|
|
/// ```
|
|
///
|
|
/// [covariant]: https://doc.rust-lang.org/reference/subtyping.html
|
|
/// [`PhantomData`]: crate::marker::PhantomData
|
|
/// [`UnsafeCell<T>`]: crate::cell::UnsafeCell
|
|
/// [null pointer optimization]: crate::option#representation
|
|
#[stable(feature = "nonnull", since = "1.25.0")]
|
|
#[repr(transparent)]
|
|
#[rustc_layout_scalar_valid_range_start(1)]
|
|
#[rustc_nonnull_optimization_guaranteed]
|
|
#[rustc_diagnostic_item = "NonNull"]
|
|
pub struct NonNull<T: ?Sized> {
|
|
pointer: *const T,
|
|
}
|
|
|
|
/// `NonNull` pointers are not `Send` because the data they reference may be aliased.
|
|
// N.B., this impl is unnecessary, but should provide better error messages.
|
|
#[stable(feature = "nonnull", since = "1.25.0")]
|
|
impl<T: ?Sized> !Send for NonNull<T> {}
|
|
|
|
/// `NonNull` pointers are not `Sync` because the data they reference may be aliased.
|
|
// N.B., this impl is unnecessary, but should provide better error messages.
|
|
#[stable(feature = "nonnull", since = "1.25.0")]
|
|
impl<T: ?Sized> !Sync for NonNull<T> {}
|
|
|
|
impl<T: Sized> NonNull<T> {
|
|
/// Creates a new `NonNull` that is dangling, but well-aligned.
|
|
///
|
|
/// This is useful for initializing types which lazily allocate, like
|
|
/// `Vec::new` does.
|
|
///
|
|
/// Note that the pointer value may potentially represent a valid pointer to
|
|
/// a `T`, which means this must not be used as a "not yet initialized"
|
|
/// sentinel value. Types that lazily allocate must track initialization by
|
|
/// some other means.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// use std::ptr::NonNull;
|
|
///
|
|
/// let ptr = NonNull::<u32>::dangling();
|
|
/// // Important: don't try to access the value of `ptr` without
|
|
/// // initializing it first! The pointer is not null but isn't valid either!
|
|
/// ```
|
|
#[stable(feature = "nonnull", since = "1.25.0")]
|
|
#[rustc_const_stable(feature = "const_nonnull_dangling", since = "1.36.0")]
|
|
#[must_use]
|
|
#[inline]
|
|
pub const fn dangling() -> Self {
|
|
// SAFETY: mem::align_of() returns a non-zero usize which is then casted
|
|
// to a *mut T. Therefore, `ptr` is not null and the conditions for
|
|
// calling new_unchecked() are respected.
|
|
unsafe {
|
|
let ptr = crate::ptr::invalid_mut::<T>(mem::align_of::<T>());
|
|
NonNull::new_unchecked(ptr)
|
|
}
|
|
}
|
|
|
|
/// Returns a shared references to the value. In contrast to [`as_ref`], this does not require
|
|
/// that the value has to be initialized.
|
|
///
|
|
/// For the mutable counterpart see [`as_uninit_mut`].
|
|
///
|
|
/// [`as_ref`]: NonNull::as_ref
|
|
/// [`as_uninit_mut`]: NonNull::as_uninit_mut
|
|
///
|
|
/// # Safety
|
|
///
|
|
/// When calling this method, you have to ensure that all of the following is true:
|
|
///
|
|
/// * The pointer must be properly aligned.
|
|
///
|
|
/// * It must be "dereferenceable" in the sense defined in [the module documentation].
|
|
///
|
|
/// * You must enforce Rust's aliasing rules, since the returned lifetime `'a` is
|
|
/// arbitrarily chosen and does not necessarily reflect the actual lifetime of the data.
|
|
/// In particular, while this reference exists, the memory the pointer points to must
|
|
/// not get mutated (except inside `UnsafeCell`).
|
|
///
|
|
/// This applies even if the result of this method is unused!
|
|
///
|
|
/// [the module documentation]: crate::ptr#safety
|
|
#[inline]
|
|
#[must_use]
|
|
#[unstable(feature = "ptr_as_uninit", issue = "75402")]
|
|
#[rustc_const_unstable(feature = "const_ptr_as_ref", issue = "91822")]
|
|
pub const unsafe fn as_uninit_ref<'a>(self) -> &'a MaybeUninit<T> {
|
|
// SAFETY: the caller must guarantee that `self` meets all the
|
|
// requirements for a reference.
|
|
unsafe { &*self.cast().as_ptr() }
|
|
}
|
|
|
|
/// Returns a unique references to the value. In contrast to [`as_mut`], this does not require
|
|
/// that the value has to be initialized.
|
|
///
|
|
/// For the shared counterpart see [`as_uninit_ref`].
|
|
///
|
|
/// [`as_mut`]: NonNull::as_mut
|
|
/// [`as_uninit_ref`]: NonNull::as_uninit_ref
|
|
///
|
|
/// # Safety
|
|
///
|
|
/// When calling this method, you have to ensure that all of the following is true:
|
|
///
|
|
/// * The pointer must be properly aligned.
|
|
///
|
|
/// * It must be "dereferenceable" in the sense defined in [the module documentation].
|
|
///
|
|
/// * You must enforce Rust's aliasing rules, since the returned lifetime `'a` is
|
|
/// arbitrarily chosen and does not necessarily reflect the actual lifetime of the data.
|
|
/// In particular, while this reference exists, the memory the pointer points to must
|
|
/// not get accessed (read or written) through any other pointer.
|
|
///
|
|
/// This applies even if the result of this method is unused!
|
|
///
|
|
/// [the module documentation]: crate::ptr#safety
|
|
#[inline]
|
|
#[must_use]
|
|
#[unstable(feature = "ptr_as_uninit", issue = "75402")]
|
|
#[rustc_const_unstable(feature = "const_ptr_as_ref", issue = "91822")]
|
|
pub const unsafe fn as_uninit_mut<'a>(self) -> &'a mut MaybeUninit<T> {
|
|
// SAFETY: the caller must guarantee that `self` meets all the
|
|
// requirements for a reference.
|
|
unsafe { &mut *self.cast().as_ptr() }
|
|
}
|
|
}
|
|
|
|
impl<T: ?Sized> NonNull<T> {
|
|
/// Creates a new `NonNull`.
|
|
///
|
|
/// # Safety
|
|
///
|
|
/// `ptr` must be non-null.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// use std::ptr::NonNull;
|
|
///
|
|
/// let mut x = 0u32;
|
|
/// let ptr = unsafe { NonNull::new_unchecked(&mut x as *mut _) };
|
|
/// ```
|
|
///
|
|
/// *Incorrect* usage of this function:
|
|
///
|
|
/// ```rust,no_run
|
|
/// use std::ptr::NonNull;
|
|
///
|
|
/// // NEVER DO THAT!!! This is undefined behavior. ⚠️
|
|
/// let ptr = unsafe { NonNull::<u32>::new_unchecked(std::ptr::null_mut()) };
|
|
/// ```
|
|
#[stable(feature = "nonnull", since = "1.25.0")]
|
|
#[rustc_const_stable(feature = "const_nonnull_new_unchecked", since = "1.25.0")]
|
|
#[inline]
|
|
pub const unsafe fn new_unchecked(ptr: *mut T) -> Self {
|
|
// SAFETY: the caller must guarantee that `ptr` is non-null.
|
|
unsafe {
|
|
assert_unsafe_precondition!("NonNull::new_unchecked requires that the pointer is non-null", [T: ?Sized](ptr: *mut T) => !ptr.is_null());
|
|
NonNull { pointer: ptr as _ }
|
|
}
|
|
}
|
|
|
|
/// Creates a new `NonNull` if `ptr` is non-null.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// use std::ptr::NonNull;
|
|
///
|
|
/// let mut x = 0u32;
|
|
/// let ptr = NonNull::<u32>::new(&mut x as *mut _).expect("ptr is null!");
|
|
///
|
|
/// if let Some(ptr) = NonNull::<u32>::new(std::ptr::null_mut()) {
|
|
/// unreachable!();
|
|
/// }
|
|
/// ```
|
|
#[stable(feature = "nonnull", since = "1.25.0")]
|
|
#[rustc_const_unstable(feature = "const_nonnull_new", issue = "93235")]
|
|
#[inline]
|
|
pub const fn new(ptr: *mut T) -> Option<Self> {
|
|
if !ptr.is_null() {
|
|
// SAFETY: The pointer is already checked and is not null
|
|
Some(unsafe { Self::new_unchecked(ptr) })
|
|
} else {
|
|
None
|
|
}
|
|
}
|
|
|
|
/// Performs the same functionality as [`std::ptr::from_raw_parts`], except that a
|
|
/// `NonNull` pointer is returned, as opposed to a raw `*const` pointer.
|
|
///
|
|
/// See the documentation of [`std::ptr::from_raw_parts`] for more details.
|
|
///
|
|
/// [`std::ptr::from_raw_parts`]: crate::ptr::from_raw_parts
|
|
#[unstable(feature = "ptr_metadata", issue = "81513")]
|
|
#[rustc_const_unstable(feature = "ptr_metadata", issue = "81513")]
|
|
#[inline]
|
|
pub const fn from_raw_parts(
|
|
data_address: NonNull<()>,
|
|
metadata: <T as super::Pointee>::Metadata,
|
|
) -> NonNull<T> {
|
|
// SAFETY: The result of `ptr::from::raw_parts_mut` is non-null because `data_address` is.
|
|
unsafe {
|
|
NonNull::new_unchecked(super::from_raw_parts_mut(data_address.as_ptr(), metadata))
|
|
}
|
|
}
|
|
|
|
/// Decompose a (possibly wide) pointer into its address and metadata components.
|
|
///
|
|
/// The pointer can be later reconstructed with [`NonNull::from_raw_parts`].
|
|
#[unstable(feature = "ptr_metadata", issue = "81513")]
|
|
#[rustc_const_unstable(feature = "ptr_metadata", issue = "81513")]
|
|
#[must_use = "this returns the result of the operation, \
|
|
without modifying the original"]
|
|
#[inline]
|
|
pub const fn to_raw_parts(self) -> (NonNull<()>, <T as super::Pointee>::Metadata) {
|
|
(self.cast(), super::metadata(self.as_ptr()))
|
|
}
|
|
|
|
/// Gets the "address" portion of the pointer.
|
|
///
|
|
/// For more details see the equivalent method on a raw pointer, [`pointer::addr`].
|
|
///
|
|
/// This API and its claimed semantics are part of the Strict Provenance experiment,
|
|
/// see the [`ptr` module documentation][crate::ptr].
|
|
#[must_use]
|
|
#[inline]
|
|
#[unstable(feature = "strict_provenance", issue = "95228")]
|
|
pub fn addr(self) -> NonZeroUsize {
|
|
// SAFETY: The pointer is guaranteed by the type to be non-null,
|
|
// meaning that the address will be non-zero.
|
|
unsafe { NonZeroUsize::new_unchecked(self.pointer.addr()) }
|
|
}
|
|
|
|
/// Creates a new pointer with the given address.
|
|
///
|
|
/// For more details see the equivalent method on a raw pointer, [`pointer::with_addr`].
|
|
///
|
|
/// This API and its claimed semantics are part of the Strict Provenance experiment,
|
|
/// see the [`ptr` module documentation][crate::ptr].
|
|
#[must_use]
|
|
#[inline]
|
|
#[unstable(feature = "strict_provenance", issue = "95228")]
|
|
pub fn with_addr(self, addr: NonZeroUsize) -> Self {
|
|
// SAFETY: The result of `ptr::from::with_addr` is non-null because `addr` is guaranteed to be non-zero.
|
|
unsafe { NonNull::new_unchecked(self.pointer.with_addr(addr.get()) as *mut _) }
|
|
}
|
|
|
|
/// Creates a new pointer by mapping `self`'s address to a new one.
|
|
///
|
|
/// For more details see the equivalent method on a raw pointer, [`pointer::map_addr`].
|
|
///
|
|
/// This API and its claimed semantics are part of the Strict Provenance experiment,
|
|
/// see the [`ptr` module documentation][crate::ptr].
|
|
#[must_use]
|
|
#[inline]
|
|
#[unstable(feature = "strict_provenance", issue = "95228")]
|
|
pub fn map_addr(self, f: impl FnOnce(NonZeroUsize) -> NonZeroUsize) -> Self {
|
|
self.with_addr(f(self.addr()))
|
|
}
|
|
|
|
/// Acquires the underlying `*mut` pointer.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// use std::ptr::NonNull;
|
|
///
|
|
/// let mut x = 0u32;
|
|
/// let ptr = NonNull::new(&mut x).expect("ptr is null!");
|
|
///
|
|
/// let x_value = unsafe { *ptr.as_ptr() };
|
|
/// assert_eq!(x_value, 0);
|
|
///
|
|
/// unsafe { *ptr.as_ptr() += 2; }
|
|
/// let x_value = unsafe { *ptr.as_ptr() };
|
|
/// assert_eq!(x_value, 2);
|
|
/// ```
|
|
#[stable(feature = "nonnull", since = "1.25.0")]
|
|
#[rustc_const_stable(feature = "const_nonnull_as_ptr", since = "1.32.0")]
|
|
#[rustc_never_returns_null_ptr]
|
|
#[must_use]
|
|
#[inline(always)]
|
|
pub const fn as_ptr(self) -> *mut T {
|
|
self.pointer as *mut T
|
|
}
|
|
|
|
/// Returns a shared reference to the value. If the value may be uninitialized, [`as_uninit_ref`]
|
|
/// must be used instead.
|
|
///
|
|
/// For the mutable counterpart see [`as_mut`].
|
|
///
|
|
/// [`as_uninit_ref`]: NonNull::as_uninit_ref
|
|
/// [`as_mut`]: NonNull::as_mut
|
|
///
|
|
/// # Safety
|
|
///
|
|
/// When calling this method, you have to ensure that all of the following is true:
|
|
///
|
|
/// * The pointer must be properly aligned.
|
|
///
|
|
/// * It must be "dereferenceable" in the sense defined in [the module documentation].
|
|
///
|
|
/// * The pointer must point to an initialized instance of `T`.
|
|
///
|
|
/// * You must enforce Rust's aliasing rules, since the returned lifetime `'a` is
|
|
/// arbitrarily chosen and does not necessarily reflect the actual lifetime of the data.
|
|
/// In particular, while this reference exists, the memory the pointer points to must
|
|
/// not get mutated (except inside `UnsafeCell`).
|
|
///
|
|
/// This applies even if the result of this method is unused!
|
|
/// (The part about being initialized is not yet fully decided, but until
|
|
/// it is, the only safe approach is to ensure that they are indeed initialized.)
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// use std::ptr::NonNull;
|
|
///
|
|
/// let mut x = 0u32;
|
|
/// let ptr = NonNull::new(&mut x as *mut _).expect("ptr is null!");
|
|
///
|
|
/// let ref_x = unsafe { ptr.as_ref() };
|
|
/// println!("{ref_x}");
|
|
/// ```
|
|
///
|
|
/// [the module documentation]: crate::ptr#safety
|
|
#[stable(feature = "nonnull", since = "1.25.0")]
|
|
#[rustc_const_stable(feature = "const_nonnull_as_ref", since = "1.73.0")]
|
|
#[must_use]
|
|
#[inline(always)]
|
|
pub const unsafe fn as_ref<'a>(&self) -> &'a T {
|
|
// SAFETY: the caller must guarantee that `self` meets all the
|
|
// requirements for a reference.
|
|
// `cast_const` avoids a mutable raw pointer deref.
|
|
unsafe { &*self.as_ptr().cast_const() }
|
|
}
|
|
|
|
/// Returns a unique reference to the value. If the value may be uninitialized, [`as_uninit_mut`]
|
|
/// must be used instead.
|
|
///
|
|
/// For the shared counterpart see [`as_ref`].
|
|
///
|
|
/// [`as_uninit_mut`]: NonNull::as_uninit_mut
|
|
/// [`as_ref`]: NonNull::as_ref
|
|
///
|
|
/// # Safety
|
|
///
|
|
/// When calling this method, you have to ensure that all of the following is true:
|
|
///
|
|
/// * The pointer must be properly aligned.
|
|
///
|
|
/// * It must be "dereferenceable" in the sense defined in [the module documentation].
|
|
///
|
|
/// * The pointer must point to an initialized instance of `T`.
|
|
///
|
|
/// * You must enforce Rust's aliasing rules, since the returned lifetime `'a` is
|
|
/// arbitrarily chosen and does not necessarily reflect the actual lifetime of the data.
|
|
/// In particular, while this reference exists, the memory the pointer points to must
|
|
/// not get accessed (read or written) through any other pointer.
|
|
///
|
|
/// This applies even if the result of this method is unused!
|
|
/// (The part about being initialized is not yet fully decided, but until
|
|
/// it is, the only safe approach is to ensure that they are indeed initialized.)
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// use std::ptr::NonNull;
|
|
///
|
|
/// let mut x = 0u32;
|
|
/// let mut ptr = NonNull::new(&mut x).expect("null pointer");
|
|
///
|
|
/// let x_ref = unsafe { ptr.as_mut() };
|
|
/// assert_eq!(*x_ref, 0);
|
|
/// *x_ref += 2;
|
|
/// assert_eq!(*x_ref, 2);
|
|
/// ```
|
|
///
|
|
/// [the module documentation]: crate::ptr#safety
|
|
#[stable(feature = "nonnull", since = "1.25.0")]
|
|
#[rustc_const_unstable(feature = "const_ptr_as_ref", issue = "91822")]
|
|
#[must_use]
|
|
#[inline(always)]
|
|
pub const unsafe fn as_mut<'a>(&mut self) -> &'a mut T {
|
|
// SAFETY: the caller must guarantee that `self` meets all the
|
|
// requirements for a mutable reference.
|
|
unsafe { &mut *self.as_ptr() }
|
|
}
|
|
|
|
/// Casts to a pointer of another type.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// use std::ptr::NonNull;
|
|
///
|
|
/// let mut x = 0u32;
|
|
/// let ptr = NonNull::new(&mut x as *mut _).expect("null pointer");
|
|
///
|
|
/// let casted_ptr = ptr.cast::<i8>();
|
|
/// let raw_ptr: *mut i8 = casted_ptr.as_ptr();
|
|
/// ```
|
|
#[stable(feature = "nonnull_cast", since = "1.27.0")]
|
|
#[rustc_const_stable(feature = "const_nonnull_cast", since = "1.36.0")]
|
|
#[must_use = "this returns the result of the operation, \
|
|
without modifying the original"]
|
|
#[inline]
|
|
pub const fn cast<U>(self) -> NonNull<U> {
|
|
// SAFETY: `self` is a `NonNull` pointer which is necessarily non-null
|
|
unsafe { NonNull::new_unchecked(self.as_ptr() as *mut U) }
|
|
}
|
|
|
|
/// Calculates the offset from a pointer.
|
|
///
|
|
/// `count` is in units of T; e.g., a `count` of 3 represents a pointer
|
|
/// offset of `3 * size_of::<T>()` bytes.
|
|
///
|
|
/// # Safety
|
|
///
|
|
/// If any of the following conditions are violated, the result is Undefined
|
|
/// Behavior:
|
|
///
|
|
/// * Both the starting and resulting pointer must be either in bounds or one
|
|
/// byte past the end of the same [allocated object].
|
|
///
|
|
/// * The computed offset, **in bytes**, cannot overflow an `isize`.
|
|
///
|
|
/// * The offset being in bounds cannot rely on "wrapping around" the address
|
|
/// space. That is, the infinite-precision sum, **in bytes** must fit in a usize.
|
|
///
|
|
/// The compiler and standard library generally tries to ensure allocations
|
|
/// never reach a size where an offset is a concern. For instance, `Vec`
|
|
/// and `Box` ensure they never allocate more than `isize::MAX` bytes, so
|
|
/// `vec.as_ptr().add(vec.len())` is always safe.
|
|
///
|
|
/// Most platforms fundamentally can't even construct such an allocation.
|
|
/// For instance, no known 64-bit platform can ever serve a request
|
|
/// for 2<sup>63</sup> bytes due to page-table limitations or splitting the address space.
|
|
/// However, some 32-bit and 16-bit platforms may successfully serve a request for
|
|
/// more than `isize::MAX` bytes with things like Physical Address
|
|
/// Extension. As such, memory acquired directly from allocators or memory
|
|
/// mapped files *may* be too large to handle with this function.
|
|
///
|
|
/// [allocated object]: crate::ptr#allocated-object
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// #![feature(non_null_convenience)]
|
|
/// use std::ptr::NonNull;
|
|
///
|
|
/// let mut s = [1, 2, 3];
|
|
/// let ptr: NonNull<u32> = NonNull::new(s.as_mut_ptr()).unwrap();
|
|
///
|
|
/// unsafe {
|
|
/// println!("{}", ptr.offset(1).read());
|
|
/// println!("{}", ptr.offset(2).read());
|
|
/// }
|
|
/// ```
|
|
#[unstable(feature = "non_null_convenience", issue = "117691")]
|
|
#[rustc_const_unstable(feature = "non_null_convenience", issue = "117691")]
|
|
#[must_use = "returns a new pointer rather than modifying its argument"]
|
|
#[inline(always)]
|
|
#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
|
|
pub const unsafe fn offset(self, count: isize) -> NonNull<T>
|
|
where
|
|
T: Sized,
|
|
{
|
|
// SAFETY: the caller must uphold the safety contract for `offset`.
|
|
// Additionally safety contract of `offset` guarantees that the resulting pointer is
|
|
// pointing to an allocation, there can't be an allocation at null, thus it's safe to
|
|
// construct `NonNull`.
|
|
unsafe { NonNull { pointer: intrinsics::offset(self.pointer, count) } }
|
|
}
|
|
|
|
/// Calculates the offset from a pointer in bytes.
|
|
///
|
|
/// `count` is in units of **bytes**.
|
|
///
|
|
/// This is purely a convenience for casting to a `u8` pointer and
|
|
/// using [offset][pointer::offset] on it. See that method for documentation
|
|
/// and safety requirements.
|
|
///
|
|
/// For non-`Sized` pointees this operation changes only the data pointer,
|
|
/// leaving the metadata untouched.
|
|
#[unstable(feature = "non_null_convenience", issue = "117691")]
|
|
#[rustc_const_unstable(feature = "non_null_convenience", issue = "117691")]
|
|
#[must_use]
|
|
#[inline(always)]
|
|
#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
|
|
pub const unsafe fn byte_offset(self, count: isize) -> Self {
|
|
// SAFETY: the caller must uphold the safety contract for `offset` and `byte_offset` has
|
|
// the same safety contract.
|
|
// Additionally safety contract of `offset` guarantees that the resulting pointer is
|
|
// pointing to an allocation, there can't be an allocation at null, thus it's safe to
|
|
// construct `NonNull`.
|
|
unsafe { NonNull { pointer: self.pointer.byte_offset(count) } }
|
|
}
|
|
|
|
/// Calculates the offset from a pointer (convenience for `.offset(count as isize)`).
|
|
///
|
|
/// `count` is in units of T; e.g., a `count` of 3 represents a pointer
|
|
/// offset of `3 * size_of::<T>()` bytes.
|
|
///
|
|
/// # Safety
|
|
///
|
|
/// If any of the following conditions are violated, the result is Undefined
|
|
/// Behavior:
|
|
///
|
|
/// * Both the starting and resulting pointer must be either in bounds or one
|
|
/// byte past the end of the same [allocated object].
|
|
///
|
|
/// * The computed offset, **in bytes**, cannot overflow an `isize`.
|
|
///
|
|
/// * The offset being in bounds cannot rely on "wrapping around" the address
|
|
/// space. That is, the infinite-precision sum must fit in a `usize`.
|
|
///
|
|
/// The compiler and standard library generally tries to ensure allocations
|
|
/// never reach a size where an offset is a concern. For instance, `Vec`
|
|
/// and `Box` ensure they never allocate more than `isize::MAX` bytes, so
|
|
/// `vec.as_ptr().add(vec.len())` is always safe.
|
|
///
|
|
/// Most platforms fundamentally can't even construct such an allocation.
|
|
/// For instance, no known 64-bit platform can ever serve a request
|
|
/// for 2<sup>63</sup> bytes due to page-table limitations or splitting the address space.
|
|
/// However, some 32-bit and 16-bit platforms may successfully serve a request for
|
|
/// more than `isize::MAX` bytes with things like Physical Address
|
|
/// Extension. As such, memory acquired directly from allocators or memory
|
|
/// mapped files *may* be too large to handle with this function.
|
|
///
|
|
/// [allocated object]: crate::ptr#allocated-object
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// #![feature(non_null_convenience)]
|
|
/// use std::ptr::NonNull;
|
|
///
|
|
/// let s: &str = "123";
|
|
/// let ptr: NonNull<u8> = NonNull::new(s.as_ptr().cast_mut()).unwrap();
|
|
///
|
|
/// unsafe {
|
|
/// println!("{}", ptr.add(1).read() as char);
|
|
/// println!("{}", ptr.add(2).read() as char);
|
|
/// }
|
|
/// ```
|
|
#[unstable(feature = "non_null_convenience", issue = "117691")]
|
|
#[rustc_const_unstable(feature = "non_null_convenience", issue = "117691")]
|
|
#[must_use = "returns a new pointer rather than modifying its argument"]
|
|
#[inline(always)]
|
|
#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
|
|
pub const unsafe fn add(self, count: usize) -> Self
|
|
where
|
|
T: Sized,
|
|
{
|
|
// SAFETY: the caller must uphold the safety contract for `offset`.
|
|
// Additionally safety contract of `offset` guarantees that the resulting pointer is
|
|
// pointing to an allocation, there can't be an allocation at null, thus it's safe to
|
|
// construct `NonNull`.
|
|
unsafe { NonNull { pointer: intrinsics::offset(self.pointer, count) } }
|
|
}
|
|
|
|
/// Calculates the offset from a pointer in bytes (convenience for `.byte_offset(count as isize)`).
|
|
///
|
|
/// `count` is in units of bytes.
|
|
///
|
|
/// This is purely a convenience for casting to a `u8` pointer and
|
|
/// using [`add`][NonNull::add] on it. See that method for documentation
|
|
/// and safety requirements.
|
|
///
|
|
/// For non-`Sized` pointees this operation changes only the data pointer,
|
|
/// leaving the metadata untouched.
|
|
#[unstable(feature = "non_null_convenience", issue = "117691")]
|
|
#[rustc_const_unstable(feature = "non_null_convenience", issue = "117691")]
|
|
#[must_use]
|
|
#[inline(always)]
|
|
#[rustc_allow_const_fn_unstable(set_ptr_value)]
|
|
#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
|
|
pub const unsafe fn byte_add(self, count: usize) -> Self {
|
|
// SAFETY: the caller must uphold the safety contract for `add` and `byte_add` has the same
|
|
// safety contract.
|
|
// Additionally safety contract of `add` guarantees that the resulting pointer is pointing
|
|
// to an allocation, there can't be an allocation at null, thus it's safe to construct
|
|
// `NonNull`.
|
|
unsafe { NonNull { pointer: self.pointer.byte_add(count) } }
|
|
}
|
|
|
|
/// Calculates the offset from a pointer (convenience for
|
|
/// `.offset((count as isize).wrapping_neg())`).
|
|
///
|
|
/// `count` is in units of T; e.g., a `count` of 3 represents a pointer
|
|
/// offset of `3 * size_of::<T>()` bytes.
|
|
///
|
|
/// # Safety
|
|
///
|
|
/// If any of the following conditions are violated, the result is Undefined
|
|
/// Behavior:
|
|
///
|
|
/// * Both the starting and resulting pointer must be either in bounds or one
|
|
/// byte past the end of the same [allocated object].
|
|
///
|
|
/// * The computed offset cannot exceed `isize::MAX` **bytes**.
|
|
///
|
|
/// * The offset being in bounds cannot rely on "wrapping around" the address
|
|
/// space. That is, the infinite-precision sum must fit in a usize.
|
|
///
|
|
/// The compiler and standard library generally tries to ensure allocations
|
|
/// never reach a size where an offset is a concern. For instance, `Vec`
|
|
/// and `Box` ensure they never allocate more than `isize::MAX` bytes, so
|
|
/// `vec.as_ptr().add(vec.len()).sub(vec.len())` is always safe.
|
|
///
|
|
/// Most platforms fundamentally can't even construct such an allocation.
|
|
/// For instance, no known 64-bit platform can ever serve a request
|
|
/// for 2<sup>63</sup> bytes due to page-table limitations or splitting the address space.
|
|
/// However, some 32-bit and 16-bit platforms may successfully serve a request for
|
|
/// more than `isize::MAX` bytes with things like Physical Address
|
|
/// Extension. As such, memory acquired directly from allocators or memory
|
|
/// mapped files *may* be too large to handle with this function.
|
|
///
|
|
/// [allocated object]: crate::ptr#allocated-object
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// #![feature(non_null_convenience)]
|
|
/// use std::ptr::NonNull;
|
|
///
|
|
/// let s: &str = "123";
|
|
///
|
|
/// unsafe {
|
|
/// let end: NonNull<u8> = NonNull::new(s.as_ptr().cast_mut()).unwrap().add(3);
|
|
/// println!("{}", end.sub(1).read() as char);
|
|
/// println!("{}", end.sub(2).read() as char);
|
|
/// }
|
|
/// ```
|
|
#[unstable(feature = "non_null_convenience", issue = "117691")]
|
|
#[rustc_const_unstable(feature = "non_null_convenience", issue = "117691")]
|
|
#[must_use = "returns a new pointer rather than modifying its argument"]
|
|
// We could always go back to wrapping if unchecked becomes unacceptable
|
|
#[rustc_allow_const_fn_unstable(const_int_unchecked_arith)]
|
|
#[inline(always)]
|
|
#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
|
|
pub const unsafe fn sub(self, count: usize) -> Self
|
|
where
|
|
T: Sized,
|
|
{
|
|
if T::IS_ZST {
|
|
// Pointer arithmetic does nothing when the pointee is a ZST.
|
|
self
|
|
} else {
|
|
// SAFETY: the caller must uphold the safety contract for `offset`.
|
|
// Because the pointee is *not* a ZST, that means that `count` is
|
|
// at most `isize::MAX`, and thus the negation cannot overflow.
|
|
unsafe { self.offset(intrinsics::unchecked_sub(0, count as isize)) }
|
|
}
|
|
}
|
|
|
|
/// Calculates the offset from a pointer in bytes (convenience for
|
|
/// `.byte_offset((count as isize).wrapping_neg())`).
|
|
///
|
|
/// `count` is in units of bytes.
|
|
///
|
|
/// This is purely a convenience for casting to a `u8` pointer and
|
|
/// using [`sub`][NonNull::sub] on it. See that method for documentation
|
|
/// and safety requirements.
|
|
///
|
|
/// For non-`Sized` pointees this operation changes only the data pointer,
|
|
/// leaving the metadata untouched.
|
|
#[unstable(feature = "non_null_convenience", issue = "117691")]
|
|
#[rustc_const_unstable(feature = "non_null_convenience", issue = "117691")]
|
|
#[must_use]
|
|
#[inline(always)]
|
|
#[rustc_allow_const_fn_unstable(set_ptr_value)]
|
|
#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
|
|
pub const unsafe fn byte_sub(self, count: usize) -> Self {
|
|
// SAFETY: the caller must uphold the safety contract for `sub` and `byte_sub` has the same
|
|
// safety contract.
|
|
// Additionally safety contract of `sub` guarantees that the resulting pointer is pointing
|
|
// to an allocation, there can't be an allocation at null, thus it's safe to construct
|
|
// `NonNull`.
|
|
unsafe { NonNull { pointer: self.pointer.byte_sub(count) } }
|
|
}
|
|
|
|
// N.B. `wrapping_offset``, `wrapping_add`, etc are not implemented because they can wrap to null
|
|
|
|
/// Reads the value from `self` without moving it. This leaves the
|
|
/// memory in `self` unchanged.
|
|
///
|
|
/// See [`ptr::read`] for safety concerns and examples.
|
|
///
|
|
/// [`ptr::read`]: crate::ptr::read()
|
|
#[unstable(feature = "non_null_convenience", issue = "117691")]
|
|
#[rustc_const_unstable(feature = "non_null_convenience", issue = "117691")]
|
|
#[inline]
|
|
#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
|
|
pub const unsafe fn read(self) -> T
|
|
where
|
|
T: Sized,
|
|
{
|
|
// SAFETY: the caller must uphold the safety contract for `read`.
|
|
unsafe { ptr::read(self.pointer) }
|
|
}
|
|
|
|
/// Performs a volatile read of the value from `self` without moving it. This
|
|
/// leaves the memory in `self` unchanged.
|
|
///
|
|
/// Volatile operations are intended to act on I/O memory, and are guaranteed
|
|
/// to not be elided or reordered by the compiler across other volatile
|
|
/// operations.
|
|
///
|
|
/// See [`ptr::read_volatile`] for safety concerns and examples.
|
|
///
|
|
/// [`ptr::read_volatile`]: crate::ptr::read_volatile()
|
|
#[unstable(feature = "non_null_convenience", issue = "117691")]
|
|
#[inline]
|
|
#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
|
|
pub unsafe fn read_volatile(self) -> T
|
|
where
|
|
T: Sized,
|
|
{
|
|
// SAFETY: the caller must uphold the safety contract for `read_volatile`.
|
|
unsafe { ptr::read_volatile(self.pointer) }
|
|
}
|
|
|
|
/// Reads the value from `self` without moving it. This leaves the
|
|
/// memory in `self` unchanged.
|
|
///
|
|
/// Unlike `read`, the pointer may be unaligned.
|
|
///
|
|
/// See [`ptr::read_unaligned`] for safety concerns and examples.
|
|
///
|
|
/// [`ptr::read_unaligned`]: crate::ptr::read_unaligned()
|
|
#[unstable(feature = "non_null_convenience", issue = "117691")]
|
|
#[rustc_const_unstable(feature = "non_null_convenience", issue = "117691")]
|
|
#[inline]
|
|
#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
|
|
pub const unsafe fn read_unaligned(self) -> T
|
|
where
|
|
T: Sized,
|
|
{
|
|
// SAFETY: the caller must uphold the safety contract for `read_unaligned`.
|
|
unsafe { ptr::read_unaligned(self.pointer) }
|
|
}
|
|
|
|
/// Copies `count * size_of<T>` bytes from `self` to `dest`. The source
|
|
/// and destination may overlap.
|
|
///
|
|
/// NOTE: this has the *same* argument order as [`ptr::copy`].
|
|
///
|
|
/// See [`ptr::copy`] for safety concerns and examples.
|
|
///
|
|
/// [`ptr::copy`]: crate::ptr::copy()
|
|
#[unstable(feature = "non_null_convenience", issue = "117691")]
|
|
#[rustc_const_unstable(feature = "non_null_convenience", issue = "117691")]
|
|
#[inline(always)]
|
|
#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
|
|
pub const unsafe fn copy_to(self, dest: NonNull<T>, count: usize)
|
|
where
|
|
T: Sized,
|
|
{
|
|
// SAFETY: the caller must uphold the safety contract for `copy`.
|
|
unsafe { ptr::copy(self.pointer, dest.as_ptr(), count) }
|
|
}
|
|
|
|
/// Copies `count * size_of<T>` bytes from `self` to `dest`. The source
|
|
/// and destination may *not* overlap.
|
|
///
|
|
/// NOTE: this has the *same* argument order as [`ptr::copy_nonoverlapping`].
|
|
///
|
|
/// See [`ptr::copy_nonoverlapping`] for safety concerns and examples.
|
|
///
|
|
/// [`ptr::copy_nonoverlapping`]: crate::ptr::copy_nonoverlapping()
|
|
#[unstable(feature = "non_null_convenience", issue = "117691")]
|
|
#[rustc_const_unstable(feature = "non_null_convenience", issue = "117691")]
|
|
#[inline(always)]
|
|
#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
|
|
pub const unsafe fn copy_to_nonoverlapping(self, dest: NonNull<T>, count: usize)
|
|
where
|
|
T: Sized,
|
|
{
|
|
// SAFETY: the caller must uphold the safety contract for `copy_nonoverlapping`.
|
|
unsafe { ptr::copy_nonoverlapping(self.pointer, dest.as_ptr(), count) }
|
|
}
|
|
|
|
/// Copies `count * size_of<T>` bytes from `src` to `self`. The source
|
|
/// and destination may overlap.
|
|
///
|
|
/// NOTE: this has the *opposite* argument order of [`ptr::copy`].
|
|
///
|
|
/// See [`ptr::copy`] for safety concerns and examples.
|
|
///
|
|
/// [`ptr::copy`]: crate::ptr::copy()
|
|
#[unstable(feature = "non_null_convenience", issue = "117691")]
|
|
#[rustc_const_unstable(feature = "non_null_convenience", issue = "117691")]
|
|
#[inline(always)]
|
|
#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
|
|
pub const unsafe fn copy_from(self, src: NonNull<T>, count: usize)
|
|
where
|
|
T: Sized,
|
|
{
|
|
// SAFETY: the caller must uphold the safety contract for `copy`.
|
|
unsafe { ptr::copy(src.pointer, self.as_ptr(), count) }
|
|
}
|
|
|
|
/// Copies `count * size_of<T>` bytes from `src` to `self`. The source
|
|
/// and destination may *not* overlap.
|
|
///
|
|
/// NOTE: this has the *opposite* argument order of [`ptr::copy_nonoverlapping`].
|
|
///
|
|
/// See [`ptr::copy_nonoverlapping`] for safety concerns and examples.
|
|
///
|
|
/// [`ptr::copy_nonoverlapping`]: crate::ptr::copy_nonoverlapping()
|
|
#[unstable(feature = "non_null_convenience", issue = "117691")]
|
|
#[rustc_const_unstable(feature = "non_null_convenience", issue = "117691")]
|
|
#[inline(always)]
|
|
#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
|
|
pub const unsafe fn copy_from_nonoverlapping(self, src: NonNull<T>, count: usize)
|
|
where
|
|
T: Sized,
|
|
{
|
|
// SAFETY: the caller must uphold the safety contract for `copy_nonoverlapping`.
|
|
unsafe { ptr::copy_nonoverlapping(src.pointer, self.as_ptr(), count) }
|
|
}
|
|
|
|
/// Executes the destructor (if any) of the pointed-to value.
|
|
///
|
|
/// See [`ptr::drop_in_place`] for safety concerns and examples.
|
|
///
|
|
/// [`ptr::drop_in_place`]: crate::ptr::drop_in_place()
|
|
#[unstable(feature = "non_null_convenience", issue = "117691")]
|
|
#[inline(always)]
|
|
pub unsafe fn drop_in_place(self) {
|
|
// SAFETY: the caller must uphold the safety contract for `drop_in_place`.
|
|
unsafe { ptr::drop_in_place(self.as_ptr()) }
|
|
}
|
|
|
|
/// Overwrites a memory location with the given value without reading or
|
|
/// dropping the old value.
|
|
///
|
|
/// See [`ptr::write`] for safety concerns and examples.
|
|
///
|
|
/// [`ptr::write`]: crate::ptr::write()
|
|
#[unstable(feature = "non_null_convenience", issue = "117691")]
|
|
#[rustc_const_unstable(feature = "non_null_convenience", issue = "117691")]
|
|
//#[rustc_const_unstable(feature = "const_ptr_write", issue = "86302")]
|
|
#[inline(always)]
|
|
#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
|
|
pub const unsafe fn write(self, val: T)
|
|
where
|
|
T: Sized,
|
|
{
|
|
// SAFETY: the caller must uphold the safety contract for `write`.
|
|
unsafe { ptr::write(self.as_ptr(), val) }
|
|
}
|
|
|
|
/// Invokes memset on the specified pointer, setting `count * size_of::<T>()`
|
|
/// bytes of memory starting at `self` to `val`.
|
|
///
|
|
/// See [`ptr::write_bytes`] for safety concerns and examples.
|
|
///
|
|
/// [`ptr::write_bytes`]: crate::ptr::write_bytes()
|
|
#[doc(alias = "memset")]
|
|
#[unstable(feature = "non_null_convenience", issue = "117691")]
|
|
#[rustc_const_unstable(feature = "non_null_convenience", issue = "117691")]
|
|
//#[rustc_const_unstable(feature = "const_ptr_write", issue = "86302")]
|
|
#[inline(always)]
|
|
#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
|
|
pub const unsafe fn write_bytes(self, val: u8, count: usize)
|
|
where
|
|
T: Sized,
|
|
{
|
|
// SAFETY: the caller must uphold the safety contract for `write_bytes`.
|
|
unsafe { ptr::write_bytes(self.as_ptr(), val, count) }
|
|
}
|
|
|
|
/// Performs a volatile write of a memory location with the given value without
|
|
/// reading or dropping the old value.
|
|
///
|
|
/// Volatile operations are intended to act on I/O memory, and are guaranteed
|
|
/// to not be elided or reordered by the compiler across other volatile
|
|
/// operations.
|
|
///
|
|
/// See [`ptr::write_volatile`] for safety concerns and examples.
|
|
///
|
|
/// [`ptr::write_volatile`]: crate::ptr::write_volatile()
|
|
#[unstable(feature = "non_null_convenience", issue = "117691")]
|
|
#[inline(always)]
|
|
#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
|
|
pub unsafe fn write_volatile(self, val: T)
|
|
where
|
|
T: Sized,
|
|
{
|
|
// SAFETY: the caller must uphold the safety contract for `write_volatile`.
|
|
unsafe { ptr::write_volatile(self.as_ptr(), val) }
|
|
}
|
|
|
|
/// Overwrites a memory location with the given value without reading or
|
|
/// dropping the old value.
|
|
///
|
|
/// Unlike `write`, the pointer may be unaligned.
|
|
///
|
|
/// See [`ptr::write_unaligned`] for safety concerns and examples.
|
|
///
|
|
/// [`ptr::write_unaligned`]: crate::ptr::write_unaligned()
|
|
#[unstable(feature = "non_null_convenience", issue = "117691")]
|
|
#[rustc_const_unstable(feature = "non_null_convenience", issue = "117691")]
|
|
//#[rustc_const_unstable(feature = "const_ptr_write", issue = "86302")]
|
|
#[inline(always)]
|
|
#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
|
|
pub const unsafe fn write_unaligned(self, val: T)
|
|
where
|
|
T: Sized,
|
|
{
|
|
// SAFETY: the caller must uphold the safety contract for `write_unaligned`.
|
|
unsafe { ptr::write_unaligned(self.as_ptr(), val) }
|
|
}
|
|
|
|
/// See [`pointer::sub_ptr`] for semantics and safety requirements.
|
|
#[inline]
|
|
pub(crate) const unsafe fn sub_ptr(self, subtrahend: Self) -> usize
|
|
where
|
|
T: Sized,
|
|
{
|
|
// SAFETY: The caller promised that this is safe to do, and
|
|
// the non-nullness is irrelevant to the operation.
|
|
unsafe { self.pointer.sub_ptr(subtrahend.pointer) }
|
|
}
|
|
}
|
|
|
|
impl<T> NonNull<[T]> {
|
|
/// Creates a non-null raw slice from a thin pointer and a length.
|
|
///
|
|
/// The `len` argument is the number of **elements**, not the number of bytes.
|
|
///
|
|
/// This function is safe, but dereferencing the return value is unsafe.
|
|
/// See the documentation of [`slice::from_raw_parts`] for slice safety requirements.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```rust
|
|
/// use std::ptr::NonNull;
|
|
///
|
|
/// // create a slice pointer when starting out with a pointer to the first element
|
|
/// let mut x = [5, 6, 7];
|
|
/// let nonnull_pointer = NonNull::new(x.as_mut_ptr()).unwrap();
|
|
/// let slice = NonNull::slice_from_raw_parts(nonnull_pointer, 3);
|
|
/// assert_eq!(unsafe { slice.as_ref()[2] }, 7);
|
|
/// ```
|
|
///
|
|
/// (Note that this example artificially demonstrates a use of this method,
|
|
/// but `let slice = NonNull::from(&x[..]);` would be a better way to write code like this.)
|
|
#[stable(feature = "nonnull_slice_from_raw_parts", since = "1.70.0")]
|
|
#[rustc_const_unstable(feature = "const_slice_from_raw_parts_mut", issue = "67456")]
|
|
#[must_use]
|
|
#[inline]
|
|
pub const fn slice_from_raw_parts(data: NonNull<T>, len: usize) -> Self {
|
|
// SAFETY: `data` is a `NonNull` pointer which is necessarily non-null
|
|
unsafe { Self::new_unchecked(super::slice_from_raw_parts_mut(data.as_ptr(), len)) }
|
|
}
|
|
|
|
/// Returns the length of a non-null raw slice.
|
|
///
|
|
/// The returned value is the number of **elements**, not the number of bytes.
|
|
///
|
|
/// This function is safe, even when the non-null raw slice cannot be dereferenced to a slice
|
|
/// because the pointer does not have a valid address.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```rust
|
|
/// use std::ptr::NonNull;
|
|
///
|
|
/// let slice: NonNull<[i8]> = NonNull::slice_from_raw_parts(NonNull::dangling(), 3);
|
|
/// assert_eq!(slice.len(), 3);
|
|
/// ```
|
|
#[stable(feature = "slice_ptr_len_nonnull", since = "1.63.0")]
|
|
#[rustc_const_stable(feature = "const_slice_ptr_len_nonnull", since = "1.63.0")]
|
|
#[rustc_allow_const_fn_unstable(const_slice_ptr_len)]
|
|
#[must_use]
|
|
#[inline]
|
|
pub const fn len(self) -> usize {
|
|
self.as_ptr().len()
|
|
}
|
|
|
|
/// Returns a non-null pointer to the slice's buffer.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```rust
|
|
/// #![feature(slice_ptr_get)]
|
|
/// use std::ptr::NonNull;
|
|
///
|
|
/// let slice: NonNull<[i8]> = NonNull::slice_from_raw_parts(NonNull::dangling(), 3);
|
|
/// assert_eq!(slice.as_non_null_ptr(), NonNull::<i8>::dangling());
|
|
/// ```
|
|
#[inline]
|
|
#[must_use]
|
|
#[unstable(feature = "slice_ptr_get", issue = "74265")]
|
|
#[rustc_const_unstable(feature = "slice_ptr_get", issue = "74265")]
|
|
pub const fn as_non_null_ptr(self) -> NonNull<T> {
|
|
// SAFETY: We know `self` is non-null.
|
|
unsafe { NonNull::new_unchecked(self.as_ptr().as_mut_ptr()) }
|
|
}
|
|
|
|
/// Returns a raw pointer to the slice's buffer.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```rust
|
|
/// #![feature(slice_ptr_get)]
|
|
/// use std::ptr::NonNull;
|
|
///
|
|
/// let slice: NonNull<[i8]> = NonNull::slice_from_raw_parts(NonNull::dangling(), 3);
|
|
/// assert_eq!(slice.as_mut_ptr(), NonNull::<i8>::dangling().as_ptr());
|
|
/// ```
|
|
#[inline]
|
|
#[must_use]
|
|
#[unstable(feature = "slice_ptr_get", issue = "74265")]
|
|
#[rustc_const_unstable(feature = "slice_ptr_get", issue = "74265")]
|
|
#[rustc_never_returns_null_ptr]
|
|
pub const fn as_mut_ptr(self) -> *mut T {
|
|
self.as_non_null_ptr().as_ptr()
|
|
}
|
|
|
|
/// Returns a shared reference to a slice of possibly uninitialized values. In contrast to
|
|
/// [`as_ref`], this does not require that the value has to be initialized.
|
|
///
|
|
/// For the mutable counterpart see [`as_uninit_slice_mut`].
|
|
///
|
|
/// [`as_ref`]: NonNull::as_ref
|
|
/// [`as_uninit_slice_mut`]: NonNull::as_uninit_slice_mut
|
|
///
|
|
/// # Safety
|
|
///
|
|
/// When calling this method, you have to ensure that all of the following is true:
|
|
///
|
|
/// * The pointer must be [valid] for reads for `ptr.len() * mem::size_of::<T>()` many bytes,
|
|
/// and it must be properly aligned. This means in particular:
|
|
///
|
|
/// * The entire memory range of this slice must be contained within a single allocated object!
|
|
/// Slices can never span across multiple allocated objects.
|
|
///
|
|
/// * The pointer must be aligned even for zero-length slices. One
|
|
/// reason for this is that enum layout optimizations may rely on references
|
|
/// (including slices of any length) being aligned and non-null to distinguish
|
|
/// them from other data. You can obtain a pointer that is usable as `data`
|
|
/// for zero-length slices using [`NonNull::dangling()`].
|
|
///
|
|
/// * The total size `ptr.len() * mem::size_of::<T>()` of the slice must be no larger than `isize::MAX`.
|
|
/// See the safety documentation of [`pointer::offset`].
|
|
///
|
|
/// * You must enforce Rust's aliasing rules, since the returned lifetime `'a` is
|
|
/// arbitrarily chosen and does not necessarily reflect the actual lifetime of the data.
|
|
/// In particular, while this reference exists, the memory the pointer points to must
|
|
/// not get mutated (except inside `UnsafeCell`).
|
|
///
|
|
/// This applies even if the result of this method is unused!
|
|
///
|
|
/// See also [`slice::from_raw_parts`].
|
|
///
|
|
/// [valid]: crate::ptr#safety
|
|
#[inline]
|
|
#[must_use]
|
|
#[unstable(feature = "ptr_as_uninit", issue = "75402")]
|
|
#[rustc_const_unstable(feature = "const_ptr_as_ref", issue = "91822")]
|
|
pub const unsafe fn as_uninit_slice<'a>(self) -> &'a [MaybeUninit<T>] {
|
|
// SAFETY: the caller must uphold the safety contract for `as_uninit_slice`.
|
|
unsafe { slice::from_raw_parts(self.cast().as_ptr(), self.len()) }
|
|
}
|
|
|
|
/// Returns a unique reference to a slice of possibly uninitialized values. In contrast to
|
|
/// [`as_mut`], this does not require that the value has to be initialized.
|
|
///
|
|
/// For the shared counterpart see [`as_uninit_slice`].
|
|
///
|
|
/// [`as_mut`]: NonNull::as_mut
|
|
/// [`as_uninit_slice`]: NonNull::as_uninit_slice
|
|
///
|
|
/// # Safety
|
|
///
|
|
/// When calling this method, you have to ensure that all of the following is true:
|
|
///
|
|
/// * The pointer must be [valid] for reads and writes for `ptr.len() * mem::size_of::<T>()`
|
|
/// many bytes, and it must be properly aligned. This means in particular:
|
|
///
|
|
/// * The entire memory range of this slice must be contained within a single allocated object!
|
|
/// Slices can never span across multiple allocated objects.
|
|
///
|
|
/// * The pointer must be aligned even for zero-length slices. One
|
|
/// reason for this is that enum layout optimizations may rely on references
|
|
/// (including slices of any length) being aligned and non-null to distinguish
|
|
/// them from other data. You can obtain a pointer that is usable as `data`
|
|
/// for zero-length slices using [`NonNull::dangling()`].
|
|
///
|
|
/// * The total size `ptr.len() * mem::size_of::<T>()` of the slice must be no larger than `isize::MAX`.
|
|
/// See the safety documentation of [`pointer::offset`].
|
|
///
|
|
/// * You must enforce Rust's aliasing rules, since the returned lifetime `'a` is
|
|
/// arbitrarily chosen and does not necessarily reflect the actual lifetime of the data.
|
|
/// In particular, while this reference exists, the memory the pointer points to must
|
|
/// not get accessed (read or written) through any other pointer.
|
|
///
|
|
/// This applies even if the result of this method is unused!
|
|
///
|
|
/// See also [`slice::from_raw_parts_mut`].
|
|
///
|
|
/// [valid]: crate::ptr#safety
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```rust
|
|
/// #![feature(allocator_api, ptr_as_uninit)]
|
|
///
|
|
/// use std::alloc::{Allocator, Layout, Global};
|
|
/// use std::mem::MaybeUninit;
|
|
/// use std::ptr::NonNull;
|
|
///
|
|
/// let memory: NonNull<[u8]> = Global.allocate(Layout::new::<[u8; 32]>())?;
|
|
/// // This is safe as `memory` is valid for reads and writes for `memory.len()` many bytes.
|
|
/// // Note that calling `memory.as_mut()` is not allowed here as the content may be uninitialized.
|
|
/// # #[allow(unused_variables)]
|
|
/// let slice: &mut [MaybeUninit<u8>] = unsafe { memory.as_uninit_slice_mut() };
|
|
/// # Ok::<_, std::alloc::AllocError>(())
|
|
/// ```
|
|
#[inline]
|
|
#[must_use]
|
|
#[unstable(feature = "ptr_as_uninit", issue = "75402")]
|
|
#[rustc_const_unstable(feature = "const_ptr_as_ref", issue = "91822")]
|
|
pub const unsafe fn as_uninit_slice_mut<'a>(self) -> &'a mut [MaybeUninit<T>] {
|
|
// SAFETY: the caller must uphold the safety contract for `as_uninit_slice_mut`.
|
|
unsafe { slice::from_raw_parts_mut(self.cast().as_ptr(), self.len()) }
|
|
}
|
|
|
|
/// Returns a raw pointer to an element or subslice, without doing bounds
|
|
/// checking.
|
|
///
|
|
/// Calling this method with an out-of-bounds index or when `self` is not dereferenceable
|
|
/// is *[undefined behavior]* even if the resulting pointer is not used.
|
|
///
|
|
/// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// #![feature(slice_ptr_get)]
|
|
/// use std::ptr::NonNull;
|
|
///
|
|
/// let x = &mut [1, 2, 4];
|
|
/// let x = NonNull::slice_from_raw_parts(NonNull::new(x.as_mut_ptr()).unwrap(), x.len());
|
|
///
|
|
/// unsafe {
|
|
/// assert_eq!(x.get_unchecked_mut(1).as_ptr(), x.as_non_null_ptr().as_ptr().add(1));
|
|
/// }
|
|
/// ```
|
|
#[unstable(feature = "slice_ptr_get", issue = "74265")]
|
|
#[inline]
|
|
pub unsafe fn get_unchecked_mut<I>(self, index: I) -> NonNull<I::Output>
|
|
where
|
|
I: SliceIndex<[T]>,
|
|
{
|
|
// SAFETY: the caller ensures that `self` is dereferenceable and `index` in-bounds.
|
|
// As a consequence, the resulting pointer cannot be null.
|
|
unsafe { NonNull::new_unchecked(self.as_ptr().get_unchecked_mut(index)) }
|
|
}
|
|
}
|
|
|
|
#[stable(feature = "nonnull", since = "1.25.0")]
|
|
impl<T: ?Sized> Clone for NonNull<T> {
|
|
#[inline(always)]
|
|
fn clone(&self) -> Self {
|
|
*self
|
|
}
|
|
}
|
|
|
|
#[stable(feature = "nonnull", since = "1.25.0")]
|
|
impl<T: ?Sized> Copy for NonNull<T> {}
|
|
|
|
#[unstable(feature = "coerce_unsized", issue = "18598")]
|
|
impl<T: ?Sized, U: ?Sized> CoerceUnsized<NonNull<U>> for NonNull<T> where T: Unsize<U> {}
|
|
|
|
#[unstable(feature = "dispatch_from_dyn", issue = "none")]
|
|
impl<T: ?Sized, U: ?Sized> DispatchFromDyn<NonNull<U>> for NonNull<T> where T: Unsize<U> {}
|
|
|
|
#[stable(feature = "nonnull", since = "1.25.0")]
|
|
impl<T: ?Sized> fmt::Debug for NonNull<T> {
|
|
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
|
|
fmt::Pointer::fmt(&self.as_ptr(), f)
|
|
}
|
|
}
|
|
|
|
#[stable(feature = "nonnull", since = "1.25.0")]
|
|
impl<T: ?Sized> fmt::Pointer for NonNull<T> {
|
|
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
|
|
fmt::Pointer::fmt(&self.as_ptr(), f)
|
|
}
|
|
}
|
|
|
|
#[stable(feature = "nonnull", since = "1.25.0")]
|
|
impl<T: ?Sized> Eq for NonNull<T> {}
|
|
|
|
#[stable(feature = "nonnull", since = "1.25.0")]
|
|
impl<T: ?Sized> PartialEq for NonNull<T> {
|
|
#[inline]
|
|
fn eq(&self, other: &Self) -> bool {
|
|
self.as_ptr() == other.as_ptr()
|
|
}
|
|
}
|
|
|
|
#[stable(feature = "nonnull", since = "1.25.0")]
|
|
impl<T: ?Sized> Ord for NonNull<T> {
|
|
#[inline]
|
|
fn cmp(&self, other: &Self) -> Ordering {
|
|
self.as_ptr().cmp(&other.as_ptr())
|
|
}
|
|
}
|
|
|
|
#[stable(feature = "nonnull", since = "1.25.0")]
|
|
impl<T: ?Sized> PartialOrd for NonNull<T> {
|
|
#[inline]
|
|
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
|
|
self.as_ptr().partial_cmp(&other.as_ptr())
|
|
}
|
|
}
|
|
|
|
#[stable(feature = "nonnull", since = "1.25.0")]
|
|
impl<T: ?Sized> hash::Hash for NonNull<T> {
|
|
#[inline]
|
|
fn hash<H: hash::Hasher>(&self, state: &mut H) {
|
|
self.as_ptr().hash(state)
|
|
}
|
|
}
|
|
|
|
#[unstable(feature = "ptr_internals", issue = "none")]
|
|
impl<T: ?Sized> From<Unique<T>> for NonNull<T> {
|
|
#[inline]
|
|
fn from(unique: Unique<T>) -> Self {
|
|
// SAFETY: A Unique pointer cannot be null, so the conditions for
|
|
// new_unchecked() are respected.
|
|
unsafe { NonNull::new_unchecked(unique.as_ptr()) }
|
|
}
|
|
}
|
|
|
|
#[stable(feature = "nonnull", since = "1.25.0")]
|
|
impl<T: ?Sized> From<&mut T> for NonNull<T> {
|
|
/// Converts a `&mut T` to a `NonNull<T>`.
|
|
///
|
|
/// This conversion is safe and infallible since references cannot be null.
|
|
#[inline]
|
|
fn from(reference: &mut T) -> Self {
|
|
// SAFETY: A mutable reference cannot be null.
|
|
unsafe { NonNull { pointer: reference as *mut T } }
|
|
}
|
|
}
|
|
|
|
#[stable(feature = "nonnull", since = "1.25.0")]
|
|
impl<T: ?Sized> From<&T> for NonNull<T> {
|
|
/// Converts a `&T` to a `NonNull<T>`.
|
|
///
|
|
/// This conversion is safe and infallible since references cannot be null.
|
|
#[inline]
|
|
fn from(reference: &T) -> Self {
|
|
// SAFETY: A reference cannot be null, so the conditions for
|
|
// new_unchecked() are respected.
|
|
unsafe { NonNull { pointer: reference as *const T } }
|
|
}
|
|
}
|