rust/src/librustc/middle/graph.rs
Alex Crichton bbbb571fee rustc: Fix a number of stability lint holes
There are a number of holes that the stability lint did not previously cover,
including:

* Types
* Bounds on type parameters on functions and impls
* Where clauses
* Imports
* Patterns (structs and enums)

These holes have all been fixed by overriding the `visit_path` function on the
AST visitor instead of a few specialized cases. This change also necessitated a
few stability changes:

* The `collections::fmt` module is now stable (it was already supposed to be).
* The `thread_local:👿:Key` type is now stable (it was already supposed to
  be).
* The `std::rt::{begin_unwind, begin_unwind_fmt}` functions are now stable.
  These are required via the `panic!` macro.
* The `std::old_io::stdio::{println, println_args}` functions are now stable.
  These are required by the `print!` and `println!` macros.
* The `ops::{FnOnce, FnMut, Fn}` traits are now `#[stable]`. This is required to
  make bounds with these traits stable. Note that manual implementations of
  these traits are still gated by default, this stability only allows bounds
  such as `F: FnOnce()`.

Additionally, the compiler now has special logic to ignore its own generated
`__test` module for the `--test` harness in terms of stability.

Closes #8962
Closes #16360
Closes #20327

[breaking-change]
2015-02-11 12:14:59 -08:00

485 lines
15 KiB
Rust

// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! A graph module for use in dataflow, region resolution, and elsewhere.
//!
//! # Interface details
//!
//! You customize the graph by specifying a "node data" type `N` and an
//! "edge data" type `E`. You can then later gain access (mutable or
//! immutable) to these "user-data" bits. Currently, you can only add
//! nodes or edges to the graph. You cannot remove or modify them once
//! added. This could be changed if we have a need.
//!
//! # Implementation details
//!
//! The main tricky thing about this code is the way that edges are
//! stored. The edges are stored in a central array, but they are also
//! threaded onto two linked lists for each node, one for incoming edges
//! and one for outgoing edges. Note that every edge is a member of some
//! incoming list and some outgoing list. Basically you can load the
//! first index of the linked list from the node data structures (the
//! field `first_edge`) and then, for each edge, load the next index from
//! the field `next_edge`). Each of those fields is an array that should
//! be indexed by the direction (see the type `Direction`).
#![allow(dead_code)] // still WIP
use std::fmt::{Formatter, Error, Debug};
use std::usize;
use std::collections::BitvSet;
pub struct Graph<N,E> {
nodes: Vec<Node<N>> ,
edges: Vec<Edge<E>> ,
}
pub struct Node<N> {
first_edge: [EdgeIndex; 2], // see module comment
pub data: N,
}
pub struct Edge<E> {
next_edge: [EdgeIndex; 2], // see module comment
source: NodeIndex,
target: NodeIndex,
pub data: E,
}
impl<E: Debug> Debug for Edge<E> {
fn fmt(&self, f: &mut Formatter) -> Result<(), Error> {
write!(f, "Edge {{ next_edge: [{:?}, {:?}], source: {:?}, target: {:?}, data: {:?} }}",
self.next_edge[0], self.next_edge[1], self.source,
self.target, self.data)
}
}
#[derive(Clone, Copy, PartialEq, Debug)]
pub struct NodeIndex(pub uint);
#[allow(non_upper_case_globals)]
pub const InvalidNodeIndex: NodeIndex = NodeIndex(usize::MAX);
#[derive(Copy, PartialEq, Debug)]
pub struct EdgeIndex(pub uint);
#[allow(non_upper_case_globals)]
pub const InvalidEdgeIndex: EdgeIndex = EdgeIndex(usize::MAX);
// Use a private field here to guarantee no more instances are created:
#[derive(Copy, Debug)]
pub struct Direction { repr: uint }
#[allow(non_upper_case_globals)]
pub const Outgoing: Direction = Direction { repr: 0 };
#[allow(non_upper_case_globals)]
pub const Incoming: Direction = Direction { repr: 1 };
impl NodeIndex {
fn get(&self) -> uint { let NodeIndex(v) = *self; v }
/// Returns unique id (unique with respect to the graph holding associated node).
pub fn node_id(&self) -> uint { self.get() }
}
impl EdgeIndex {
fn get(&self) -> uint { let EdgeIndex(v) = *self; v }
/// Returns unique id (unique with respect to the graph holding associated edge).
pub fn edge_id(&self) -> uint { self.get() }
}
impl<N,E> Graph<N,E> {
pub fn new() -> Graph<N,E> {
Graph {
nodes: Vec::new(),
edges: Vec::new(),
}
}
pub fn with_capacity(num_nodes: uint,
num_edges: uint) -> Graph<N,E> {
Graph {
nodes: Vec::with_capacity(num_nodes),
edges: Vec::with_capacity(num_edges),
}
}
///////////////////////////////////////////////////////////////////////////
// Simple accessors
#[inline]
pub fn all_nodes<'a>(&'a self) -> &'a [Node<N>] {
&self.nodes
}
#[inline]
pub fn all_edges<'a>(&'a self) -> &'a [Edge<E>] {
&self.edges
}
///////////////////////////////////////////////////////////////////////////
// Node construction
pub fn next_node_index(&self) -> NodeIndex {
NodeIndex(self.nodes.len())
}
pub fn add_node(&mut self, data: N) -> NodeIndex {
let idx = self.next_node_index();
self.nodes.push(Node {
first_edge: [InvalidEdgeIndex, InvalidEdgeIndex],
data: data
});
idx
}
pub fn mut_node_data<'a>(&'a mut self, idx: NodeIndex) -> &'a mut N {
&mut self.nodes[idx.get()].data
}
pub fn node_data<'a>(&'a self, idx: NodeIndex) -> &'a N {
&self.nodes[idx.get()].data
}
pub fn node<'a>(&'a self, idx: NodeIndex) -> &'a Node<N> {
&self.nodes[idx.get()]
}
///////////////////////////////////////////////////////////////////////////
// Edge construction and queries
pub fn next_edge_index(&self) -> EdgeIndex {
EdgeIndex(self.edges.len())
}
pub fn add_edge(&mut self,
source: NodeIndex,
target: NodeIndex,
data: E) -> EdgeIndex {
let idx = self.next_edge_index();
// read current first of the list of edges from each node
let source_first = self.nodes[source.get()]
.first_edge[Outgoing.repr];
let target_first = self.nodes[target.get()]
.first_edge[Incoming.repr];
// create the new edge, with the previous firsts from each node
// as the next pointers
self.edges.push(Edge {
next_edge: [source_first, target_first],
source: source,
target: target,
data: data
});
// adjust the firsts for each node target be the next object.
self.nodes[source.get()].first_edge[Outgoing.repr] = idx;
self.nodes[target.get()].first_edge[Incoming.repr] = idx;
return idx;
}
pub fn mut_edge_data<'a>(&'a mut self, idx: EdgeIndex) -> &'a mut E {
&mut self.edges[idx.get()].data
}
pub fn edge_data<'a>(&'a self, idx: EdgeIndex) -> &'a E {
&self.edges[idx.get()].data
}
pub fn edge<'a>(&'a self, idx: EdgeIndex) -> &'a Edge<E> {
&self.edges[idx.get()]
}
pub fn first_adjacent(&self, node: NodeIndex, dir: Direction) -> EdgeIndex {
//! Accesses the index of the first edge adjacent to `node`.
//! This is useful if you wish to modify the graph while walking
//! the linked list of edges.
self.nodes[node.get()].first_edge[dir.repr]
}
pub fn next_adjacent(&self, edge: EdgeIndex, dir: Direction) -> EdgeIndex {
//! Accesses the next edge in a given direction.
//! This is useful if you wish to modify the graph while walking
//! the linked list of edges.
self.edges[edge.get()].next_edge[dir.repr]
}
///////////////////////////////////////////////////////////////////////////
// Iterating over nodes, edges
pub fn each_node<'a, F>(&'a self, mut f: F) -> bool where
F: FnMut(NodeIndex, &'a Node<N>) -> bool,
{
//! Iterates over all edges defined in the graph.
self.nodes.iter().enumerate().all(|(i, node)| f(NodeIndex(i), node))
}
pub fn each_edge<'a, F>(&'a self, mut f: F) -> bool where
F: FnMut(EdgeIndex, &'a Edge<E>) -> bool,
{
//! Iterates over all edges defined in the graph
self.edges.iter().enumerate().all(|(i, edge)| f(EdgeIndex(i), edge))
}
pub fn each_outgoing_edge<'a, F>(&'a self, source: NodeIndex, f: F) -> bool where
F: FnMut(EdgeIndex, &'a Edge<E>) -> bool,
{
//! Iterates over all outgoing edges from the node `from`
self.each_adjacent_edge(source, Outgoing, f)
}
pub fn each_incoming_edge<'a, F>(&'a self, target: NodeIndex, f: F) -> bool where
F: FnMut(EdgeIndex, &'a Edge<E>) -> bool,
{
//! Iterates over all incoming edges to the node `target`
self.each_adjacent_edge(target, Incoming, f)
}
pub fn each_adjacent_edge<'a, F>(&'a self,
node: NodeIndex,
dir: Direction,
mut f: F)
-> bool where
F: FnMut(EdgeIndex, &'a Edge<E>) -> bool,
{
//! Iterates over all edges adjacent to the node `node`
//! in the direction `dir` (either `Outgoing` or `Incoming)
let mut edge_idx = self.first_adjacent(node, dir);
while edge_idx != InvalidEdgeIndex {
let edge = &self.edges[edge_idx.get()];
if !f(edge_idx, edge) {
return false;
}
edge_idx = edge.next_edge[dir.repr];
}
return true;
}
///////////////////////////////////////////////////////////////////////////
// Fixed-point iteration
//
// A common use for graphs in our compiler is to perform
// fixed-point iteration. In this case, each edge represents a
// constraint, and the nodes themselves are associated with
// variables or other bitsets. This method facilitates such a
// computation.
pub fn iterate_until_fixed_point<'a, F>(&'a self, mut op: F) where
F: FnMut(uint, EdgeIndex, &'a Edge<E>) -> bool,
{
let mut iteration = 0;
let mut changed = true;
while changed {
changed = false;
iteration += 1;
for (i, edge) in self.edges.iter().enumerate() {
changed |= op(iteration, EdgeIndex(i), edge);
}
}
}
pub fn depth_traverse<'a>(&'a self, start: NodeIndex) -> DepthFirstTraversal<'a, N, E> {
DepthFirstTraversal {
graph: self,
stack: vec![start],
visited: BitvSet::new()
}
}
}
pub struct DepthFirstTraversal<'g, N:'g, E:'g> {
graph: &'g Graph<N, E>,
stack: Vec<NodeIndex>,
visited: BitvSet
}
impl<'g, N, E> Iterator for DepthFirstTraversal<'g, N, E> {
type Item = &'g N;
fn next(&mut self) -> Option<&'g N> {
while let Some(idx) = self.stack.pop() {
if !self.visited.insert(idx.node_id()) {
continue;
}
self.graph.each_outgoing_edge(idx, |_, e| -> bool {
if !self.visited.contains(&e.target().node_id()) {
self.stack.push(e.target());
}
true
});
return Some(self.graph.node_data(idx));
}
return None;
}
}
pub fn each_edge_index<F>(max_edge_index: EdgeIndex, mut f: F) where
F: FnMut(EdgeIndex) -> bool,
{
let mut i = 0;
let n = max_edge_index.get();
while i < n {
if !f(EdgeIndex(i)) {
return;
}
i += 1;
}
}
impl<E> Edge<E> {
pub fn source(&self) -> NodeIndex {
self.source
}
pub fn target(&self) -> NodeIndex {
self.target
}
}
#[cfg(test)]
mod test {
use middle::graph::*;
use std::fmt::Debug;
type TestNode = Node<&'static str>;
type TestEdge = Edge<&'static str>;
type TestGraph = Graph<&'static str, &'static str>;
fn create_graph() -> TestGraph {
let mut graph = Graph::new();
// Create a simple graph
//
// A -+> B --> C
// | | ^
// | v |
// F D --> E
let a = graph.add_node("A");
let b = graph.add_node("B");
let c = graph.add_node("C");
let d = graph.add_node("D");
let e = graph.add_node("E");
let f = graph.add_node("F");
graph.add_edge(a, b, "AB");
graph.add_edge(b, c, "BC");
graph.add_edge(b, d, "BD");
graph.add_edge(d, e, "DE");
graph.add_edge(e, c, "EC");
graph.add_edge(f, b, "FB");
return graph;
}
#[test]
fn each_node() {
let graph = create_graph();
let expected = ["A", "B", "C", "D", "E", "F"];
graph.each_node(|idx, node| {
assert_eq!(&expected[idx.get()], graph.node_data(idx));
assert_eq!(expected[idx.get()], node.data);
true
});
}
#[test]
fn each_edge() {
let graph = create_graph();
let expected = ["AB", "BC", "BD", "DE", "EC", "FB"];
graph.each_edge(|idx, edge| {
assert_eq!(&expected[idx.get()], graph.edge_data(idx));
assert_eq!(expected[idx.get()], edge.data);
true
});
}
fn test_adjacent_edges<N:PartialEq+Debug,E:PartialEq+Debug>(graph: &Graph<N,E>,
start_index: NodeIndex,
start_data: N,
expected_incoming: &[(E,N)],
expected_outgoing: &[(E,N)]) {
assert!(graph.node_data(start_index) == &start_data);
let mut counter = 0;
graph.each_incoming_edge(start_index, |edge_index, edge| {
assert!(graph.edge_data(edge_index) == &edge.data);
assert!(counter < expected_incoming.len());
debug!("counter={:?} expected={:?} edge_index={:?} edge={:?}",
counter, expected_incoming[counter], edge_index, edge);
match expected_incoming[counter] {
(ref e, ref n) => {
assert!(e == &edge.data);
assert!(n == graph.node_data(edge.source));
assert!(start_index == edge.target);
}
}
counter += 1;
true
});
assert_eq!(counter, expected_incoming.len());
let mut counter = 0;
graph.each_outgoing_edge(start_index, |edge_index, edge| {
assert!(graph.edge_data(edge_index) == &edge.data);
assert!(counter < expected_outgoing.len());
debug!("counter={:?} expected={:?} edge_index={:?} edge={:?}",
counter, expected_outgoing[counter], edge_index, edge);
match expected_outgoing[counter] {
(ref e, ref n) => {
assert!(e == &edge.data);
assert!(start_index == edge.source);
assert!(n == graph.node_data(edge.target));
}
}
counter += 1;
true
});
assert_eq!(counter, expected_outgoing.len());
}
#[test]
fn each_adjacent_from_a() {
let graph = create_graph();
test_adjacent_edges(&graph, NodeIndex(0), "A",
&[],
&[("AB", "B")]);
}
#[test]
fn each_adjacent_from_b() {
let graph = create_graph();
test_adjacent_edges(&graph, NodeIndex(1), "B",
&[("FB", "F"), ("AB", "A"),],
&[("BD", "D"), ("BC", "C"),]);
}
#[test]
fn each_adjacent_from_c() {
let graph = create_graph();
test_adjacent_edges(&graph, NodeIndex(2), "C",
&[("EC", "E"), ("BC", "B")],
&[]);
}
#[test]
fn each_adjacent_from_d() {
let graph = create_graph();
test_adjacent_edges(&graph, NodeIndex(3), "D",
&[("BD", "B")],
&[("DE", "E")]);
}
}