rust/src/comp/middle/trans_vec.rs
2011-07-26 14:06:02 +02:00

221 lines
8.8 KiB
Rust

// Translation of vector operations to LLVM IR, in destination-passing style.
import back::abi;
import lib::llvm::llvm;
import llvm::ValueRef;
import middle::trans;
import middle::trans_common;
import middle::trans_dps;
import middle::ty;
import syntax::ast;
import syntax::codemap::span;
import trans::alloca;
import trans::load_inbounds;
import trans::new_sub_block_ctxt;
import trans::type_of_or_i8;
import trans_common::block_ctxt;
import trans_common::struct_elt;
import trans_common::C_int;
import trans_common::C_null;
import trans_common::C_uint;
import trans_common::T_int;
import trans_common::T_ivec_heap;
import trans_common::T_ivec_heap_part;
import trans_common::T_opaque_ivec;
import trans_common::T_ptr;
import trans_common::bcx_ccx;
import trans_common::bcx_tcx;
import trans_dps::dest;
import trans_dps::llsize_of;
import trans_dps::mk_temp;
import std::option::none;
import std::option::some;
import tc = middle::trans_common;
// Returns the length of an interior vector and a pointer to its first
// element, in that order.
//
// TODO: We can optimize this in the cases in which we statically know the
// vector must be on the stack.
fn get_len_and_data(&@block_ctxt cx, ty::t t, ValueRef llvecptr)
-> rec(@block_ctxt bcx, ValueRef len, ValueRef data) {
auto bcx = cx;
// If this interior vector has dynamic size, we can't assume anything
// about the LLVM type of the value passed in, so we cast it to an
// opaque vector type.
auto unit_ty = ty::sequence_element_type(bcx_tcx(bcx), t);
auto v;
if (ty::type_has_dynamic_size(bcx_tcx(bcx), unit_ty)) {
v = bcx.build.PointerCast(llvecptr, T_ptr(T_opaque_ivec()));
} else {
v = llvecptr;
}
auto llunitty = type_of_or_i8(bcx, unit_ty);
auto stack_len = load_inbounds(bcx, v, ~[C_int(0),
C_uint(abi::ivec_elt_len)]);
auto stack_elem =
bcx.build.InBoundsGEP(v,
~[C_int(0), C_uint(abi::ivec_elt_elems),
C_int(0)]);
auto on_heap =
bcx.build.ICmp(lib::llvm::LLVMIntEQ, stack_len, C_int(0));
auto on_heap_cx = new_sub_block_ctxt(bcx, "on_heap");
auto next_cx = new_sub_block_ctxt(bcx, "next");
bcx.build.CondBr(on_heap, on_heap_cx.llbb, next_cx.llbb);
auto heap_stub =
on_heap_cx.build.PointerCast(v, T_ptr(T_ivec_heap(llunitty)));
auto heap_ptr = load_inbounds(on_heap_cx, heap_stub,
~[C_int(0),
C_uint(abi::ivec_heap_stub_elt_ptr)]);
// Check whether the heap pointer is null. If it is, the vector length
// is truly zero.
auto llstubty = T_ivec_heap(llunitty);
auto llheapptrty = struct_elt(llstubty, abi::ivec_heap_stub_elt_ptr);
auto heap_ptr_is_null =
on_heap_cx.build.ICmp(lib::llvm::LLVMIntEQ, heap_ptr,
C_null(T_ptr(llheapptrty)));
auto zero_len_cx = new_sub_block_ctxt(bcx, "zero_len");
auto nonzero_len_cx = new_sub_block_ctxt(bcx, "nonzero_len");
on_heap_cx.build.CondBr(heap_ptr_is_null, zero_len_cx.llbb,
nonzero_len_cx.llbb);
// Technically this context is unnecessary, but it makes this function
// clearer.
auto zero_len = C_int(0);
auto zero_elem = C_null(T_ptr(llunitty));
zero_len_cx.build.Br(next_cx.llbb);
// If we're here, then we actually have a heapified vector.
auto heap_len = load_inbounds(nonzero_len_cx, heap_ptr,
~[C_int(0),
C_uint(abi::ivec_heap_elt_len)]);
auto heap_elem =
{
auto v = ~[C_int(0), C_uint(abi::ivec_heap_elt_elems),
C_int(0)];
nonzero_len_cx.build.InBoundsGEP(heap_ptr,v)
};
nonzero_len_cx.build.Br(next_cx.llbb);
// Now we can figure out the length of |v| and get a pointer to its
// first element.
auto len =
next_cx.build.Phi(T_int(), ~[stack_len, zero_len, heap_len],
~[bcx.llbb, zero_len_cx.llbb,
nonzero_len_cx.llbb]);
auto elem =
next_cx.build.Phi(T_ptr(llunitty),
~[stack_elem, zero_elem, heap_elem],
~[bcx.llbb, zero_len_cx.llbb,
nonzero_len_cx.llbb]);
ret rec(bcx=next_cx, len=len, data=elem);
}
fn trans_concat(&@block_ctxt cx, &dest in_dest, &span sp, ty::t t,
&@ast::expr lhs, &@ast::expr rhs) -> @block_ctxt {
auto bcx = cx;
// TODO: Detect "a = a + b" and promote to trans_append.
// TODO: Detect "a + [ literal ]" and optimize to copying the literal
// elements in directly.
auto t = ty::expr_ty(bcx_tcx(bcx), lhs);
auto skip_null = ty::type_is_str(bcx_tcx(bcx), t);
// Translate the LHS and RHS. Pull out their length and data.
auto lhs_tmp = trans_dps::dest_alias(bcx_tcx(bcx), t);
bcx = trans_dps::trans_expr(bcx, lhs_tmp, lhs);
auto lllhsptr = trans_dps::dest_ptr(lhs_tmp);
auto rhs_tmp = trans_dps::dest_alias(bcx_tcx(bcx), t);
bcx = trans_dps::trans_expr(bcx, rhs_tmp, rhs);
auto llrhsptr = trans_dps::dest_ptr(rhs_tmp);
auto r0 = get_len_and_data(bcx, t, lllhsptr);
bcx = r0.bcx; auto lllhslen = r0.len; auto lllhsdata = r0.data;
r0 = get_len_and_data(bcx, t, llrhsptr);
bcx = r0.bcx; auto llrhslen = r0.len; auto llrhsdata = r0.data;
if skip_null { lllhslen = bcx.build.Sub(lllhslen, C_int(1)); }
// Allocate the destination.
auto r1 = trans_dps::spill_alias(bcx, in_dest, t);
bcx = r1.bcx; auto dest = r1.dest;
auto unit_t = ty::sequence_element_type(bcx_tcx(bcx), t);
auto unit_sz = trans_dps::size_of(bcx_ccx(bcx), sp, unit_t);
auto stack_elems_sz = unit_sz * abi::ivec_default_length;
auto lldestptr = trans_dps::dest_ptr(dest);
auto llunitty = trans::type_of(bcx_ccx(bcx), sp, unit_t);
// Decide whether to allocate the result on the stack or on the heap.
auto llnewlen = bcx.build.Add(lllhslen, llrhslen);
auto llonstack = bcx.build.ICmp(lib::llvm::LLVMIntULE, llnewlen,
C_uint(stack_elems_sz));
auto on_stack_bcx = new_sub_block_ctxt(bcx, "on_stack");
auto on_heap_bcx = new_sub_block_ctxt(bcx, "on_heap");
bcx.build.CondBr(llonstack, on_stack_bcx.llbb, on_heap_bcx.llbb);
// On-stack case.
auto next_bcx = new_sub_block_ctxt(bcx, "next");
trans::store_inbounds(on_stack_bcx, llnewlen, lldestptr,
~[C_int(0), C_uint(abi::ivec_elt_len)]);
trans::store_inbounds(on_stack_bcx, C_uint(stack_elems_sz), lldestptr,
~[C_int(0), C_uint(abi::ivec_elt_alen)]);
auto llonstackdataptr =
on_stack_bcx.build.InBoundsGEP(lldestptr,
~[C_int(0),
C_uint(abi::ivec_elt_elems),
C_int(0)]);
on_stack_bcx.build.Br(next_bcx.llbb);
// On-heap case.
auto llheappartty = tc::T_ivec_heap(llunitty);
auto lldeststubptr =
on_heap_bcx.build.PointerCast(lldestptr, tc::T_ptr(llheappartty));
trans::store_inbounds(on_heap_bcx, C_int(0), lldeststubptr,
~[C_int(0), C_uint(abi::ivec_elt_len)]);
trans::store_inbounds(on_heap_bcx, llnewlen, lldeststubptr,
~[C_int(0), C_uint(abi::ivec_elt_alen)]);
auto llheappartptrptr =
on_heap_bcx.build.InBoundsGEP(lldeststubptr,
~[C_int(0),
C_uint(abi::ivec_elt_elems)]);
auto llsizeofint = C_uint(llsize_of(bcx_ccx(bcx), tc::T_int()));
on_heap_bcx = trans_dps::malloc(on_heap_bcx, llheappartptrptr,
trans_dps::hp_shared,
some(on_heap_bcx.build.Add(llnewlen,
llsizeofint)));
auto llheappartptr = on_heap_bcx.build.Load(llheappartptrptr);
trans::store_inbounds(on_heap_bcx, llnewlen, llheappartptr,
~[C_int(0), C_uint(abi::ivec_heap_elt_len)]);
auto llheapdataptr =
on_heap_bcx.build.InBoundsGEP(llheappartptr,
~[C_int(0),
C_uint(abi::ivec_heap_elt_elems),
C_int(0)]);
on_heap_bcx.build.Br(next_bcx.llbb);
// Perform the memmove.
auto lldataptr =
next_bcx.build.Phi(T_ptr(llunitty),
~[llonstackdataptr, llheapdataptr],
~[on_stack_bcx.llbb, on_heap_bcx.llbb]);
trans_dps::memmove(next_bcx, lldataptr, lllhsdata, lllhslen);
trans_dps::memmove(next_bcx,
next_bcx.build.InBoundsGEP(lldataptr, ~[lllhslen]),
llrhsdata, llrhslen);
ret next_bcx;
}