266 lines
12 KiB
Rust
266 lines
12 KiB
Rust
// Copyright 2014-2018 The Rust Project Developers. See the COPYRIGHT
|
|
// file at the top-level directory of this distribution.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
|
|
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
|
|
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
|
|
// option. This file may not be copied, modified, or distributed
|
|
// except according to those terms.
|
|
|
|
|
|
use crate::utils::{get_trait_def_id, implements_trait, snippet_opt, span_lint_and_then, SpanlessEq};
|
|
use crate::utils::{higher, sugg};
|
|
use crate::rustc::hir;
|
|
use crate::rustc::hir::intravisit::{walk_expr, NestedVisitorMap, Visitor};
|
|
use crate::rustc::lint::{LateContext, LateLintPass, LintArray, LintPass};
|
|
use crate::rustc::{declare_tool_lint, lint_array};
|
|
use if_chain::if_chain;
|
|
use crate::syntax::ast;
|
|
use crate::rustc_errors::Applicability;
|
|
|
|
/// **What it does:** Checks for `a = a op b` or `a = b commutative_op a`
|
|
/// patterns.
|
|
///
|
|
/// **Why is this bad?** These can be written as the shorter `a op= b`.
|
|
///
|
|
/// **Known problems:** While forbidden by the spec, `OpAssign` traits may have
|
|
/// implementations that differ from the regular `Op` impl.
|
|
///
|
|
/// **Example:**
|
|
/// ```rust
|
|
/// let mut a = 5;
|
|
/// ...
|
|
/// a = a + b;
|
|
/// ```
|
|
declare_clippy_lint! {
|
|
pub ASSIGN_OP_PATTERN,
|
|
style,
|
|
"assigning the result of an operation on a variable to that same variable"
|
|
}
|
|
|
|
/// **What it does:** Checks for `a op= a op b` or `a op= b op a` patterns.
|
|
///
|
|
/// **Why is this bad?** Most likely these are bugs where one meant to write `a
|
|
/// op= b`.
|
|
///
|
|
/// **Known problems:** Clippy cannot know for sure if `a op= a op b` should have
|
|
/// been `a = a op a op b` or `a = a op b`/`a op= b`. Therefore it suggests both.
|
|
/// If `a op= a op b` is really the correct behaviour it should be
|
|
/// written as `a = a op a op b` as it's less confusing.
|
|
///
|
|
/// **Example:**
|
|
/// ```rust
|
|
/// let mut a = 5;
|
|
/// ...
|
|
/// a += a + b;
|
|
/// ```
|
|
declare_clippy_lint! {
|
|
pub MISREFACTORED_ASSIGN_OP,
|
|
complexity,
|
|
"having a variable on both sides of an assign op"
|
|
}
|
|
|
|
#[derive(Copy, Clone, Default)]
|
|
pub struct AssignOps;
|
|
|
|
impl LintPass for AssignOps {
|
|
fn get_lints(&self) -> LintArray {
|
|
lint_array!(ASSIGN_OP_PATTERN, MISREFACTORED_ASSIGN_OP)
|
|
}
|
|
}
|
|
|
|
impl<'a, 'tcx> LateLintPass<'a, 'tcx> for AssignOps {
|
|
fn check_expr(&mut self, cx: &LateContext<'a, 'tcx>, expr: &'tcx hir::Expr) {
|
|
match expr.node {
|
|
hir::ExprKind::AssignOp(op, ref lhs, ref rhs) => {
|
|
if let hir::ExprKind::Binary(binop, ref l, ref r) = rhs.node {
|
|
if op.node == binop.node {
|
|
let lint = |assignee: &hir::Expr, rhs_other: &hir::Expr| {
|
|
span_lint_and_then(
|
|
cx,
|
|
MISREFACTORED_ASSIGN_OP,
|
|
expr.span,
|
|
"variable appears on both sides of an assignment operation",
|
|
|db| {
|
|
if let (Some(snip_a), Some(snip_r)) =
|
|
(snippet_opt(cx, assignee.span), snippet_opt(cx, rhs_other.span))
|
|
{
|
|
let a = &sugg::Sugg::hir(cx, assignee, "..");
|
|
let r = &sugg::Sugg::hir(cx, rhs, "..");
|
|
let long =
|
|
format!("{} = {}", snip_a, sugg::make_binop(higher::binop(op.node), a, r));
|
|
db.span_suggestion_with_applicability(
|
|
expr.span,
|
|
&format!(
|
|
"Did you mean {} = {} {} {} or {}? Consider replacing it with",
|
|
snip_a,
|
|
snip_a,
|
|
op.node.as_str(),
|
|
snip_r,
|
|
long
|
|
),
|
|
format!("{} {}= {}", snip_a, op.node.as_str(), snip_r),
|
|
Applicability::MachineApplicable,
|
|
);
|
|
db.span_suggestion_with_applicability(
|
|
expr.span,
|
|
"or",
|
|
long,
|
|
Applicability::MachineApplicable, // snippet
|
|
);
|
|
}
|
|
},
|
|
);
|
|
};
|
|
// lhs op= l op r
|
|
if SpanlessEq::new(cx).ignore_fn().eq_expr(lhs, l) {
|
|
lint(lhs, r);
|
|
}
|
|
// lhs op= l commutative_op r
|
|
if is_commutative(op.node) && SpanlessEq::new(cx).ignore_fn().eq_expr(lhs, r) {
|
|
lint(lhs, l);
|
|
}
|
|
}
|
|
}
|
|
},
|
|
hir::ExprKind::Assign(ref assignee, ref e) => {
|
|
if let hir::ExprKind::Binary(op, ref l, ref r) = e.node {
|
|
#[allow(clippy::cyclomatic_complexity)]
|
|
let lint = |assignee: &hir::Expr, rhs: &hir::Expr| {
|
|
let ty = cx.tables.expr_ty(assignee);
|
|
let rty = cx.tables.expr_ty(rhs);
|
|
macro_rules! ops {
|
|
($op:expr,
|
|
$cx:expr,
|
|
$ty:expr,
|
|
$rty:expr,
|
|
$($trait_name:ident),+) => {
|
|
match $op {
|
|
$(hir::BinOpKind::$trait_name => {
|
|
let [krate, module] = crate::utils::paths::OPS_MODULE;
|
|
let path = [krate, module, concat!(stringify!($trait_name), "Assign")];
|
|
let trait_id = if let Some(trait_id) = get_trait_def_id($cx, &path) {
|
|
trait_id
|
|
} else {
|
|
return; // useless if the trait doesn't exist
|
|
};
|
|
// check that we are not inside an `impl AssignOp` of this exact operation
|
|
let parent_fn = cx.tcx.hir.get_parent(e.id);
|
|
let parent_impl = cx.tcx.hir.get_parent(parent_fn);
|
|
// the crate node is the only one that is not in the map
|
|
if_chain! {
|
|
if parent_impl != ast::CRATE_NODE_ID;
|
|
if let hir::Node::Item(item) = cx.tcx.hir.get(parent_impl);
|
|
if let hir::ItemKind::Impl(_, _, _, _, Some(ref trait_ref), _, _) =
|
|
item.node;
|
|
if trait_ref.path.def.def_id() == trait_id;
|
|
then { return; }
|
|
}
|
|
implements_trait($cx, $ty, trait_id, &[$rty])
|
|
},)*
|
|
_ => false,
|
|
}
|
|
}
|
|
}
|
|
if ops!(
|
|
op.node,
|
|
cx,
|
|
ty,
|
|
rty.into(),
|
|
Add,
|
|
Sub,
|
|
Mul,
|
|
Div,
|
|
Rem,
|
|
And,
|
|
Or,
|
|
BitAnd,
|
|
BitOr,
|
|
BitXor,
|
|
Shr,
|
|
Shl
|
|
) {
|
|
span_lint_and_then(
|
|
cx,
|
|
ASSIGN_OP_PATTERN,
|
|
expr.span,
|
|
"manual implementation of an assign operation",
|
|
|db| {
|
|
if let (Some(snip_a), Some(snip_r)) =
|
|
(snippet_opt(cx, assignee.span), snippet_opt(cx, rhs.span))
|
|
{
|
|
db.span_suggestion_with_applicability(
|
|
expr.span,
|
|
"replace it with",
|
|
format!("{} {}= {}", snip_a, op.node.as_str(), snip_r),
|
|
Applicability::MachineApplicable,
|
|
);
|
|
}
|
|
},
|
|
);
|
|
}
|
|
};
|
|
|
|
let mut visitor = ExprVisitor {
|
|
assignee,
|
|
counter: 0,
|
|
cx,
|
|
};
|
|
|
|
walk_expr(&mut visitor, e);
|
|
|
|
if visitor.counter == 1 {
|
|
// a = a op b
|
|
if SpanlessEq::new(cx).ignore_fn().eq_expr(assignee, l) {
|
|
lint(assignee, r);
|
|
}
|
|
// a = b commutative_op a
|
|
if SpanlessEq::new(cx).ignore_fn().eq_expr(assignee, r) {
|
|
match op.node {
|
|
hir::BinOpKind::Add
|
|
| hir::BinOpKind::Mul
|
|
| hir::BinOpKind::And
|
|
| hir::BinOpKind::Or
|
|
| hir::BinOpKind::BitXor
|
|
| hir::BinOpKind::BitAnd
|
|
| hir::BinOpKind::BitOr => {
|
|
lint(assignee, l);
|
|
},
|
|
_ => {},
|
|
}
|
|
}
|
|
}
|
|
}
|
|
},
|
|
_ => {},
|
|
}
|
|
}
|
|
}
|
|
|
|
fn is_commutative(op: hir::BinOpKind) -> bool {
|
|
use crate::rustc::hir::BinOpKind::*;
|
|
match op {
|
|
Add | Mul | And | Or | BitXor | BitAnd | BitOr | Eq | Ne => true,
|
|
Sub | Div | Rem | Shl | Shr | Lt | Le | Ge | Gt => false,
|
|
}
|
|
}
|
|
|
|
struct ExprVisitor<'a, 'tcx: 'a> {
|
|
assignee: &'a hir::Expr,
|
|
counter: u8,
|
|
cx: &'a LateContext<'a, 'tcx>,
|
|
}
|
|
|
|
impl<'a, 'tcx: 'a> Visitor<'tcx> for ExprVisitor<'a, 'tcx> {
|
|
fn visit_expr(&mut self, expr: &'tcx hir::Expr) {
|
|
if SpanlessEq::new(self.cx).ignore_fn().eq_expr(self.assignee, expr) {
|
|
self.counter += 1;
|
|
}
|
|
|
|
walk_expr(self, expr);
|
|
}
|
|
fn nested_visit_map<'this>(&'this mut self) -> NestedVisitorMap<'this, 'tcx> {
|
|
NestedVisitorMap::None
|
|
}
|
|
}
|