130 lines
5.8 KiB
Rust
130 lines
5.8 KiB
Rust
use rustc_data_structures::sync::Lrc;
|
|
use rustc::ty::{self, Ty};
|
|
use rustc::ty::layout::{Size, Align, LayoutOf};
|
|
use rustc::mir::interpret::{Scalar, Pointer, EvalResult, PointerArithmetic};
|
|
|
|
use super::{EvalContext, Machine, MemoryKind};
|
|
|
|
impl<'a, 'mir, 'tcx, M: Machine<'a, 'mir, 'tcx>> EvalContext<'a, 'mir, 'tcx, M> {
|
|
/// Creates a dynamic vtable for the given type and vtable origin. This is used only for
|
|
/// objects.
|
|
///
|
|
/// The `trait_ref` encodes the erased self type. Hence if we are
|
|
/// making an object `Foo<Trait>` from a value of type `Foo<T>`, then
|
|
/// `trait_ref` would map `T:Trait`.
|
|
pub fn get_vtable(
|
|
&mut self,
|
|
ty: Ty<'tcx>,
|
|
poly_trait_ref: Option<ty::PolyExistentialTraitRef<'tcx>>,
|
|
) -> EvalResult<'tcx, Pointer<M::PointerTag>> {
|
|
trace!("get_vtable(trait_ref={:?})", poly_trait_ref);
|
|
|
|
let (ty, poly_trait_ref) = self.tcx.erase_regions(&(ty, poly_trait_ref));
|
|
|
|
if let Some(&vtable) = self.vtables.get(&(ty, poly_trait_ref)) {
|
|
// This means we guarantee that there are no duplicate vtables, we will
|
|
// always use the same vtable for the same (Type, Trait) combination.
|
|
// That's not what happens in rustc, but emulating per-crate deduplication
|
|
// does not sound like it actually makes anything any better.
|
|
return Ok(Pointer::from(vtable).with_default_tag());
|
|
}
|
|
|
|
let methods = if let Some(poly_trait_ref) = poly_trait_ref {
|
|
let trait_ref = poly_trait_ref.with_self_ty(*self.tcx, ty);
|
|
let trait_ref = self.tcx.erase_regions(&trait_ref);
|
|
|
|
self.tcx.vtable_methods(trait_ref)
|
|
} else {
|
|
Lrc::new(Vec::new())
|
|
};
|
|
|
|
let layout = self.layout_of(ty)?;
|
|
assert!(!layout.is_unsized(), "can't create a vtable for an unsized type");
|
|
let size = layout.size.bytes();
|
|
let align = layout.align.abi.bytes();
|
|
|
|
let ptr_size = self.pointer_size();
|
|
let ptr_align = self.tcx.data_layout.pointer_align.abi;
|
|
// /////////////////////////////////////////////////////////////////////////////////////////
|
|
// If you touch this code, be sure to also make the corresponding changes to
|
|
// `get_vtable` in rust_codegen_llvm/meth.rs
|
|
// /////////////////////////////////////////////////////////////////////////////////////////
|
|
let vtable = self.memory.allocate(
|
|
ptr_size * (3 + methods.len() as u64),
|
|
ptr_align,
|
|
MemoryKind::Vtable,
|
|
).with_default_tag();
|
|
let tcx = &*self.tcx;
|
|
|
|
let drop = crate::monomorphize::resolve_drop_in_place(*tcx, ty);
|
|
let drop = self.memory.create_fn_alloc(drop).with_default_tag();
|
|
// no need to do any alignment checks on the memory accesses below, because we know the
|
|
// allocation is correctly aligned as we created it above. Also we're only offsetting by
|
|
// multiples of `ptr_align`, which means that it will stay aligned to `ptr_align`.
|
|
self.memory
|
|
.get_mut(vtable.alloc_id)?
|
|
.write_ptr_sized(tcx, vtable, Scalar::Ptr(drop).into())?;
|
|
|
|
let size_ptr = vtable.offset(ptr_size, self)?;
|
|
self.memory
|
|
.get_mut(size_ptr.alloc_id)?
|
|
.write_ptr_sized(tcx, size_ptr, Scalar::from_uint(size, ptr_size).into())?;
|
|
let align_ptr = vtable.offset(ptr_size * 2, self)?;
|
|
self.memory
|
|
.get_mut(align_ptr.alloc_id)?
|
|
.write_ptr_sized(tcx, align_ptr, Scalar::from_uint(align, ptr_size).into())?;
|
|
|
|
for (i, method) in methods.iter().enumerate() {
|
|
if let Some((def_id, substs)) = *method {
|
|
let instance = self.resolve(def_id, substs)?;
|
|
let fn_ptr = self.memory.create_fn_alloc(instance).with_default_tag();
|
|
let method_ptr = vtable.offset(ptr_size * (3 + i as u64), self)?;
|
|
self.memory
|
|
.get_mut(method_ptr.alloc_id)?
|
|
.write_ptr_sized(tcx, method_ptr, Scalar::Ptr(fn_ptr).into())?;
|
|
}
|
|
}
|
|
|
|
self.memory.mark_immutable(vtable.alloc_id)?;
|
|
assert!(self.vtables.insert((ty, poly_trait_ref), vtable.alloc_id).is_none());
|
|
|
|
Ok(vtable)
|
|
}
|
|
|
|
/// Returns the drop fn instance as well as the actual dynamic type
|
|
pub fn read_drop_type_from_vtable(
|
|
&self,
|
|
vtable: Pointer<M::PointerTag>,
|
|
) -> EvalResult<'tcx, (ty::Instance<'tcx>, ty::Ty<'tcx>)> {
|
|
// we don't care about the pointee type, we just want a pointer
|
|
self.memory.check_align(vtable.into(), self.tcx.data_layout.pointer_align.abi)?;
|
|
let drop_fn = self.memory
|
|
.get(vtable.alloc_id)?
|
|
.read_ptr_sized(self, vtable)?
|
|
.to_ptr()?;
|
|
let drop_instance = self.memory.get_fn(drop_fn)?;
|
|
trace!("Found drop fn: {:?}", drop_instance);
|
|
let fn_sig = drop_instance.ty(*self.tcx).fn_sig(*self.tcx);
|
|
let fn_sig = self.tcx.normalize_erasing_late_bound_regions(self.param_env, &fn_sig);
|
|
// the drop function takes *mut T where T is the type being dropped, so get that
|
|
let ty = fn_sig.inputs()[0].builtin_deref(true).unwrap().ty;
|
|
Ok((drop_instance, ty))
|
|
}
|
|
|
|
pub fn read_size_and_align_from_vtable(
|
|
&self,
|
|
vtable: Pointer<M::PointerTag>,
|
|
) -> EvalResult<'tcx, (Size, Align)> {
|
|
let pointer_size = self.pointer_size();
|
|
self.memory.check_align(vtable.into(), self.tcx.data_layout.pointer_align.abi)?;
|
|
let alloc = self.memory.get(vtable.alloc_id)?;
|
|
let size = alloc.read_ptr_sized(self, vtable.offset(pointer_size, self)?)?
|
|
.to_bits(pointer_size)? as u64;
|
|
let align = alloc.read_ptr_sized(
|
|
self,
|
|
vtable.offset(pointer_size * 2, self)?,
|
|
)?.to_bits(pointer_size)? as u64;
|
|
Ok((Size::from_bytes(size), Align::from_bytes(align).unwrap()))
|
|
}
|
|
}
|