rust/crates/test_helpers/src/lib.rs
2023-07-27 01:02:26 -04:00

726 lines
24 KiB
Rust

#![feature(stdsimd, powerpc_target_feature)]
pub mod array;
#[cfg(target_arch = "wasm32")]
pub mod wasm;
#[macro_use]
pub mod biteq;
pub mod subnormals;
use subnormals::FlushSubnormals;
/// Specifies the default strategy for testing a type.
///
/// This strategy should be what "makes sense" to test.
pub trait DefaultStrategy {
type Strategy: proptest::strategy::Strategy<Value = Self>;
fn default_strategy() -> Self::Strategy;
}
macro_rules! impl_num {
{ $type:tt } => {
impl DefaultStrategy for $type {
type Strategy = proptest::num::$type::Any;
fn default_strategy() -> Self::Strategy {
proptest::num::$type::ANY
}
}
}
}
impl_num! { i8 }
impl_num! { i16 }
impl_num! { i32 }
impl_num! { i64 }
impl_num! { isize }
impl_num! { u8 }
impl_num! { u16 }
impl_num! { u32 }
impl_num! { u64 }
impl_num! { usize }
impl_num! { f32 }
impl_num! { f64 }
impl<T> DefaultStrategy for *const T {
type Strategy = proptest::strategy::Map<proptest::num::isize::Any, fn(isize) -> *const T>;
fn default_strategy() -> Self::Strategy {
fn map<T>(x: isize) -> *const T {
x as _
}
use proptest::strategy::Strategy;
proptest::num::isize::ANY.prop_map(map)
}
}
impl<T> DefaultStrategy for *mut T {
type Strategy = proptest::strategy::Map<proptest::num::isize::Any, fn(isize) -> *mut T>;
fn default_strategy() -> Self::Strategy {
fn map<T>(x: isize) -> *mut T {
x as _
}
use proptest::strategy::Strategy;
proptest::num::isize::ANY.prop_map(map)
}
}
#[cfg(not(target_arch = "wasm32"))]
impl DefaultStrategy for u128 {
type Strategy = proptest::num::u128::Any;
fn default_strategy() -> Self::Strategy {
proptest::num::u128::ANY
}
}
#[cfg(not(target_arch = "wasm32"))]
impl DefaultStrategy for i128 {
type Strategy = proptest::num::i128::Any;
fn default_strategy() -> Self::Strategy {
proptest::num::i128::ANY
}
}
#[cfg(target_arch = "wasm32")]
impl DefaultStrategy for u128 {
type Strategy = crate::wasm::u128::Any;
fn default_strategy() -> Self::Strategy {
crate::wasm::u128::ANY
}
}
#[cfg(target_arch = "wasm32")]
impl DefaultStrategy for i128 {
type Strategy = crate::wasm::i128::Any;
fn default_strategy() -> Self::Strategy {
crate::wasm::i128::ANY
}
}
impl<T: core::fmt::Debug + DefaultStrategy, const LANES: usize> DefaultStrategy for [T; LANES] {
type Strategy = crate::array::UniformArrayStrategy<T::Strategy, Self>;
fn default_strategy() -> Self::Strategy {
Self::Strategy::new(T::default_strategy())
}
}
#[cfg(not(miri))]
pub fn make_runner() -> proptest::test_runner::TestRunner {
Default::default()
}
#[cfg(miri)]
pub fn make_runner() -> proptest::test_runner::TestRunner {
// Only run a few tests on Miri
proptest::test_runner::TestRunner::new(proptest::test_runner::Config::with_cases(4))
}
/// Test a function that takes a single value.
pub fn test_1<A: core::fmt::Debug + DefaultStrategy>(
f: &dyn Fn(A) -> proptest::test_runner::TestCaseResult,
) {
let mut runner = make_runner();
runner.run(&A::default_strategy(), f).unwrap();
}
/// Test a function that takes two values.
pub fn test_2<A: core::fmt::Debug + DefaultStrategy, B: core::fmt::Debug + DefaultStrategy>(
f: &dyn Fn(A, B) -> proptest::test_runner::TestCaseResult,
) {
let mut runner = make_runner();
runner
.run(&(A::default_strategy(), B::default_strategy()), |(a, b)| {
f(a, b)
})
.unwrap();
}
/// Test a function that takes two values.
pub fn test_3<
A: core::fmt::Debug + DefaultStrategy,
B: core::fmt::Debug + DefaultStrategy,
C: core::fmt::Debug + DefaultStrategy,
>(
f: &dyn Fn(A, B, C) -> proptest::test_runner::TestCaseResult,
) {
let mut runner = make_runner();
runner
.run(
&(
A::default_strategy(),
B::default_strategy(),
C::default_strategy(),
),
|(a, b, c)| f(a, b, c),
)
.unwrap();
}
/// Test a unary vector function against a unary scalar function, applied elementwise.
pub fn test_unary_elementwise<Scalar, ScalarResult, Vector, VectorResult, const LANES: usize>(
fv: &dyn Fn(Vector) -> VectorResult,
fs: &dyn Fn(Scalar) -> ScalarResult,
check: &dyn Fn([Scalar; LANES]) -> bool,
) where
Scalar: Copy + core::fmt::Debug + DefaultStrategy,
ScalarResult: Copy + biteq::BitEq + core::fmt::Debug + DefaultStrategy,
Vector: Into<[Scalar; LANES]> + From<[Scalar; LANES]> + Copy,
VectorResult: Into<[ScalarResult; LANES]> + From<[ScalarResult; LANES]> + Copy,
{
test_1(&|x: [Scalar; LANES]| {
proptest::prop_assume!(check(x));
let result_1: [ScalarResult; LANES] = fv(x.into()).into();
let result_2: [ScalarResult; LANES] = x
.iter()
.copied()
.map(fs)
.collect::<Vec<_>>()
.try_into()
.unwrap();
crate::prop_assert_biteq!(result_1, result_2);
Ok(())
});
}
/// Test a unary vector function against a unary scalar function, applied elementwise.
///
/// Where subnormals are flushed, use approximate equality.
pub fn test_unary_elementwise_flush_subnormals<
Scalar,
ScalarResult,
Vector,
VectorResult,
const LANES: usize,
>(
fv: &dyn Fn(Vector) -> VectorResult,
fs: &dyn Fn(Scalar) -> ScalarResult,
check: &dyn Fn([Scalar; LANES]) -> bool,
) where
Scalar: Copy + core::fmt::Debug + DefaultStrategy + FlushSubnormals,
ScalarResult: Copy + biteq::BitEq + core::fmt::Debug + DefaultStrategy + FlushSubnormals,
Vector: Into<[Scalar; LANES]> + From<[Scalar; LANES]> + Copy,
VectorResult: Into<[ScalarResult; LANES]> + From<[ScalarResult; LANES]> + Copy,
{
let flush = |x: Scalar| subnormals::flush(fs(subnormals::flush_in(x)));
test_1(&|x: [Scalar; LANES]| {
proptest::prop_assume!(check(x));
let result_v: [ScalarResult; LANES] = fv(x.into()).into();
let result_s: [ScalarResult; LANES] = x
.iter()
.copied()
.map(fs)
.collect::<Vec<_>>()
.try_into()
.unwrap();
let result_sf: [ScalarResult; LANES] = x
.iter()
.copied()
.map(flush)
.collect::<Vec<_>>()
.try_into()
.unwrap();
crate::prop_assert_biteq!(result_v, result_s, result_sf);
Ok(())
});
}
/// Test a unary vector function against a unary scalar function, applied elementwise.
#[inline(never)]
pub fn test_unary_mask_elementwise<Scalar, Vector, Mask, const LANES: usize>(
fv: &dyn Fn(Vector) -> Mask,
fs: &dyn Fn(Scalar) -> bool,
check: &dyn Fn([Scalar; LANES]) -> bool,
) where
Scalar: Copy + core::fmt::Debug + DefaultStrategy,
Vector: Into<[Scalar; LANES]> + From<[Scalar; LANES]> + Copy,
Mask: Into<[bool; LANES]> + From<[bool; LANES]> + Copy,
{
test_1(&|x: [Scalar; LANES]| {
proptest::prop_assume!(check(x));
let result_1: [bool; LANES] = fv(x.into()).into();
let result_2: [bool; LANES] = {
let mut result = [false; LANES];
for (i, o) in x.iter().zip(result.iter_mut()) {
*o = fs(*i);
}
result
};
crate::prop_assert_biteq!(result_1, result_2);
Ok(())
});
}
/// Test a binary vector function against a binary scalar function, applied elementwise.
pub fn test_binary_elementwise<
Scalar1,
Scalar2,
ScalarResult,
Vector1,
Vector2,
VectorResult,
const LANES: usize,
>(
fv: &dyn Fn(Vector1, Vector2) -> VectorResult,
fs: &dyn Fn(Scalar1, Scalar2) -> ScalarResult,
check: &dyn Fn([Scalar1; LANES], [Scalar2; LANES]) -> bool,
) where
Scalar1: Copy + core::fmt::Debug + DefaultStrategy,
Scalar2: Copy + core::fmt::Debug + DefaultStrategy,
ScalarResult: Copy + biteq::BitEq + core::fmt::Debug + DefaultStrategy,
Vector1: Into<[Scalar1; LANES]> + From<[Scalar1; LANES]> + Copy,
Vector2: Into<[Scalar2; LANES]> + From<[Scalar2; LANES]> + Copy,
VectorResult: Into<[ScalarResult; LANES]> + From<[ScalarResult; LANES]> + Copy,
{
test_2(&|x: [Scalar1; LANES], y: [Scalar2; LANES]| {
proptest::prop_assume!(check(x, y));
let result_1: [ScalarResult; LANES] = fv(x.into(), y.into()).into();
let result_2: [ScalarResult; LANES] = x
.iter()
.copied()
.zip(y.iter().copied())
.map(|(x, y)| fs(x, y))
.collect::<Vec<_>>()
.try_into()
.unwrap();
crate::prop_assert_biteq!(result_1, result_2);
Ok(())
});
}
/// Test a binary vector function against a binary scalar function, applied elementwise.
///
/// Where subnormals are flushed, use approximate equality.
pub fn test_binary_elementwise_flush_subnormals<
Scalar1,
Scalar2,
ScalarResult,
Vector1,
Vector2,
VectorResult,
const LANES: usize,
>(
fv: &dyn Fn(Vector1, Vector2) -> VectorResult,
fs: &dyn Fn(Scalar1, Scalar2) -> ScalarResult,
check: &dyn Fn([Scalar1; LANES], [Scalar2; LANES]) -> bool,
) where
Scalar1: Copy + core::fmt::Debug + DefaultStrategy + FlushSubnormals,
Scalar2: Copy + core::fmt::Debug + DefaultStrategy + FlushSubnormals,
ScalarResult: Copy + biteq::BitEq + core::fmt::Debug + DefaultStrategy + FlushSubnormals,
Vector1: Into<[Scalar1; LANES]> + From<[Scalar1; LANES]> + Copy,
Vector2: Into<[Scalar2; LANES]> + From<[Scalar2; LANES]> + Copy,
VectorResult: Into<[ScalarResult; LANES]> + From<[ScalarResult; LANES]> + Copy,
{
let flush = |x: Scalar1, y: Scalar2| {
subnormals::flush(fs(subnormals::flush_in(x), subnormals::flush_in(y)))
};
test_2(&|x: [Scalar1; LANES], y: [Scalar2; LANES]| {
proptest::prop_assume!(check(x, y));
let result_v: [ScalarResult; LANES] = fv(x.into(), y.into()).into();
let result_s: [ScalarResult; LANES] = x
.iter()
.copied()
.zip(y.iter().copied())
.map(|(x, y)| fs(x, y))
.collect::<Vec<_>>()
.try_into()
.unwrap();
let result_sf: [ScalarResult; LANES] = x
.iter()
.copied()
.zip(y.iter().copied())
.map(|(x, y)| flush(x, y))
.collect::<Vec<_>>()
.try_into()
.unwrap();
crate::prop_assert_biteq!(result_v, result_s, result_sf);
Ok(())
});
}
/// Test a unary vector function against a unary scalar function, applied elementwise.
#[inline(never)]
pub fn test_binary_mask_elementwise<Scalar1, Scalar2, Vector1, Vector2, Mask, const LANES: usize>(
fv: &dyn Fn(Vector1, Vector2) -> Mask,
fs: &dyn Fn(Scalar1, Scalar2) -> bool,
check: &dyn Fn([Scalar1; LANES], [Scalar2; LANES]) -> bool,
) where
Scalar1: Copy + core::fmt::Debug + DefaultStrategy,
Scalar2: Copy + core::fmt::Debug + DefaultStrategy,
Vector1: Into<[Scalar1; LANES]> + From<[Scalar1; LANES]> + Copy,
Vector2: Into<[Scalar2; LANES]> + From<[Scalar2; LANES]> + Copy,
Mask: Into<[bool; LANES]> + From<[bool; LANES]> + Copy,
{
test_2(&|x: [Scalar1; LANES], y: [Scalar2; LANES]| {
proptest::prop_assume!(check(x, y));
let result_v: [bool; LANES] = fv(x.into(), y.into()).into();
let result_s: [bool; LANES] = x
.iter()
.copied()
.zip(y.iter().copied())
.map(|(x, y)| fs(x, y))
.collect::<Vec<_>>()
.try_into()
.unwrap();
crate::prop_assert_biteq!(result_v, result_s);
Ok(())
});
}
/// Test a binary vector-scalar function against a binary scalar function, applied elementwise.
#[inline(never)]
pub fn test_binary_scalar_rhs_elementwise<
Scalar1,
Scalar2,
ScalarResult,
Vector,
VectorResult,
const LANES: usize,
>(
fv: &dyn Fn(Vector, Scalar2) -> VectorResult,
fs: &dyn Fn(Scalar1, Scalar2) -> ScalarResult,
check: &dyn Fn([Scalar1; LANES], Scalar2) -> bool,
) where
Scalar1: Copy + Default + core::fmt::Debug + DefaultStrategy,
Scalar2: Copy + Default + core::fmt::Debug + DefaultStrategy,
ScalarResult: Copy + Default + biteq::BitEq + core::fmt::Debug + DefaultStrategy,
Vector: Into<[Scalar1; LANES]> + From<[Scalar1; LANES]> + Copy,
VectorResult: Into<[ScalarResult; LANES]> + From<[ScalarResult; LANES]> + Copy,
{
test_2(&|x: [Scalar1; LANES], y: Scalar2| {
proptest::prop_assume!(check(x, y));
let result_1: [ScalarResult; LANES] = fv(x.into(), y).into();
let result_2: [ScalarResult; LANES] = {
let mut result = [ScalarResult::default(); LANES];
for (i, o) in x.iter().zip(result.iter_mut()) {
*o = fs(*i, y);
}
result
};
crate::prop_assert_biteq!(result_1, result_2);
Ok(())
});
}
/// Test a binary vector-scalar function against a binary scalar function, applied elementwise.
#[inline(never)]
pub fn test_binary_scalar_lhs_elementwise<
Scalar1,
Scalar2,
ScalarResult,
Vector,
VectorResult,
const LANES: usize,
>(
fv: &dyn Fn(Scalar1, Vector) -> VectorResult,
fs: &dyn Fn(Scalar1, Scalar2) -> ScalarResult,
check: &dyn Fn(Scalar1, [Scalar2; LANES]) -> bool,
) where
Scalar1: Copy + Default + core::fmt::Debug + DefaultStrategy,
Scalar2: Copy + Default + core::fmt::Debug + DefaultStrategy,
ScalarResult: Copy + Default + biteq::BitEq + core::fmt::Debug + DefaultStrategy,
Vector: Into<[Scalar2; LANES]> + From<[Scalar2; LANES]> + Copy,
VectorResult: Into<[ScalarResult; LANES]> + From<[ScalarResult; LANES]> + Copy,
{
test_2(&|x: Scalar1, y: [Scalar2; LANES]| {
proptest::prop_assume!(check(x, y));
let result_1: [ScalarResult; LANES] = fv(x, y.into()).into();
let result_2: [ScalarResult; LANES] = {
let mut result = [ScalarResult::default(); LANES];
for (i, o) in y.iter().zip(result.iter_mut()) {
*o = fs(x, *i);
}
result
};
crate::prop_assert_biteq!(result_1, result_2);
Ok(())
});
}
/// Test a ternary vector function against a ternary scalar function, applied elementwise.
#[inline(never)]
pub fn test_ternary_elementwise<
Scalar1,
Scalar2,
Scalar3,
ScalarResult,
Vector1,
Vector2,
Vector3,
VectorResult,
const LANES: usize,
>(
fv: &dyn Fn(Vector1, Vector2, Vector3) -> VectorResult,
fs: &dyn Fn(Scalar1, Scalar2, Scalar3) -> ScalarResult,
check: &dyn Fn([Scalar1; LANES], [Scalar2; LANES], [Scalar3; LANES]) -> bool,
) where
Scalar1: Copy + Default + core::fmt::Debug + DefaultStrategy,
Scalar2: Copy + Default + core::fmt::Debug + DefaultStrategy,
Scalar3: Copy + Default + core::fmt::Debug + DefaultStrategy,
ScalarResult: Copy + Default + biteq::BitEq + core::fmt::Debug + DefaultStrategy,
Vector1: Into<[Scalar1; LANES]> + From<[Scalar1; LANES]> + Copy,
Vector2: Into<[Scalar2; LANES]> + From<[Scalar2; LANES]> + Copy,
Vector3: Into<[Scalar3; LANES]> + From<[Scalar3; LANES]> + Copy,
VectorResult: Into<[ScalarResult; LANES]> + From<[ScalarResult; LANES]> + Copy,
{
test_3(
&|x: [Scalar1; LANES], y: [Scalar2; LANES], z: [Scalar3; LANES]| {
proptest::prop_assume!(check(x, y, z));
let result_1: [ScalarResult; LANES] = fv(x.into(), y.into(), z.into()).into();
let result_2: [ScalarResult; LANES] = {
let mut result = [ScalarResult::default(); LANES];
for ((i1, (i2, i3)), o) in
x.iter().zip(y.iter().zip(z.iter())).zip(result.iter_mut())
{
*o = fs(*i1, *i2, *i3);
}
result
};
crate::prop_assert_biteq!(result_1, result_2);
Ok(())
},
);
}
#[doc(hidden)]
#[macro_export]
macro_rules! test_lanes_helper {
($($(#[$meta:meta])* $fn_name:ident $lanes:literal;)+) => {
$(
#[test]
$(#[$meta])*
fn $fn_name() {
implementation::<$lanes>();
}
)+
};
(
$(#[$meta:meta])+;
$($(#[$meta_before:meta])+ $fn_name_before:ident $lanes_before:literal;)*
$fn_name:ident $lanes:literal;
$($fn_name_rest:ident $lanes_rest:literal;)*
) => {
$crate::test_lanes_helper!(
$(#[$meta])+;
$($(#[$meta_before])+ $fn_name_before $lanes_before;)*
$(#[$meta])+ $fn_name $lanes;
$($fn_name_rest $lanes_rest;)*
);
};
(
$(#[$meta_ignored:meta])+;
$($(#[$meta:meta])+ $fn_name:ident $lanes:literal;)+
) => {
$crate::test_lanes_helper!($($(#[$meta])+ $fn_name $lanes;)+);
};
}
/// Expand a const-generic test into separate tests for each possible lane count.
#[macro_export]
macro_rules! test_lanes {
{
$(fn $test:ident<const $lanes:ident: usize>() $body:tt)*
} => {
$(
mod $test {
use super::*;
fn implementation<const $lanes: usize>()
where
core_simd::simd::LaneCount<$lanes>: core_simd::simd::SupportedLaneCount,
$body
#[cfg(target_arch = "wasm32")]
wasm_bindgen_test::wasm_bindgen_test_configure!(run_in_browser);
$crate::test_lanes_helper!(
#[cfg_attr(target_arch = "wasm32", wasm_bindgen_test::wasm_bindgen_test)];
lanes_1 1;
lanes_2 2;
lanes_4 4;
);
#[cfg(not(miri))] // Miri intrinsic implementations are uniform and larger tests are sloooow
$crate::test_lanes_helper!(
#[cfg_attr(target_arch = "wasm32", wasm_bindgen_test::wasm_bindgen_test)];
lanes_8 8;
lanes_16 16;
lanes_32 32;
lanes_64 64;
);
#[cfg(feature = "all_lane_counts")]
$crate::test_lanes_helper!(
// test some odd and even non-power-of-2 lengths on miri
#[cfg_attr(target_arch = "wasm32", wasm_bindgen_test::wasm_bindgen_test)];
lanes_3 3;
lanes_5 5;
lanes_6 6;
);
#[cfg(feature = "all_lane_counts")]
#[cfg(not(miri))] // Miri intrinsic implementations are uniform and larger tests are sloooow
$crate::test_lanes_helper!(
#[cfg_attr(target_arch = "wasm32", wasm_bindgen_test::wasm_bindgen_test)];
lanes_7 7;
lanes_9 9;
lanes_10 10;
lanes_11 11;
lanes_12 12;
lanes_13 13;
lanes_14 14;
lanes_15 15;
lanes_17 17;
lanes_18 18;
lanes_19 19;
lanes_20 20;
lanes_21 21;
lanes_22 22;
lanes_23 23;
lanes_24 24;
lanes_25 25;
lanes_26 26;
lanes_27 27;
lanes_28 28;
lanes_29 29;
lanes_30 30;
lanes_31 31;
lanes_33 33;
lanes_34 34;
lanes_35 35;
lanes_36 36;
lanes_37 37;
lanes_38 38;
lanes_39 39;
lanes_40 40;
lanes_41 41;
lanes_42 42;
lanes_43 43;
lanes_44 44;
lanes_45 45;
lanes_46 46;
lanes_47 47;
lanes_48 48;
lanes_49 49;
lanes_50 50;
lanes_51 51;
lanes_52 52;
lanes_53 53;
lanes_54 54;
lanes_55 55;
lanes_56 56;
lanes_57 57;
lanes_58 58;
lanes_59 59;
lanes_60 60;
lanes_61 61;
lanes_62 62;
lanes_63 63;
);
}
)*
}
}
/// Expand a const-generic `#[should_panic]` test into separate tests for each possible lane count.
#[macro_export]
macro_rules! test_lanes_panic {
{
$(fn $test:ident<const $lanes:ident: usize>() $body:tt)*
} => {
$(
mod $test {
use super::*;
fn implementation<const $lanes: usize>()
where
core_simd::simd::LaneCount<$lanes>: core_simd::simd::SupportedLaneCount,
$body
$crate::test_lanes_helper!(
#[should_panic];
lanes_1 1;
lanes_2 2;
lanes_4 4;
);
#[cfg(not(miri))] // Miri intrinsic implementations are uniform and larger tests are sloooow
$crate::test_lanes_helper!(
#[should_panic];
lanes_8 8;
lanes_16 16;
lanes_32 32;
lanes_64 64;
);
#[cfg(feature = "all_lane_counts")]
$crate::test_lanes_helper!(
// test some odd and even non-power-of-2 lengths on miri
#[should_panic];
lanes_3 3;
lanes_5 5;
lanes_6 6;
);
#[cfg(feature = "all_lane_counts")]
#[cfg(not(miri))] // Miri intrinsic implementations are uniform and larger tests are sloooow
$crate::test_lanes_helper!(
#[should_panic];
lanes_7 7;
lanes_9 9;
lanes_10 10;
lanes_11 11;
lanes_12 12;
lanes_13 13;
lanes_14 14;
lanes_15 15;
lanes_17 17;
lanes_18 18;
lanes_19 19;
lanes_20 20;
lanes_21 21;
lanes_22 22;
lanes_23 23;
lanes_24 24;
lanes_25 25;
lanes_26 26;
lanes_27 27;
lanes_28 28;
lanes_29 29;
lanes_30 30;
lanes_31 31;
lanes_33 33;
lanes_34 34;
lanes_35 35;
lanes_36 36;
lanes_37 37;
lanes_38 38;
lanes_39 39;
lanes_40 40;
lanes_41 41;
lanes_42 42;
lanes_43 43;
lanes_44 44;
lanes_45 45;
lanes_46 46;
lanes_47 47;
lanes_48 48;
lanes_49 49;
lanes_50 50;
lanes_51 51;
lanes_52 52;
lanes_53 53;
lanes_54 54;
lanes_55 55;
lanes_56 56;
lanes_57 57;
lanes_58 58;
lanes_59 59;
lanes_60 60;
lanes_61 61;
lanes_62 62;
lanes_63 63;
);
}
)*
}
}