854 lines
33 KiB
Rust
854 lines
33 KiB
Rust
// Copyright 2017 The Rust Project Developers. See the COPYRIGHT
|
|
// file at the top-level directory of this distribution and at
|
|
// http://rust-lang.org/COPYRIGHT.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
|
|
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
|
|
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
|
|
// option. This file may not be copied, modified, or distributed
|
|
// except according to those terms.
|
|
|
|
//! Code to extract the universally quantified regions declared on a
|
|
//! function and the relationships between them. For example:
|
|
//!
|
|
//! ```
|
|
//! fn foo<'a, 'b, 'c: 'b>() { }
|
|
//! ```
|
|
//!
|
|
//! here we would be returning a map assigning each of `{'a, 'b, 'c}`
|
|
//! to an index, as well as the `FreeRegionMap` which can compute
|
|
//! relationships between them.
|
|
//!
|
|
//! The code in this file doesn't *do anything* with those results; it
|
|
//! just returns them for other code to use.
|
|
|
|
use rustc::hir::{self, BodyOwnerKind, HirId};
|
|
use rustc::hir::def_id::DefId;
|
|
use rustc::infer::{InferCtxt, NLLRegionVariableOrigin};
|
|
use rustc::infer::region_constraints::GenericKind;
|
|
use rustc::infer::outlives::bounds::{self, OutlivesBound};
|
|
use rustc::infer::outlives::free_region_map::FreeRegionRelations;
|
|
use rustc::ty::{self, RegionVid, Ty, TyCtxt, ClosureSubsts, GeneratorSubsts};
|
|
use rustc::ty::fold::TypeFoldable;
|
|
use rustc::ty::subst::Substs;
|
|
use rustc::util::nodemap::FxHashMap;
|
|
use rustc_data_structures::indexed_vec::{Idx, IndexVec};
|
|
use rustc_data_structures::transitive_relation::TransitiveRelation;
|
|
use std::iter;
|
|
use syntax::ast;
|
|
|
|
use super::ToRegionVid;
|
|
|
|
#[derive(Debug)]
|
|
pub struct UniversalRegions<'tcx> {
|
|
indices: UniversalRegionIndices<'tcx>,
|
|
|
|
/// The vid assigned to `'static`
|
|
pub fr_static: RegionVid,
|
|
|
|
/// A special region vid created to represent the current MIR fn
|
|
/// body. It will outlive the entire CFG but it will not outlive
|
|
/// any other universal regions.
|
|
pub fr_fn_body: RegionVid,
|
|
|
|
/// We create region variables such that they are ordered by their
|
|
/// `RegionClassification`. The first block are globals, then
|
|
/// externals, then locals. So things from:
|
|
/// - `FIRST_GLOBAL_INDEX..first_extern_index` are global;
|
|
/// - `first_extern_index..first_local_index` are external; and
|
|
/// - first_local_index..num_universals` are local.
|
|
first_extern_index: usize,
|
|
|
|
/// See `first_extern_index`.
|
|
first_local_index: usize,
|
|
|
|
/// The total number of universal region variables instantiated.
|
|
num_universals: usize,
|
|
|
|
/// The "defining" type for this function, with all universal
|
|
/// regions instantiated. For a closure or generator, this is the
|
|
/// closure type, but for a top-level function it's the `TyFnDef`.
|
|
pub defining_ty: DefiningTy<'tcx>,
|
|
|
|
/// The return type of this function, with all regions replaced by
|
|
/// their universal `RegionVid` equivalents.
|
|
///
|
|
/// NB. Associated types in this type have not been normalized,
|
|
/// as the name suggests. =)
|
|
pub unnormalized_output_ty: Ty<'tcx>,
|
|
|
|
/// The fully liberated input types of this function, with all
|
|
/// regions replaced by their universal `RegionVid` equivalents.
|
|
///
|
|
/// NB. Associated types in these types have not been normalized,
|
|
/// as the name suggests. =)
|
|
pub unnormalized_input_tys: &'tcx [Ty<'tcx>],
|
|
|
|
/// Each RBP `('a, GK)` indicates that `GK: 'a` can be assumed to
|
|
/// be true. These encode relationships like `T: 'a` that are
|
|
/// added via implicit bounds.
|
|
///
|
|
/// Each region here is guaranteed to be a key in the `indices`
|
|
/// map. We use the "original" regions (i.e., the keys from the
|
|
/// map, and not the values) because the code in
|
|
/// `process_registered_region_obligations` has some special-cased
|
|
/// logic expecting to see (e.g.) `ReStatic`, and if we supplied
|
|
/// our special inference variable there, we would mess that up.
|
|
pub region_bound_pairs: Vec<(ty::Region<'tcx>, GenericKind<'tcx>)>,
|
|
|
|
pub yield_ty: Option<Ty<'tcx>>,
|
|
|
|
relations: UniversalRegionRelations,
|
|
}
|
|
|
|
/// The "defining type" for this MIR. The key feature of the "defining
|
|
/// type" is that it contains the information needed to derive all the
|
|
/// universal regions that are in scope as well as the types of the
|
|
/// inputs/output from the MIR. In general, early-bound universal
|
|
/// regions appear free in the defining type and late-bound regions
|
|
/// appear bound in the signature.
|
|
#[derive(Copy, Clone, Debug)]
|
|
pub enum DefiningTy<'tcx> {
|
|
/// The MIR is a closure. The signature is found via
|
|
/// `ClosureSubsts::closure_sig_ty`.
|
|
Closure(DefId, ty::ClosureSubsts<'tcx>),
|
|
|
|
/// The MIR is a generator. The signature is that generators take
|
|
/// no parameters and return the result of
|
|
/// `ClosureSubsts::generator_return_ty`.
|
|
Generator(DefId, ty::GeneratorSubsts<'tcx>, hir::GeneratorMovability),
|
|
|
|
/// The MIR is a fn item with the given def-id and substs. The signature
|
|
/// of the function can be bound then with the `fn_sig` query.
|
|
FnDef(DefId, &'tcx Substs<'tcx>),
|
|
|
|
/// The MIR represents some form of constant. The signature then
|
|
/// is that it has no inputs and a single return value, which is
|
|
/// the value of the constant.
|
|
Const(DefId, &'tcx Substs<'tcx>),
|
|
}
|
|
|
|
#[derive(Debug)]
|
|
struct UniversalRegionIndices<'tcx> {
|
|
/// For those regions that may appear in the parameter environment
|
|
/// ('static and early-bound regions), we maintain a map from the
|
|
/// `ty::Region` to the internal `RegionVid` we are using. This is
|
|
/// used because trait matching and type-checking will feed us
|
|
/// region constraints that reference those regions and we need to
|
|
/// be able to map them our internal `RegionVid`. This is
|
|
/// basically equivalent to a `Substs`, except that it also
|
|
/// contains an entry for `ReStatic` -- it might be nice to just
|
|
/// use a substs, and then handle `ReStatic` another way.
|
|
indices: FxHashMap<ty::Region<'tcx>, RegionVid>,
|
|
}
|
|
|
|
#[derive(Debug)]
|
|
struct UniversalRegionRelations {
|
|
/// Stores the outlives relations that are known to hold from the
|
|
/// implied bounds, in-scope where clauses, and that sort of
|
|
/// thing.
|
|
outlives: TransitiveRelation<RegionVid>,
|
|
|
|
/// This is the `<=` relation; that is, if `a: b`, then `b <= a`,
|
|
/// and we store that here. This is useful when figuring out how
|
|
/// to express some local region in terms of external regions our
|
|
/// caller will understand.
|
|
inverse_outlives: TransitiveRelation<RegionVid>,
|
|
}
|
|
|
|
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)]
|
|
pub enum RegionClassification {
|
|
/// A **global** region is one that can be named from
|
|
/// anywhere. There is only one, `'static`.
|
|
Global,
|
|
|
|
/// An **external** region is only relevant for closures. In that
|
|
/// case, it refers to regions that are free in the closure type
|
|
/// -- basically, something bound in the surrounding context.
|
|
///
|
|
/// Consider this example:
|
|
///
|
|
/// ```
|
|
/// fn foo<'a, 'b>(a: &'a u32, b: &'b u32, c: &'static u32) {
|
|
/// let closure = for<'x> |x: &'x u32| { .. };
|
|
/// ^^^^^^^ pretend this were legal syntax
|
|
/// for declaring a late-bound region in
|
|
/// a closure signature
|
|
/// }
|
|
/// ```
|
|
///
|
|
/// Here, the lifetimes `'a` and `'b` would be **external** to the
|
|
/// closure.
|
|
///
|
|
/// If we are not analyzing a closure, there are no external
|
|
/// lifetimes.
|
|
External,
|
|
|
|
/// A **local** lifetime is one about which we know the full set
|
|
/// of relevant constraints (that is, relationships to other named
|
|
/// regions). For a closure, this includes any region bound in
|
|
/// the closure's signature. For a fn item, this includes all
|
|
/// regions other than global ones.
|
|
///
|
|
/// Continuing with the example from `External`, if we were
|
|
/// analyzing the closure, then `'x` would be local (and `'a` and
|
|
/// `'b` are external). If we are analyzing the function item
|
|
/// `foo`, then `'a` and `'b` are local (and `'x` is not in
|
|
/// scope).
|
|
Local,
|
|
}
|
|
|
|
const FIRST_GLOBAL_INDEX: usize = 0;
|
|
|
|
impl<'tcx> UniversalRegions<'tcx> {
|
|
/// Creates a new and fully initialized `UniversalRegions` that
|
|
/// contains indices for all the free regions found in the given
|
|
/// MIR -- that is, all the regions that appear in the function's
|
|
/// signature. This will also compute the relationships that are
|
|
/// known between those regions.
|
|
pub fn new(
|
|
infcx: &InferCtxt<'_, '_, 'tcx>,
|
|
mir_def_id: DefId,
|
|
param_env: ty::ParamEnv<'tcx>,
|
|
) -> Self {
|
|
let tcx = infcx.tcx;
|
|
let mir_node_id = tcx.hir.as_local_node_id(mir_def_id).unwrap();
|
|
let mir_hir_id = tcx.hir.node_to_hir_id(mir_node_id);
|
|
UniversalRegionsBuilder {
|
|
infcx,
|
|
mir_def_id,
|
|
mir_node_id,
|
|
mir_hir_id,
|
|
param_env,
|
|
region_bound_pairs: vec![],
|
|
relations: UniversalRegionRelations {
|
|
outlives: TransitiveRelation::new(),
|
|
inverse_outlives: TransitiveRelation::new(),
|
|
},
|
|
}.build()
|
|
}
|
|
|
|
/// Given a reference to a closure type, extracts all the values
|
|
/// from its free regions and returns a vector with them. This is
|
|
/// used when the closure's creator checks that the
|
|
/// `ClosureRegionRequirements` are met. The requirements from
|
|
/// `ClosureRegionRequirements` are expressed in terms of
|
|
/// `RegionVid` entries that map into the returned vector `V`: so
|
|
/// if the `ClosureRegionRequirements` contains something like
|
|
/// `'1: '2`, then the caller would impose the constraint that
|
|
/// `V[1]: V[2]`.
|
|
pub fn closure_mapping(
|
|
infcx: &InferCtxt<'_, '_, 'tcx>,
|
|
closure_ty: Ty<'tcx>,
|
|
expected_num_vars: usize,
|
|
) -> IndexVec<RegionVid, ty::Region<'tcx>> {
|
|
let mut region_mapping = IndexVec::with_capacity(expected_num_vars);
|
|
region_mapping.push(infcx.tcx.types.re_static);
|
|
infcx.tcx.for_each_free_region(&closure_ty, |fr| {
|
|
region_mapping.push(fr);
|
|
});
|
|
|
|
assert_eq!(
|
|
region_mapping.len(),
|
|
expected_num_vars,
|
|
"index vec had unexpected number of variables"
|
|
);
|
|
|
|
region_mapping
|
|
}
|
|
|
|
/// True if `r` is a member of this set of universal regions.
|
|
pub fn is_universal_region(&self, r: RegionVid) -> bool {
|
|
(FIRST_GLOBAL_INDEX..self.num_universals).contains(&r.index())
|
|
}
|
|
|
|
/// Classifies `r` as a universal region, returning `None` if this
|
|
/// is not a member of this set of universal regions.
|
|
pub fn region_classification(&self, r: RegionVid) -> Option<RegionClassification> {
|
|
let index = r.index();
|
|
if (FIRST_GLOBAL_INDEX..self.first_extern_index).contains(&index) {
|
|
Some(RegionClassification::Global)
|
|
} else if (self.first_extern_index..self.first_local_index).contains(&index) {
|
|
Some(RegionClassification::External)
|
|
} else if (self.first_local_index..self.num_universals).contains(&index) {
|
|
Some(RegionClassification::Local)
|
|
} else {
|
|
None
|
|
}
|
|
}
|
|
|
|
/// Returns an iterator over all the RegionVids corresponding to
|
|
/// universally quantified free regions.
|
|
pub fn universal_regions(&self) -> impl Iterator<Item = RegionVid> {
|
|
(FIRST_GLOBAL_INDEX..self.num_universals).map(RegionVid::new)
|
|
}
|
|
|
|
/// True if `r` is classified as an local region.
|
|
pub fn is_local_free_region(&self, r: RegionVid) -> bool {
|
|
self.region_classification(r) == Some(RegionClassification::Local)
|
|
}
|
|
|
|
/// Returns the number of universal regions created in any category.
|
|
pub fn len(&self) -> usize {
|
|
self.num_universals
|
|
}
|
|
|
|
/// Given two universal regions, returns the postdominating
|
|
/// upper-bound (effectively the least upper bound).
|
|
///
|
|
/// (See `TransitiveRelation::postdom_upper_bound` for details on
|
|
/// the postdominating upper bound in general.)
|
|
pub fn postdom_upper_bound(&self, fr1: RegionVid, fr2: RegionVid) -> RegionVid {
|
|
assert!(self.is_universal_region(fr1));
|
|
assert!(self.is_universal_region(fr2));
|
|
*self.relations
|
|
.inverse_outlives
|
|
.postdom_upper_bound(&fr1, &fr2)
|
|
.unwrap_or(&self.fr_static)
|
|
}
|
|
|
|
/// Finds an "upper bound" for `fr` that is not local. In other
|
|
/// words, returns the smallest (*) known region `fr1` that (a)
|
|
/// outlives `fr` and (b) is not local. This cannot fail, because
|
|
/// we will always find `'static` at worst.
|
|
///
|
|
/// (*) If there are multiple competing choices, we pick the "postdominating"
|
|
/// one. See `TransitiveRelation::postdom_upper_bound` for details.
|
|
pub fn non_local_upper_bound(&self, fr: RegionVid) -> RegionVid {
|
|
debug!("non_local_upper_bound(fr={:?})", fr);
|
|
self.non_local_bound(&self.relations.inverse_outlives, fr)
|
|
.unwrap_or(self.fr_static)
|
|
}
|
|
|
|
/// Finds a "lower bound" for `fr` that is not local. In other
|
|
/// words, returns the largest (*) known region `fr1` that (a) is
|
|
/// outlived by `fr` and (b) is not local. This cannot fail,
|
|
/// because we will always find `'static` at worst.
|
|
///
|
|
/// (*) If there are multiple competing choices, we pick the "postdominating"
|
|
/// one. See `TransitiveRelation::postdom_upper_bound` for details.
|
|
pub fn non_local_lower_bound(&self, fr: RegionVid) -> Option<RegionVid> {
|
|
debug!("non_local_lower_bound(fr={:?})", fr);
|
|
self.non_local_bound(&self.relations.outlives, fr)
|
|
}
|
|
|
|
/// Returns the number of global plus external universal regions.
|
|
/// For closures, these are the regions that appear free in the
|
|
/// closure type (versus those bound in the closure
|
|
/// signature). They are therefore the regions between which the
|
|
/// closure may impose constraints that its creator must verify.
|
|
pub fn num_global_and_external_regions(&self) -> usize {
|
|
self.first_local_index
|
|
}
|
|
|
|
/// Helper for `non_local_upper_bound` and
|
|
/// `non_local_lower_bound`. Repeatedly invokes `postdom_parent`
|
|
/// until we find something that is not local. Returns None if we
|
|
/// never do so.
|
|
fn non_local_bound(
|
|
&self,
|
|
relation: &TransitiveRelation<RegionVid>,
|
|
fr0: RegionVid,
|
|
) -> Option<RegionVid> {
|
|
// This method assumes that `fr0` is one of the universally
|
|
// quantified region variables.
|
|
assert!(self.is_universal_region(fr0));
|
|
|
|
let mut external_parents = vec![];
|
|
let mut queue = vec![&fr0];
|
|
|
|
// Keep expanding `fr` into its parents until we reach
|
|
// non-local regions.
|
|
while let Some(fr) = queue.pop() {
|
|
if !self.is_local_free_region(*fr) {
|
|
external_parents.push(fr);
|
|
continue;
|
|
}
|
|
|
|
queue.extend(relation.parents(fr));
|
|
}
|
|
|
|
debug!("non_local_bound: external_parents={:?}", external_parents);
|
|
|
|
// In case we find more than one, reduce to one for
|
|
// convenience. This is to prevent us from generating more
|
|
// complex constraints, but it will cause spurious errors.
|
|
let post_dom = relation
|
|
.mutual_immediate_postdominator(external_parents)
|
|
.cloned();
|
|
|
|
debug!("non_local_bound: post_dom={:?}", post_dom);
|
|
|
|
post_dom.and_then(|post_dom| {
|
|
// If the mutual immediate postdom is not local, then
|
|
// there is no non-local result we can return.
|
|
if !self.is_local_free_region(post_dom) {
|
|
Some(post_dom)
|
|
} else {
|
|
None
|
|
}
|
|
})
|
|
}
|
|
|
|
/// True if fr1 is known to outlive fr2.
|
|
///
|
|
/// This will only ever be true for universally quantified regions.
|
|
pub fn outlives(&self, fr1: RegionVid, fr2: RegionVid) -> bool {
|
|
self.relations.outlives.contains(&fr1, &fr2)
|
|
}
|
|
|
|
/// Returns a vector of free regions `x` such that `fr1: x` is
|
|
/// known to hold.
|
|
pub fn regions_outlived_by(&self, fr1: RegionVid) -> Vec<&RegionVid> {
|
|
self.relations.outlives.reachable_from(&fr1)
|
|
}
|
|
|
|
/// Get an iterator over all the early-bound regions that have names.
|
|
pub fn named_universal_regions<'s>(
|
|
&'s self,
|
|
) -> impl Iterator<Item = (ty::Region<'tcx>, ty::RegionVid)> + 's {
|
|
self.indices.indices.iter().map(|(&r, &v)| (r, v))
|
|
}
|
|
|
|
/// See `UniversalRegionIndices::to_region_vid`.
|
|
pub fn to_region_vid(&self, r: ty::Region<'tcx>) -> RegionVid {
|
|
self.indices.to_region_vid(r)
|
|
}
|
|
}
|
|
|
|
struct UniversalRegionsBuilder<'cx, 'gcx: 'tcx, 'tcx: 'cx> {
|
|
infcx: &'cx InferCtxt<'cx, 'gcx, 'tcx>,
|
|
mir_def_id: DefId,
|
|
mir_hir_id: HirId,
|
|
mir_node_id: ast::NodeId,
|
|
param_env: ty::ParamEnv<'tcx>,
|
|
region_bound_pairs: Vec<(ty::Region<'tcx>, GenericKind<'tcx>)>,
|
|
relations: UniversalRegionRelations,
|
|
}
|
|
|
|
const FR: NLLRegionVariableOrigin = NLLRegionVariableOrigin::FreeRegion;
|
|
|
|
impl<'cx, 'gcx, 'tcx> UniversalRegionsBuilder<'cx, 'gcx, 'tcx> {
|
|
fn build(mut self) -> UniversalRegions<'tcx> {
|
|
debug!("build(mir_def_id={:?})", self.mir_def_id);
|
|
|
|
let param_env = self.param_env;
|
|
debug!("build: param_env={:?}", param_env);
|
|
|
|
assert_eq!(FIRST_GLOBAL_INDEX, self.infcx.num_region_vars());
|
|
|
|
// Create the "global" region that is always free in all contexts: 'static.
|
|
let fr_static = self.infcx.next_nll_region_var(FR).to_region_vid();
|
|
|
|
// We've now added all the global regions. The next ones we
|
|
// add will be external.
|
|
let first_extern_index = self.infcx.num_region_vars();
|
|
|
|
let defining_ty = self.defining_ty();
|
|
debug!("build: defining_ty={:?}", defining_ty);
|
|
|
|
let mut indices = self.compute_indices(fr_static, defining_ty);
|
|
debug!("build: indices={:?}", indices);
|
|
|
|
let bound_inputs_and_output = self.compute_inputs_and_output(&indices, defining_ty);
|
|
|
|
// "Liberate" the late-bound regions. These correspond to
|
|
// "local" free regions.
|
|
let first_local_index = self.infcx.num_region_vars();
|
|
let inputs_and_output = self.infcx.replace_bound_regions_with_nll_infer_vars(
|
|
FR,
|
|
self.mir_def_id,
|
|
&bound_inputs_and_output,
|
|
&mut indices,
|
|
);
|
|
let fr_fn_body = self.infcx.next_nll_region_var(FR).to_region_vid();
|
|
let num_universals = self.infcx.num_region_vars();
|
|
|
|
// Insert the facts we know from the predicates. Why? Why not.
|
|
self.add_outlives_bounds(&indices, bounds::explicit_outlives_bounds(param_env));
|
|
|
|
// Add the implied bounds from inputs and outputs.
|
|
for ty in inputs_and_output {
|
|
debug!("build: input_or_output={:?}", ty);
|
|
self.add_implied_bounds(&indices, ty);
|
|
}
|
|
|
|
// Finally:
|
|
// - outlives is reflexive, so `'r: 'r` for every region `'r`
|
|
// - `'static: 'r` for every region `'r`
|
|
// - `'r: 'fn_body` for every (other) universally quantified
|
|
// region `'r`, all of which are provided by our caller
|
|
for fr in (FIRST_GLOBAL_INDEX..num_universals).map(RegionVid::new) {
|
|
debug!(
|
|
"build: relating free region {:?} to itself and to 'static",
|
|
fr
|
|
);
|
|
self.relations.relate_universal_regions(fr, fr);
|
|
self.relations.relate_universal_regions(fr_static, fr);
|
|
self.relations.relate_universal_regions(fr, fr_fn_body);
|
|
}
|
|
|
|
let (unnormalized_output_ty, unnormalized_input_tys) =
|
|
inputs_and_output.split_last().unwrap();
|
|
|
|
debug!(
|
|
"build: global regions = {}..{}",
|
|
FIRST_GLOBAL_INDEX,
|
|
first_extern_index
|
|
);
|
|
debug!(
|
|
"build: extern regions = {}..{}",
|
|
first_extern_index,
|
|
first_local_index
|
|
);
|
|
debug!(
|
|
"build: local regions = {}..{}",
|
|
first_local_index,
|
|
num_universals
|
|
);
|
|
|
|
let yield_ty = match defining_ty {
|
|
DefiningTy::Generator(def_id, substs, _) => {
|
|
Some(substs.yield_ty(def_id, self.infcx.tcx))
|
|
}
|
|
_ => None,
|
|
};
|
|
|
|
UniversalRegions {
|
|
indices,
|
|
fr_static,
|
|
fr_fn_body,
|
|
first_extern_index,
|
|
first_local_index,
|
|
num_universals,
|
|
defining_ty,
|
|
unnormalized_output_ty,
|
|
unnormalized_input_tys,
|
|
region_bound_pairs: self.region_bound_pairs,
|
|
yield_ty: yield_ty,
|
|
relations: self.relations,
|
|
}
|
|
}
|
|
|
|
/// Returns the "defining type" of the current MIR;
|
|
/// see `DefiningTy` for details.
|
|
fn defining_ty(&self) -> DefiningTy<'tcx> {
|
|
let tcx = self.infcx.tcx;
|
|
let closure_base_def_id = tcx.closure_base_def_id(self.mir_def_id);
|
|
|
|
match tcx.hir.body_owner_kind(self.mir_node_id) {
|
|
BodyOwnerKind::Fn => {
|
|
let defining_ty = if self.mir_def_id == closure_base_def_id {
|
|
tcx.type_of(closure_base_def_id)
|
|
} else {
|
|
let tables = tcx.typeck_tables_of(self.mir_def_id);
|
|
tables.node_id_to_type(self.mir_hir_id)
|
|
};
|
|
|
|
let defining_ty = self.infcx
|
|
.replace_free_regions_with_nll_infer_vars(FR, &defining_ty);
|
|
|
|
match defining_ty.sty {
|
|
ty::TyClosure(def_id, substs) => DefiningTy::Closure(def_id, substs),
|
|
ty::TyGenerator(def_id, substs, movability) => {
|
|
DefiningTy::Generator(def_id, substs, movability)
|
|
}
|
|
ty::TyFnDef(def_id, substs) => DefiningTy::FnDef(def_id, substs),
|
|
_ => span_bug!(
|
|
tcx.def_span(self.mir_def_id),
|
|
"expected defining type for `{:?}`: `{:?}`",
|
|
self.mir_def_id,
|
|
defining_ty
|
|
),
|
|
}
|
|
}
|
|
|
|
BodyOwnerKind::Const | BodyOwnerKind::Static(..) => {
|
|
assert_eq!(closure_base_def_id, self.mir_def_id);
|
|
let identity_substs = Substs::identity_for_item(tcx, closure_base_def_id);
|
|
let substs = self.infcx
|
|
.replace_free_regions_with_nll_infer_vars(FR, &identity_substs);
|
|
DefiningTy::Const(self.mir_def_id, substs)
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Builds a hashmap that maps from the universal regions that are
|
|
/// in scope (as a `ty::Region<'tcx>`) to their indices (as a
|
|
/// `RegionVid`). The map returned by this function contains only
|
|
/// the early-bound regions.
|
|
fn compute_indices(
|
|
&self,
|
|
fr_static: RegionVid,
|
|
defining_ty: DefiningTy<'tcx>,
|
|
) -> UniversalRegionIndices<'tcx> {
|
|
let tcx = self.infcx.tcx;
|
|
let gcx = tcx.global_tcx();
|
|
let closure_base_def_id = tcx.closure_base_def_id(self.mir_def_id);
|
|
let identity_substs = Substs::identity_for_item(gcx, closure_base_def_id);
|
|
let fr_substs = match defining_ty {
|
|
DefiningTy::Closure(_, ClosureSubsts { ref substs }) |
|
|
DefiningTy::Generator(_, GeneratorSubsts { ref substs }, _) => {
|
|
// In the case of closures, we rely on the fact that
|
|
// the first N elements in the ClosureSubsts are
|
|
// inherited from the `closure_base_def_id`.
|
|
// Therefore, when we zip together (below) with
|
|
// `identity_substs`, we will get only those regions
|
|
// that correspond to early-bound regions declared on
|
|
// the `closure_base_def_id`.
|
|
assert!(substs.len() >= identity_substs.len());
|
|
assert_eq!(substs.regions().count(), identity_substs.regions().count());
|
|
substs
|
|
}
|
|
|
|
DefiningTy::FnDef(_, substs) | DefiningTy::Const(_, substs) => substs,
|
|
};
|
|
|
|
let global_mapping = iter::once((gcx.types.re_static, fr_static));
|
|
let subst_mapping = identity_substs
|
|
.regions()
|
|
.zip(fr_substs.regions().map(|r| r.to_region_vid()));
|
|
|
|
UniversalRegionIndices {
|
|
indices: global_mapping.chain(subst_mapping).collect(),
|
|
}
|
|
}
|
|
|
|
fn compute_inputs_and_output(
|
|
&self,
|
|
indices: &UniversalRegionIndices<'tcx>,
|
|
defining_ty: DefiningTy<'tcx>,
|
|
) -> ty::Binder<&'tcx ty::Slice<Ty<'tcx>>> {
|
|
let tcx = self.infcx.tcx;
|
|
match defining_ty {
|
|
DefiningTy::Closure(def_id, substs) => {
|
|
assert_eq!(self.mir_def_id, def_id);
|
|
let closure_sig = substs.closure_sig_ty(def_id, tcx).fn_sig(tcx);
|
|
let inputs_and_output = closure_sig.inputs_and_output();
|
|
let closure_ty = tcx.closure_env_ty(def_id, substs).unwrap();
|
|
ty::Binder::fuse(
|
|
closure_ty,
|
|
inputs_and_output,
|
|
|closure_ty, inputs_and_output| {
|
|
// The "inputs" of the closure in the
|
|
// signature appear as a tuple. The MIR side
|
|
// flattens this tuple.
|
|
let (&output, tuplized_inputs) = inputs_and_output.split_last().unwrap();
|
|
assert_eq!(tuplized_inputs.len(), 1, "multiple closure inputs");
|
|
let inputs = match tuplized_inputs[0].sty {
|
|
ty::TyTuple(inputs) => inputs,
|
|
_ => bug!("closure inputs not a tuple: {:?}", tuplized_inputs[0]),
|
|
};
|
|
|
|
tcx.mk_type_list(
|
|
iter::once(closure_ty)
|
|
.chain(inputs.iter().cloned())
|
|
.chain(iter::once(output)),
|
|
)
|
|
},
|
|
)
|
|
}
|
|
|
|
DefiningTy::Generator(def_id, substs, movability) => {
|
|
assert_eq!(self.mir_def_id, def_id);
|
|
let output = substs.return_ty(def_id, tcx);
|
|
let generator_ty = tcx.mk_generator(def_id, substs, movability);
|
|
let inputs_and_output = self.infcx.tcx.intern_type_list(&[generator_ty, output]);
|
|
ty::Binder::dummy(inputs_and_output)
|
|
}
|
|
|
|
DefiningTy::FnDef(def_id, _) => {
|
|
let sig = tcx.fn_sig(def_id);
|
|
let sig = indices.fold_to_region_vids(tcx, &sig);
|
|
sig.inputs_and_output()
|
|
}
|
|
|
|
DefiningTy::Const(def_id, _) => {
|
|
// For a constant body, there are no inputs, and one
|
|
// "output" (the type of the constant).
|
|
assert_eq!(self.mir_def_id, def_id);
|
|
let ty = tcx.type_of(def_id);
|
|
let ty = indices.fold_to_region_vids(tcx, &ty);
|
|
ty::Binder::dummy(tcx.intern_type_list(&[ty]))
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Update the type of a single local, which should represent
|
|
/// either the return type of the MIR or one of its arguments. At
|
|
/// the same time, compute and add any implied bounds that come
|
|
/// from this local.
|
|
///
|
|
/// Assumes that `universal_regions` indices map is fully constructed.
|
|
fn add_implied_bounds(&mut self, indices: &UniversalRegionIndices<'tcx>, ty: Ty<'tcx>) {
|
|
debug!("add_implied_bounds(ty={:?})", ty);
|
|
let span = self.infcx.tcx.def_span(self.mir_def_id);
|
|
let bounds = self.infcx
|
|
.implied_outlives_bounds(self.param_env, self.mir_node_id, ty, span);
|
|
self.add_outlives_bounds(indices, bounds);
|
|
}
|
|
|
|
/// Registers the `OutlivesBound` items from `outlives_bounds` in
|
|
/// the outlives relation as well as the region-bound pairs
|
|
/// listing.
|
|
fn add_outlives_bounds<I>(&mut self, indices: &UniversalRegionIndices<'tcx>, outlives_bounds: I)
|
|
where
|
|
I: IntoIterator<Item = OutlivesBound<'tcx>>,
|
|
{
|
|
for outlives_bound in outlives_bounds {
|
|
debug!("add_outlives_bounds(bound={:?})", outlives_bound);
|
|
|
|
match outlives_bound {
|
|
OutlivesBound::RegionSubRegion(r1, r2) => {
|
|
// The bound says that `r1 <= r2`; we store `r2: r1`.
|
|
let r1 = indices.to_region_vid(r1);
|
|
let r2 = indices.to_region_vid(r2);
|
|
self.relations.relate_universal_regions(r2, r1);
|
|
}
|
|
|
|
OutlivesBound::RegionSubParam(r_a, param_b) => {
|
|
self.region_bound_pairs
|
|
.push((r_a, GenericKind::Param(param_b)));
|
|
}
|
|
|
|
OutlivesBound::RegionSubProjection(r_a, projection_b) => {
|
|
self.region_bound_pairs
|
|
.push((r_a, GenericKind::Projection(projection_b)));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
impl UniversalRegionRelations {
|
|
/// Records in the `outlives_relation` (and
|
|
/// `inverse_outlives_relation`) that `fr_a: fr_b`.
|
|
fn relate_universal_regions(&mut self, fr_a: RegionVid, fr_b: RegionVid) {
|
|
debug!(
|
|
"relate_universal_regions: fr_a={:?} outlives fr_b={:?}",
|
|
fr_a,
|
|
fr_b
|
|
);
|
|
self.outlives.add(fr_a, fr_b);
|
|
self.inverse_outlives.add(fr_b, fr_a);
|
|
}
|
|
}
|
|
|
|
trait InferCtxtExt<'tcx> {
|
|
fn replace_free_regions_with_nll_infer_vars<T>(
|
|
&self,
|
|
origin: NLLRegionVariableOrigin,
|
|
value: &T,
|
|
) -> T
|
|
where
|
|
T: TypeFoldable<'tcx>;
|
|
|
|
fn replace_bound_regions_with_nll_infer_vars<T>(
|
|
&self,
|
|
origin: NLLRegionVariableOrigin,
|
|
all_outlive_scope: DefId,
|
|
value: &ty::Binder<T>,
|
|
indices: &mut UniversalRegionIndices<'tcx>,
|
|
) -> T
|
|
where
|
|
T: TypeFoldable<'tcx>;
|
|
}
|
|
|
|
impl<'cx, 'gcx, 'tcx> InferCtxtExt<'tcx> for InferCtxt<'cx, 'gcx, 'tcx> {
|
|
fn replace_free_regions_with_nll_infer_vars<T>(
|
|
&self,
|
|
origin: NLLRegionVariableOrigin,
|
|
value: &T,
|
|
) -> T
|
|
where
|
|
T: TypeFoldable<'tcx>,
|
|
{
|
|
self.tcx.fold_regions(value, &mut false, |_region, _depth| {
|
|
self.next_nll_region_var(origin)
|
|
})
|
|
}
|
|
|
|
fn replace_bound_regions_with_nll_infer_vars<T>(
|
|
&self,
|
|
origin: NLLRegionVariableOrigin,
|
|
all_outlive_scope: DefId,
|
|
value: &ty::Binder<T>,
|
|
indices: &mut UniversalRegionIndices<'tcx>,
|
|
) -> T
|
|
where
|
|
T: TypeFoldable<'tcx>,
|
|
{
|
|
debug!(
|
|
"replace_bound_regions_with_nll_infer_vars(value={:?}, all_outlive_scope={:?})",
|
|
value,
|
|
all_outlive_scope,
|
|
);
|
|
let (value, _map) = self.tcx.replace_late_bound_regions(value, |br| {
|
|
let liberated_region = self.tcx.mk_region(ty::ReFree(ty::FreeRegion {
|
|
scope: all_outlive_scope,
|
|
bound_region: br,
|
|
}));
|
|
let region_vid = self.next_nll_region_var(origin);
|
|
indices.insert_late_bound_region(liberated_region, region_vid.to_region_vid());
|
|
debug!("liberated_region={:?} => {:?}", liberated_region, region_vid);
|
|
region_vid
|
|
});
|
|
value
|
|
}
|
|
}
|
|
|
|
impl<'tcx> UniversalRegionIndices<'tcx> {
|
|
/// Initially, the `UniversalRegionIndices` map contains only the
|
|
/// early-bound regions in scope. Once that is all setup, we come
|
|
/// in later and instantiate the late-bound regions, and then we
|
|
/// insert the `ReFree` version of those into the map as
|
|
/// well. These are used for error reporting.
|
|
fn insert_late_bound_region(&mut self, r: ty::Region<'tcx>,
|
|
vid: ty::RegionVid)
|
|
{
|
|
self.indices.insert(r, vid);
|
|
}
|
|
|
|
/// Converts `r` into a local inference variable: `r` can either
|
|
/// by a `ReVar` (i.e., already a reference to an inference
|
|
/// variable) or it can be `'static` or some early-bound
|
|
/// region. This is useful when taking the results from
|
|
/// type-checking and trait-matching, which may sometimes
|
|
/// reference those regions from the `ParamEnv`. It is also used
|
|
/// during initialization. Relies on the `indices` map having been
|
|
/// fully initialized.
|
|
pub fn to_region_vid(&self, r: ty::Region<'tcx>) -> RegionVid {
|
|
if let ty::ReVar(..) = r {
|
|
r.to_region_vid()
|
|
} else {
|
|
*self.indices.get(&r).unwrap_or_else(|| {
|
|
bug!("cannot convert `{:?}` to a region vid", r)
|
|
})
|
|
}
|
|
}
|
|
|
|
/// Replace all free regions in `value` with region vids, as
|
|
/// returned by `to_region_vid`.
|
|
pub fn fold_to_region_vids<T>(&self, tcx: TyCtxt<'_, '_, 'tcx>, value: &T) -> T
|
|
where
|
|
T: TypeFoldable<'tcx>,
|
|
{
|
|
tcx.fold_regions(value, &mut false, |region, _| {
|
|
tcx.mk_region(ty::ReVar(self.to_region_vid(region)))
|
|
})
|
|
}
|
|
}
|
|
|
|
/// This trait is used by the `impl-trait` constraint code to abstract
|
|
/// over the `FreeRegionMap` from lexical regions and
|
|
/// `UniversalRegions` (from NLL)`.
|
|
impl<'tcx> FreeRegionRelations<'tcx> for UniversalRegions<'tcx> {
|
|
fn sub_free_regions(&self, shorter: ty::Region<'tcx>, longer: ty::Region<'tcx>) -> bool {
|
|
let shorter = shorter.to_region_vid();
|
|
assert!(self.is_universal_region(shorter));
|
|
let longer = longer.to_region_vid();
|
|
assert!(self.is_universal_region(longer));
|
|
self.outlives(longer, shorter)
|
|
}
|
|
}
|