712 lines
28 KiB
Rust
712 lines
28 KiB
Rust
// Copyright 2012-2016 The Rust Project Developers. See the COPYRIGHT
|
|
// file at the top-level directory of this distribution and at
|
|
// http://rust-lang.org/COPYRIGHT.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
|
|
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
|
|
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
|
|
// option. This file may not be copied, modified, or distributed
|
|
// except according to those terms.
|
|
|
|
use llvm::{self, AttributePlace};
|
|
use base;
|
|
use builder::{Builder, MemFlags};
|
|
use common::{ty_fn_sig, C_usize};
|
|
use context::CodegenCx;
|
|
use mir::place::PlaceRef;
|
|
use mir::operand::OperandValue;
|
|
use type_::Type;
|
|
use type_of::{LayoutLlvmExt, PointerKind};
|
|
use value::Value;
|
|
|
|
use rustc_target::abi::{LayoutOf, Size, TyLayout};
|
|
use rustc::ty::{self, Ty};
|
|
use rustc::ty::layout;
|
|
|
|
use libc::c_uint;
|
|
|
|
pub use rustc_target::spec::abi::Abi;
|
|
pub use rustc::ty::layout::{FAT_PTR_ADDR, FAT_PTR_EXTRA};
|
|
pub use rustc_target::abi::call::*;
|
|
|
|
macro_rules! for_each_kind {
|
|
($flags: ident, $f: ident, $($kind: ident),+) => ({
|
|
$(if $flags.contains(ArgAttribute::$kind) { $f(llvm::Attribute::$kind) })+
|
|
})
|
|
}
|
|
|
|
trait ArgAttributeExt {
|
|
fn for_each_kind<F>(&self, f: F) where F: FnMut(llvm::Attribute);
|
|
}
|
|
|
|
impl ArgAttributeExt for ArgAttribute {
|
|
fn for_each_kind<F>(&self, mut f: F) where F: FnMut(llvm::Attribute) {
|
|
for_each_kind!(self, f,
|
|
ByVal, NoAlias, NoCapture, NonNull, ReadOnly, SExt, StructRet, ZExt, InReg)
|
|
}
|
|
}
|
|
|
|
pub trait ArgAttributesExt {
|
|
fn apply_llfn(&self, idx: AttributePlace, llfn: &Value);
|
|
fn apply_callsite(&self, idx: AttributePlace, callsite: &Value);
|
|
}
|
|
|
|
impl ArgAttributesExt for ArgAttributes {
|
|
fn apply_llfn(&self, idx: AttributePlace, llfn: &Value) {
|
|
let mut regular = self.regular;
|
|
unsafe {
|
|
let deref = self.pointee_size.bytes();
|
|
if deref != 0 {
|
|
if regular.contains(ArgAttribute::NonNull) {
|
|
llvm::LLVMRustAddDereferenceableAttr(llfn,
|
|
idx.as_uint(),
|
|
deref);
|
|
} else {
|
|
llvm::LLVMRustAddDereferenceableOrNullAttr(llfn,
|
|
idx.as_uint(),
|
|
deref);
|
|
}
|
|
regular -= ArgAttribute::NonNull;
|
|
}
|
|
if let Some(align) = self.pointee_align {
|
|
llvm::LLVMRustAddAlignmentAttr(llfn,
|
|
idx.as_uint(),
|
|
align.abi() as u32);
|
|
}
|
|
regular.for_each_kind(|attr| attr.apply_llfn(idx, llfn));
|
|
}
|
|
}
|
|
|
|
fn apply_callsite(&self, idx: AttributePlace, callsite: &Value) {
|
|
let mut regular = self.regular;
|
|
unsafe {
|
|
let deref = self.pointee_size.bytes();
|
|
if deref != 0 {
|
|
if regular.contains(ArgAttribute::NonNull) {
|
|
llvm::LLVMRustAddDereferenceableCallSiteAttr(callsite,
|
|
idx.as_uint(),
|
|
deref);
|
|
} else {
|
|
llvm::LLVMRustAddDereferenceableOrNullCallSiteAttr(callsite,
|
|
idx.as_uint(),
|
|
deref);
|
|
}
|
|
regular -= ArgAttribute::NonNull;
|
|
}
|
|
if let Some(align) = self.pointee_align {
|
|
llvm::LLVMRustAddAlignmentCallSiteAttr(callsite,
|
|
idx.as_uint(),
|
|
align.abi() as u32);
|
|
}
|
|
regular.for_each_kind(|attr| attr.apply_callsite(idx, callsite));
|
|
}
|
|
}
|
|
}
|
|
|
|
pub trait LlvmType {
|
|
fn llvm_type(&self, cx: &CodegenCx<'ll, '_>) -> &'ll Type;
|
|
}
|
|
|
|
impl LlvmType for Reg {
|
|
fn llvm_type(&self, cx: &CodegenCx<'ll, '_>) -> &'ll Type {
|
|
match self.kind {
|
|
RegKind::Integer => Type::ix(cx, self.size.bits()),
|
|
RegKind::Float => {
|
|
match self.size.bits() {
|
|
32 => Type::f32(cx),
|
|
64 => Type::f64(cx),
|
|
_ => bug!("unsupported float: {:?}", self)
|
|
}
|
|
}
|
|
RegKind::Vector => {
|
|
Type::vector(Type::i8(cx), self.size.bytes())
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
impl LlvmType for CastTarget {
|
|
fn llvm_type(&self, cx: &CodegenCx<'ll, '_>) -> &'ll Type {
|
|
let rest_ll_unit = self.rest.unit.llvm_type(cx);
|
|
let (rest_count, rem_bytes) = if self.rest.unit.size.bytes() == 0 {
|
|
(0, 0)
|
|
} else {
|
|
(self.rest.total.bytes() / self.rest.unit.size.bytes(),
|
|
self.rest.total.bytes() % self.rest.unit.size.bytes())
|
|
};
|
|
|
|
if self.prefix.iter().all(|x| x.is_none()) {
|
|
// Simplify to a single unit when there is no prefix and size <= unit size
|
|
if self.rest.total <= self.rest.unit.size {
|
|
return rest_ll_unit;
|
|
}
|
|
|
|
// Simplify to array when all chunks are the same size and type
|
|
if rem_bytes == 0 {
|
|
return Type::array(rest_ll_unit, rest_count);
|
|
}
|
|
}
|
|
|
|
// Create list of fields in the main structure
|
|
let mut args: Vec<_> =
|
|
self.prefix.iter().flat_map(|option_kind| option_kind.map(
|
|
|kind| Reg { kind: kind, size: self.prefix_chunk }.llvm_type(cx)))
|
|
.chain((0..rest_count).map(|_| rest_ll_unit))
|
|
.collect();
|
|
|
|
// Append final integer
|
|
if rem_bytes != 0 {
|
|
// Only integers can be really split further.
|
|
assert_eq!(self.rest.unit.kind, RegKind::Integer);
|
|
args.push(Type::ix(cx, rem_bytes * 8));
|
|
}
|
|
|
|
Type::struct_(cx, &args, false)
|
|
}
|
|
}
|
|
|
|
pub trait ArgTypeExt<'ll, 'tcx> {
|
|
fn memory_ty(&self, cx: &CodegenCx<'ll, 'tcx>) -> &'ll Type;
|
|
fn store(&self, bx: &Builder<'_, 'll, 'tcx>, val: &'ll Value, dst: PlaceRef<'ll, 'tcx>);
|
|
fn store_fn_arg(&self, bx: &Builder<'_, 'll, 'tcx>, idx: &mut usize, dst: PlaceRef<'ll, 'tcx>);
|
|
}
|
|
|
|
impl ArgTypeExt<'ll, 'tcx> for ArgType<'tcx, Ty<'tcx>> {
|
|
/// Get the LLVM type for a place of the original Rust type of
|
|
/// this argument/return, i.e. the result of `type_of::type_of`.
|
|
fn memory_ty(&self, cx: &CodegenCx<'ll, 'tcx>) -> &'ll Type {
|
|
self.layout.llvm_type(cx)
|
|
}
|
|
|
|
/// Store a direct/indirect value described by this ArgType into a
|
|
/// place for the original Rust type of this argument/return.
|
|
/// Can be used for both storing formal arguments into Rust variables
|
|
/// or results of call/invoke instructions into their destinations.
|
|
fn store(&self, bx: &Builder<'_, 'll, 'tcx>, val: &'ll Value, dst: PlaceRef<'ll, 'tcx>) {
|
|
if self.is_ignore() {
|
|
return;
|
|
}
|
|
let cx = bx.cx;
|
|
if self.is_indirect() {
|
|
OperandValue::Ref(val, self.layout.align).store(bx, dst)
|
|
} else if let PassMode::Cast(cast) = self.mode {
|
|
// FIXME(eddyb): Figure out when the simpler Store is safe, clang
|
|
// uses it for i16 -> {i8, i8}, but not for i24 -> {i8, i8, i8}.
|
|
let can_store_through_cast_ptr = false;
|
|
if can_store_through_cast_ptr {
|
|
let cast_dst = bx.pointercast(dst.llval, cast.llvm_type(cx).ptr_to());
|
|
bx.store(val, cast_dst, self.layout.align);
|
|
} else {
|
|
// The actual return type is a struct, but the ABI
|
|
// adaptation code has cast it into some scalar type. The
|
|
// code that follows is the only reliable way I have
|
|
// found to do a transform like i64 -> {i32,i32}.
|
|
// Basically we dump the data onto the stack then memcpy it.
|
|
//
|
|
// Other approaches I tried:
|
|
// - Casting rust ret pointer to the foreign type and using Store
|
|
// is (a) unsafe if size of foreign type > size of rust type and
|
|
// (b) runs afoul of strict aliasing rules, yielding invalid
|
|
// assembly under -O (specifically, the store gets removed).
|
|
// - Truncating foreign type to correct integral type and then
|
|
// bitcasting to the struct type yields invalid cast errors.
|
|
|
|
// We instead thus allocate some scratch space...
|
|
let scratch_size = cast.size(cx);
|
|
let scratch_align = cast.align(cx);
|
|
let llscratch = bx.alloca(cast.llvm_type(cx), "abi_cast", scratch_align);
|
|
bx.lifetime_start(llscratch, scratch_size);
|
|
|
|
// ...where we first store the value...
|
|
bx.store(val, llscratch, scratch_align);
|
|
|
|
// ...and then memcpy it to the intended destination.
|
|
base::call_memcpy(bx,
|
|
bx.pointercast(dst.llval, Type::i8p(cx)),
|
|
bx.pointercast(llscratch, Type::i8p(cx)),
|
|
C_usize(cx, self.layout.size.bytes()),
|
|
self.layout.align.min(scratch_align),
|
|
MemFlags::empty());
|
|
|
|
bx.lifetime_end(llscratch, scratch_size);
|
|
}
|
|
} else {
|
|
OperandValue::Immediate(val).store(bx, dst);
|
|
}
|
|
}
|
|
|
|
fn store_fn_arg(&self, bx: &Builder<'a, 'll, 'tcx>, idx: &mut usize, dst: PlaceRef<'ll, 'tcx>) {
|
|
let mut next = || {
|
|
let val = llvm::get_param(bx.llfn(), *idx as c_uint);
|
|
*idx += 1;
|
|
val
|
|
};
|
|
match self.mode {
|
|
PassMode::Ignore => {},
|
|
PassMode::Pair(..) => {
|
|
OperandValue::Pair(next(), next()).store(bx, dst);
|
|
}
|
|
PassMode::Direct(_) | PassMode::Indirect(_) | PassMode::Cast(_) => {
|
|
self.store(bx, next(), dst);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
pub trait FnTypeExt<'tcx> {
|
|
fn of_instance(cx: &CodegenCx<'ll, 'tcx>, instance: &ty::Instance<'tcx>)
|
|
-> Self;
|
|
fn new(cx: &CodegenCx<'ll, 'tcx>,
|
|
sig: ty::FnSig<'tcx>,
|
|
extra_args: &[Ty<'tcx>]) -> Self;
|
|
fn new_vtable(cx: &CodegenCx<'ll, 'tcx>,
|
|
sig: ty::FnSig<'tcx>,
|
|
extra_args: &[Ty<'tcx>]) -> Self;
|
|
fn new_internal(
|
|
cx: &CodegenCx<'ll, 'tcx>,
|
|
sig: ty::FnSig<'tcx>,
|
|
extra_args: &[Ty<'tcx>],
|
|
mk_arg_type: impl Fn(Ty<'tcx>, Option<usize>) -> ArgType<'tcx, Ty<'tcx>>,
|
|
) -> Self;
|
|
fn adjust_for_abi(&mut self,
|
|
cx: &CodegenCx<'ll, 'tcx>,
|
|
abi: Abi);
|
|
fn llvm_type(&self, cx: &CodegenCx<'ll, 'tcx>) -> &'ll Type;
|
|
fn llvm_cconv(&self) -> llvm::CallConv;
|
|
fn apply_attrs_llfn(&self, llfn: &'ll Value);
|
|
fn apply_attrs_callsite(&self, bx: &Builder<'a, 'll, 'tcx>, callsite: &'ll Value);
|
|
}
|
|
|
|
impl<'tcx> FnTypeExt<'tcx> for FnType<'tcx, Ty<'tcx>> {
|
|
fn of_instance(cx: &CodegenCx<'ll, 'tcx>, instance: &ty::Instance<'tcx>)
|
|
-> Self {
|
|
let fn_ty = instance.ty(cx.tcx);
|
|
let sig = ty_fn_sig(cx, fn_ty);
|
|
let sig = cx.tcx.normalize_erasing_late_bound_regions(ty::ParamEnv::reveal_all(), &sig);
|
|
FnType::new(cx, sig, &[])
|
|
}
|
|
|
|
fn new(cx: &CodegenCx<'ll, 'tcx>,
|
|
sig: ty::FnSig<'tcx>,
|
|
extra_args: &[Ty<'tcx>]) -> Self {
|
|
FnType::new_internal(cx, sig, extra_args, |ty, _| {
|
|
ArgType::new(cx.layout_of(ty))
|
|
})
|
|
}
|
|
|
|
fn new_vtable(cx: &CodegenCx<'ll, 'tcx>,
|
|
sig: ty::FnSig<'tcx>,
|
|
extra_args: &[Ty<'tcx>]) -> Self {
|
|
FnType::new_internal(cx, sig, extra_args, |ty, arg_idx| {
|
|
let mut layout = cx.layout_of(ty);
|
|
// Don't pass the vtable, it's not an argument of the virtual fn.
|
|
// Instead, pass just the (thin pointer) first field of `*dyn Trait`.
|
|
if arg_idx == Some(0) {
|
|
// FIXME(eddyb) `layout.field(cx, 0)` is not enough because e.g.
|
|
// `Box<dyn Trait>` has a few newtype wrappers around the raw
|
|
// pointer, so we'd have to "dig down" to find `*dyn Trait`.
|
|
let pointee = layout.ty.builtin_deref(true)
|
|
.unwrap_or_else(|| {
|
|
bug!("FnType::new_vtable: non-pointer self {:?}", layout)
|
|
}).ty;
|
|
let fat_ptr_ty = cx.tcx.mk_mut_ptr(pointee);
|
|
layout = cx.layout_of(fat_ptr_ty).field(cx, 0);
|
|
}
|
|
ArgType::new(layout)
|
|
})
|
|
}
|
|
|
|
fn new_internal(
|
|
cx: &CodegenCx<'ll, 'tcx>,
|
|
sig: ty::FnSig<'tcx>,
|
|
extra_args: &[Ty<'tcx>],
|
|
mk_arg_type: impl Fn(Ty<'tcx>, Option<usize>) -> ArgType<'tcx, Ty<'tcx>>,
|
|
) -> Self {
|
|
debug!("FnType::new_internal({:?}, {:?})", sig, extra_args);
|
|
|
|
use self::Abi::*;
|
|
let conv = match cx.sess().target.target.adjust_abi(sig.abi) {
|
|
RustIntrinsic | PlatformIntrinsic |
|
|
Rust | RustCall => Conv::C,
|
|
|
|
// It's the ABI's job to select this, not us.
|
|
System => bug!("system abi should be selected elsewhere"),
|
|
|
|
Stdcall => Conv::X86Stdcall,
|
|
Fastcall => Conv::X86Fastcall,
|
|
Vectorcall => Conv::X86VectorCall,
|
|
Thiscall => Conv::X86ThisCall,
|
|
C => Conv::C,
|
|
Unadjusted => Conv::C,
|
|
Win64 => Conv::X86_64Win64,
|
|
SysV64 => Conv::X86_64SysV,
|
|
Aapcs => Conv::ArmAapcs,
|
|
PtxKernel => Conv::PtxKernel,
|
|
Msp430Interrupt => Conv::Msp430Intr,
|
|
X86Interrupt => Conv::X86Intr,
|
|
AmdGpuKernel => Conv::AmdGpuKernel,
|
|
|
|
// These API constants ought to be more specific...
|
|
Cdecl => Conv::C,
|
|
};
|
|
|
|
let mut inputs = sig.inputs();
|
|
let extra_args = if sig.abi == RustCall {
|
|
assert!(!sig.variadic && extra_args.is_empty());
|
|
|
|
match sig.inputs().last().unwrap().sty {
|
|
ty::TyTuple(ref tupled_arguments) => {
|
|
inputs = &sig.inputs()[0..sig.inputs().len() - 1];
|
|
tupled_arguments
|
|
}
|
|
_ => {
|
|
bug!("argument to function with \"rust-call\" ABI \
|
|
is not a tuple");
|
|
}
|
|
}
|
|
} else {
|
|
assert!(sig.variadic || extra_args.is_empty());
|
|
extra_args
|
|
};
|
|
|
|
let target = &cx.sess().target.target;
|
|
let win_x64_gnu = target.target_os == "windows"
|
|
&& target.arch == "x86_64"
|
|
&& target.target_env == "gnu";
|
|
let linux_s390x = target.target_os == "linux"
|
|
&& target.arch == "s390x"
|
|
&& target.target_env == "gnu";
|
|
let rust_abi = match sig.abi {
|
|
RustIntrinsic | PlatformIntrinsic | Rust | RustCall => true,
|
|
_ => false
|
|
};
|
|
|
|
// Handle safe Rust thin and fat pointers.
|
|
let adjust_for_rust_scalar = |attrs: &mut ArgAttributes,
|
|
scalar: &layout::Scalar,
|
|
layout: TyLayout<'tcx, Ty<'tcx>>,
|
|
offset: Size,
|
|
is_return: bool| {
|
|
// Booleans are always an i1 that needs to be zero-extended.
|
|
if scalar.is_bool() {
|
|
attrs.set(ArgAttribute::ZExt);
|
|
return;
|
|
}
|
|
|
|
// Only pointer types handled below.
|
|
if scalar.value != layout::Pointer {
|
|
return;
|
|
}
|
|
|
|
if scalar.valid_range.start() < scalar.valid_range.end() {
|
|
if *scalar.valid_range.start() > 0 {
|
|
attrs.set(ArgAttribute::NonNull);
|
|
}
|
|
}
|
|
|
|
if let Some(pointee) = layout.pointee_info_at(cx, offset) {
|
|
if let Some(kind) = pointee.safe {
|
|
attrs.pointee_size = pointee.size;
|
|
attrs.pointee_align = Some(pointee.align);
|
|
|
|
// HACK(eddyb) LLVM inserts `llvm.assume` calls when inlining functions
|
|
// with align attributes, and those calls later block optimizations.
|
|
if !is_return && !cx.tcx.sess.opts.debugging_opts.arg_align_attributes {
|
|
attrs.pointee_align = None;
|
|
}
|
|
|
|
// `Box` pointer parameters never alias because ownership is transferred
|
|
// `&mut` pointer parameters never alias other parameters,
|
|
// or mutable global data
|
|
//
|
|
// `&T` where `T` contains no `UnsafeCell<U>` is immutable,
|
|
// and can be marked as both `readonly` and `noalias`, as
|
|
// LLVM's definition of `noalias` is based solely on memory
|
|
// dependencies rather than pointer equality
|
|
let no_alias = match kind {
|
|
PointerKind::Shared => false,
|
|
PointerKind::UniqueOwned => true,
|
|
PointerKind::Frozen |
|
|
PointerKind::UniqueBorrowed => !is_return
|
|
};
|
|
if no_alias {
|
|
attrs.set(ArgAttribute::NoAlias);
|
|
}
|
|
|
|
if kind == PointerKind::Frozen && !is_return {
|
|
attrs.set(ArgAttribute::ReadOnly);
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
let arg_of = |ty: Ty<'tcx>, arg_idx: Option<usize>| {
|
|
let is_return = arg_idx.is_none();
|
|
let mut arg = mk_arg_type(ty, arg_idx);
|
|
if arg.layout.is_zst() {
|
|
// For some forsaken reason, x86_64-pc-windows-gnu
|
|
// doesn't ignore zero-sized struct arguments.
|
|
// The same is true for s390x-unknown-linux-gnu.
|
|
if is_return || rust_abi || (!win_x64_gnu && !linux_s390x) {
|
|
arg.mode = PassMode::Ignore;
|
|
}
|
|
}
|
|
|
|
// FIXME(eddyb) other ABIs don't have logic for scalar pairs.
|
|
if !is_return && rust_abi {
|
|
if let layout::Abi::ScalarPair(ref a, ref b) = arg.layout.abi {
|
|
let mut a_attrs = ArgAttributes::new();
|
|
let mut b_attrs = ArgAttributes::new();
|
|
adjust_for_rust_scalar(&mut a_attrs,
|
|
a,
|
|
arg.layout,
|
|
Size::ZERO,
|
|
false);
|
|
adjust_for_rust_scalar(&mut b_attrs,
|
|
b,
|
|
arg.layout,
|
|
a.value.size(cx).abi_align(b.value.align(cx)),
|
|
false);
|
|
arg.mode = PassMode::Pair(a_attrs, b_attrs);
|
|
return arg;
|
|
}
|
|
}
|
|
|
|
if let layout::Abi::Scalar(ref scalar) = arg.layout.abi {
|
|
if let PassMode::Direct(ref mut attrs) = arg.mode {
|
|
adjust_for_rust_scalar(attrs,
|
|
scalar,
|
|
arg.layout,
|
|
Size::ZERO,
|
|
is_return);
|
|
}
|
|
}
|
|
|
|
arg
|
|
};
|
|
|
|
let mut fn_ty = FnType {
|
|
ret: arg_of(sig.output(), None),
|
|
args: inputs.iter().chain(extra_args).enumerate().map(|(i, ty)| {
|
|
arg_of(ty, Some(i))
|
|
}).collect(),
|
|
variadic: sig.variadic,
|
|
conv,
|
|
};
|
|
fn_ty.adjust_for_abi(cx, sig.abi);
|
|
fn_ty
|
|
}
|
|
|
|
fn adjust_for_abi(&mut self,
|
|
cx: &CodegenCx<'ll, 'tcx>,
|
|
abi: Abi) {
|
|
if abi == Abi::Unadjusted { return }
|
|
|
|
if abi == Abi::Rust || abi == Abi::RustCall ||
|
|
abi == Abi::RustIntrinsic || abi == Abi::PlatformIntrinsic {
|
|
let fixup = |arg: &mut ArgType<'tcx, Ty<'tcx>>| {
|
|
if arg.is_ignore() { return; }
|
|
|
|
match arg.layout.abi {
|
|
layout::Abi::Aggregate { .. } => {}
|
|
|
|
// This is a fun case! The gist of what this is doing is
|
|
// that we want callers and callees to always agree on the
|
|
// ABI of how they pass SIMD arguments. If we were to *not*
|
|
// make these arguments indirect then they'd be immediates
|
|
// in LLVM, which means that they'd used whatever the
|
|
// appropriate ABI is for the callee and the caller. That
|
|
// means, for example, if the caller doesn't have AVX
|
|
// enabled but the callee does, then passing an AVX argument
|
|
// across this boundary would cause corrupt data to show up.
|
|
//
|
|
// This problem is fixed by unconditionally passing SIMD
|
|
// arguments through memory between callers and callees
|
|
// which should get them all to agree on ABI regardless of
|
|
// target feature sets. Some more information about this
|
|
// issue can be found in #44367.
|
|
//
|
|
// Note that the platform intrinsic ABI is exempt here as
|
|
// that's how we connect up to LLVM and it's unstable
|
|
// anyway, we control all calls to it in libstd.
|
|
layout::Abi::Vector { .. } if abi != Abi::PlatformIntrinsic => {
|
|
arg.make_indirect();
|
|
return
|
|
}
|
|
|
|
_ => return
|
|
}
|
|
|
|
let size = arg.layout.size;
|
|
if size > layout::Pointer.size(cx) {
|
|
arg.make_indirect();
|
|
} else {
|
|
// We want to pass small aggregates as immediates, but using
|
|
// a LLVM aggregate type for this leads to bad optimizations,
|
|
// so we pick an appropriately sized integer type instead.
|
|
arg.cast_to(Reg {
|
|
kind: RegKind::Integer,
|
|
size
|
|
});
|
|
}
|
|
};
|
|
fixup(&mut self.ret);
|
|
for arg in &mut self.args {
|
|
fixup(arg);
|
|
}
|
|
if let PassMode::Indirect(ref mut attrs) = self.ret.mode {
|
|
attrs.set(ArgAttribute::StructRet);
|
|
}
|
|
return;
|
|
}
|
|
|
|
if let Err(msg) = self.adjust_for_cabi(cx, abi) {
|
|
cx.sess().fatal(&msg);
|
|
}
|
|
}
|
|
|
|
fn llvm_type(&self, cx: &CodegenCx<'ll, 'tcx>) -> &'ll Type {
|
|
let args_capacity: usize = self.args.iter().map(|arg|
|
|
if arg.pad.is_some() { 1 } else { 0 } +
|
|
if let PassMode::Pair(_, _) = arg.mode { 2 } else { 1 }
|
|
).sum();
|
|
let mut llargument_tys = Vec::with_capacity(
|
|
if let PassMode::Indirect(_) = self.ret.mode { 1 } else { 0 } + args_capacity
|
|
);
|
|
|
|
let llreturn_ty = match self.ret.mode {
|
|
PassMode::Ignore => Type::void(cx),
|
|
PassMode::Direct(_) | PassMode::Pair(..) => {
|
|
self.ret.layout.immediate_llvm_type(cx)
|
|
}
|
|
PassMode::Cast(cast) => cast.llvm_type(cx),
|
|
PassMode::Indirect(_) => {
|
|
llargument_tys.push(self.ret.memory_ty(cx).ptr_to());
|
|
Type::void(cx)
|
|
}
|
|
};
|
|
|
|
for arg in &self.args {
|
|
// add padding
|
|
if let Some(ty) = arg.pad {
|
|
llargument_tys.push(ty.llvm_type(cx));
|
|
}
|
|
|
|
let llarg_ty = match arg.mode {
|
|
PassMode::Ignore => continue,
|
|
PassMode::Direct(_) => arg.layout.immediate_llvm_type(cx),
|
|
PassMode::Pair(..) => {
|
|
llargument_tys.push(arg.layout.scalar_pair_element_llvm_type(cx, 0, true));
|
|
llargument_tys.push(arg.layout.scalar_pair_element_llvm_type(cx, 1, true));
|
|
continue;
|
|
}
|
|
PassMode::Cast(cast) => cast.llvm_type(cx),
|
|
PassMode::Indirect(_) => arg.memory_ty(cx).ptr_to(),
|
|
};
|
|
llargument_tys.push(llarg_ty);
|
|
}
|
|
|
|
if self.variadic {
|
|
Type::variadic_func(&llargument_tys, llreturn_ty)
|
|
} else {
|
|
Type::func(&llargument_tys, llreturn_ty)
|
|
}
|
|
}
|
|
|
|
fn llvm_cconv(&self) -> llvm::CallConv {
|
|
match self.conv {
|
|
Conv::C => llvm::CCallConv,
|
|
Conv::AmdGpuKernel => llvm::AmdGpuKernel,
|
|
Conv::ArmAapcs => llvm::ArmAapcsCallConv,
|
|
Conv::Msp430Intr => llvm::Msp430Intr,
|
|
Conv::PtxKernel => llvm::PtxKernel,
|
|
Conv::X86Fastcall => llvm::X86FastcallCallConv,
|
|
Conv::X86Intr => llvm::X86_Intr,
|
|
Conv::X86Stdcall => llvm::X86StdcallCallConv,
|
|
Conv::X86ThisCall => llvm::X86_ThisCall,
|
|
Conv::X86VectorCall => llvm::X86_VectorCall,
|
|
Conv::X86_64SysV => llvm::X86_64_SysV,
|
|
Conv::X86_64Win64 => llvm::X86_64_Win64,
|
|
}
|
|
}
|
|
|
|
fn apply_attrs_llfn(&self, llfn: &'ll Value) {
|
|
let mut i = 0;
|
|
let mut apply = |attrs: &ArgAttributes| {
|
|
attrs.apply_llfn(llvm::AttributePlace::Argument(i), llfn);
|
|
i += 1;
|
|
};
|
|
match self.ret.mode {
|
|
PassMode::Direct(ref attrs) => {
|
|
attrs.apply_llfn(llvm::AttributePlace::ReturnValue, llfn);
|
|
}
|
|
PassMode::Indirect(ref attrs) => apply(attrs),
|
|
_ => {}
|
|
}
|
|
for arg in &self.args {
|
|
if arg.pad.is_some() {
|
|
apply(&ArgAttributes::new());
|
|
}
|
|
match arg.mode {
|
|
PassMode::Ignore => {}
|
|
PassMode::Direct(ref attrs) |
|
|
PassMode::Indirect(ref attrs) => apply(attrs),
|
|
PassMode::Pair(ref a, ref b) => {
|
|
apply(a);
|
|
apply(b);
|
|
}
|
|
PassMode::Cast(_) => apply(&ArgAttributes::new()),
|
|
}
|
|
}
|
|
}
|
|
|
|
fn apply_attrs_callsite(&self, bx: &Builder<'a, 'll, 'tcx>, callsite: &'ll Value) {
|
|
let mut i = 0;
|
|
let mut apply = |attrs: &ArgAttributes| {
|
|
attrs.apply_callsite(llvm::AttributePlace::Argument(i), callsite);
|
|
i += 1;
|
|
};
|
|
match self.ret.mode {
|
|
PassMode::Direct(ref attrs) => {
|
|
attrs.apply_callsite(llvm::AttributePlace::ReturnValue, callsite);
|
|
}
|
|
PassMode::Indirect(ref attrs) => apply(attrs),
|
|
_ => {}
|
|
}
|
|
if let layout::Abi::Scalar(ref scalar) = self.ret.layout.abi {
|
|
// If the value is a boolean, the range is 0..2 and that ultimately
|
|
// become 0..0 when the type becomes i1, which would be rejected
|
|
// by the LLVM verifier.
|
|
match scalar.value {
|
|
layout::Int(..) if !scalar.is_bool() => {
|
|
let range = scalar.valid_range_exclusive(bx.cx);
|
|
if range.start != range.end {
|
|
bx.range_metadata(callsite, range);
|
|
}
|
|
}
|
|
_ => {}
|
|
}
|
|
}
|
|
for arg in &self.args {
|
|
if arg.pad.is_some() {
|
|
apply(&ArgAttributes::new());
|
|
}
|
|
match arg.mode {
|
|
PassMode::Ignore => {}
|
|
PassMode::Direct(ref attrs) |
|
|
PassMode::Indirect(ref attrs) => apply(attrs),
|
|
PassMode::Pair(ref a, ref b) => {
|
|
apply(a);
|
|
apply(b);
|
|
}
|
|
PassMode::Cast(_) => apply(&ArgAttributes::new()),
|
|
}
|
|
}
|
|
|
|
let cconv = self.llvm_cconv();
|
|
if cconv != llvm::CCallConv {
|
|
llvm::SetInstructionCallConv(callsite, cconv);
|
|
}
|
|
}
|
|
}
|