2022-10-19 04:20:48 +00:00

2899 lines
116 KiB
Rust

//! Type checking expressions.
//!
//! See `mod.rs` for more context on type checking in general.
use crate::astconv::AstConv as _;
use crate::check::cast;
use crate::check::coercion::CoerceMany;
use crate::check::fatally_break_rust;
use crate::check::method::SelfSource;
use crate::check::Expectation::{self, ExpectCastableToType, ExpectHasType, NoExpectation};
use crate::check::{
report_unexpected_variant_res, BreakableCtxt, Diverges, DynamicCoerceMany, FnCtxt, Needs,
TupleArgumentsFlag::DontTupleArguments,
};
use crate::errors::{
FieldMultiplySpecifiedInInitializer, FunctionalRecordUpdateOnNonStruct,
YieldExprOutsideOfGenerator,
};
use crate::type_error_struct;
use crate::errors::{AddressOfTemporaryTaken, ReturnStmtOutsideOfFnBody, StructExprNonExhaustive};
use rustc_ast as ast;
use rustc_data_structures::fx::FxHashMap;
use rustc_data_structures::stack::ensure_sufficient_stack;
use rustc_errors::{
pluralize, struct_span_err, Applicability, Diagnostic, DiagnosticBuilder, DiagnosticId,
ErrorGuaranteed, StashKey,
};
use rustc_hir as hir;
use rustc_hir::def::{CtorKind, DefKind, Res};
use rustc_hir::def_id::DefId;
use rustc_hir::intravisit::Visitor;
use rustc_hir::lang_items::LangItem;
use rustc_hir::{Closure, ExprKind, HirId, QPath};
use rustc_infer::infer;
use rustc_infer::infer::type_variable::{TypeVariableOrigin, TypeVariableOriginKind};
use rustc_infer::infer::InferOk;
use rustc_infer::traits::ObligationCause;
use rustc_middle::middle::stability;
use rustc_middle::ty::adjustment::{Adjust, Adjustment, AllowTwoPhase};
use rustc_middle::ty::error::TypeError::FieldMisMatch;
use rustc_middle::ty::subst::SubstsRef;
use rustc_middle::ty::{self, AdtKind, Ty, TypeVisitable};
use rustc_session::errors::ExprParenthesesNeeded;
use rustc_session::parse::feature_err;
use rustc_span::hygiene::DesugaringKind;
use rustc_span::lev_distance::find_best_match_for_name;
use rustc_span::source_map::{Span, Spanned};
use rustc_span::symbol::{kw, sym, Ident, Symbol};
use rustc_target::spec::abi::Abi::RustIntrinsic;
use rustc_trait_selection::infer::InferCtxtExt;
use rustc_trait_selection::traits::{self, ObligationCauseCode};
impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
fn check_expr_eq_type(&self, expr: &'tcx hir::Expr<'tcx>, expected: Ty<'tcx>) {
let ty = self.check_expr_with_hint(expr, expected);
self.demand_eqtype(expr.span, expected, ty);
}
pub fn check_expr_has_type_or_error(
&self,
expr: &'tcx hir::Expr<'tcx>,
expected: Ty<'tcx>,
extend_err: impl FnMut(&mut Diagnostic),
) -> Ty<'tcx> {
self.check_expr_meets_expectation_or_error(expr, ExpectHasType(expected), extend_err)
}
fn check_expr_meets_expectation_or_error(
&self,
expr: &'tcx hir::Expr<'tcx>,
expected: Expectation<'tcx>,
mut extend_err: impl FnMut(&mut Diagnostic),
) -> Ty<'tcx> {
let expected_ty = expected.to_option(&self).unwrap_or(self.tcx.types.bool);
let mut ty = self.check_expr_with_expectation(expr, expected);
// While we don't allow *arbitrary* coercions here, we *do* allow
// coercions from ! to `expected`.
if ty.is_never() {
if let Some(adjustments) = self.typeck_results.borrow().adjustments().get(expr.hir_id) {
self.tcx().sess.delay_span_bug(
expr.span,
"expression with never type wound up being adjusted",
);
return if let [Adjustment { kind: Adjust::NeverToAny, target }] = &adjustments[..] {
target.to_owned()
} else {
self.tcx().ty_error()
};
}
let adj_ty = self.next_ty_var(TypeVariableOrigin {
kind: TypeVariableOriginKind::AdjustmentType,
span: expr.span,
});
self.apply_adjustments(
expr,
vec![Adjustment { kind: Adjust::NeverToAny, target: adj_ty }],
);
ty = adj_ty;
}
if let Some(mut err) = self.demand_suptype_diag(expr.span, expected_ty, ty) {
let expr = expr.peel_drop_temps();
self.suggest_deref_ref_or_into(&mut err, expr, expected_ty, ty, None);
extend_err(&mut err);
err.emit();
}
ty
}
pub(super) fn check_expr_coercable_to_type(
&self,
expr: &'tcx hir::Expr<'tcx>,
expected: Ty<'tcx>,
expected_ty_expr: Option<&'tcx hir::Expr<'tcx>>,
) -> Ty<'tcx> {
let ty = self.check_expr_with_hint(expr, expected);
// checks don't need two phase
self.demand_coerce(expr, ty, expected, expected_ty_expr, AllowTwoPhase::No)
}
pub(super) fn check_expr_with_hint(
&self,
expr: &'tcx hir::Expr<'tcx>,
expected: Ty<'tcx>,
) -> Ty<'tcx> {
self.check_expr_with_expectation(expr, ExpectHasType(expected))
}
fn check_expr_with_expectation_and_needs(
&self,
expr: &'tcx hir::Expr<'tcx>,
expected: Expectation<'tcx>,
needs: Needs,
) -> Ty<'tcx> {
let ty = self.check_expr_with_expectation(expr, expected);
// If the expression is used in a place whether mutable place is required
// e.g. LHS of assignment, perform the conversion.
if let Needs::MutPlace = needs {
self.convert_place_derefs_to_mutable(expr);
}
ty
}
pub(super) fn check_expr(&self, expr: &'tcx hir::Expr<'tcx>) -> Ty<'tcx> {
self.check_expr_with_expectation(expr, NoExpectation)
}
pub(super) fn check_expr_with_needs(
&self,
expr: &'tcx hir::Expr<'tcx>,
needs: Needs,
) -> Ty<'tcx> {
self.check_expr_with_expectation_and_needs(expr, NoExpectation, needs)
}
/// Invariant:
/// If an expression has any sub-expressions that result in a type error,
/// inspecting that expression's type with `ty.references_error()` will return
/// true. Likewise, if an expression is known to diverge, inspecting its
/// type with `ty::type_is_bot` will return true (n.b.: since Rust is
/// strict, _|_ can appear in the type of an expression that does not,
/// itself, diverge: for example, fn() -> _|_.)
/// Note that inspecting a type's structure *directly* may expose the fact
/// that there are actually multiple representations for `Error`, so avoid
/// that when err needs to be handled differently.
#[instrument(skip(self, expr), level = "debug")]
pub(super) fn check_expr_with_expectation(
&self,
expr: &'tcx hir::Expr<'tcx>,
expected: Expectation<'tcx>,
) -> Ty<'tcx> {
self.check_expr_with_expectation_and_args(expr, expected, &[])
}
/// Same as `check_expr_with_expectation`, but allows us to pass in the arguments of a
/// `ExprKind::Call` when evaluating its callee when it is an `ExprKind::Path`.
pub(super) fn check_expr_with_expectation_and_args(
&self,
expr: &'tcx hir::Expr<'tcx>,
expected: Expectation<'tcx>,
args: &'tcx [hir::Expr<'tcx>],
) -> Ty<'tcx> {
if self.tcx().sess.verbose() {
// make this code only run with -Zverbose because it is probably slow
if let Ok(lint_str) = self.tcx.sess.source_map().span_to_snippet(expr.span) {
if !lint_str.contains('\n') {
debug!("expr text: {lint_str}");
} else {
let mut lines = lint_str.lines();
if let Some(line0) = lines.next() {
let remaining_lines = lines.count();
debug!("expr text: {line0}");
debug!("expr text: ...(and {remaining_lines} more lines)");
}
}
}
}
// True if `expr` is a `Try::from_ok(())` that is a result of desugaring a try block
// without the final expr (e.g. `try { return; }`). We don't want to generate an
// unreachable_code lint for it since warnings for autogenerated code are confusing.
let is_try_block_generated_unit_expr = match expr.kind {
ExprKind::Call(_, args) if expr.span.is_desugaring(DesugaringKind::TryBlock) => {
args.len() == 1 && args[0].span.is_desugaring(DesugaringKind::TryBlock)
}
_ => false,
};
// Warn for expressions after diverging siblings.
if !is_try_block_generated_unit_expr {
self.warn_if_unreachable(expr.hir_id, expr.span, "expression");
}
// Hide the outer diverging and has_errors flags.
let old_diverges = self.diverges.replace(Diverges::Maybe);
let old_has_errors = self.has_errors.replace(false);
let ty = ensure_sufficient_stack(|| match &expr.kind {
hir::ExprKind::Path(
qpath @ hir::QPath::Resolved(..) | qpath @ hir::QPath::TypeRelative(..),
) => self.check_expr_path(qpath, expr, args),
_ => self.check_expr_kind(expr, expected),
});
// Warn for non-block expressions with diverging children.
match expr.kind {
ExprKind::Block(..)
| ExprKind::If(..)
| ExprKind::Let(..)
| ExprKind::Loop(..)
| ExprKind::Match(..) => {}
// If `expr` is a result of desugaring the try block and is an ok-wrapped
// diverging expression (e.g. it arose from desugaring of `try { return }`),
// we skip issuing a warning because it is autogenerated code.
ExprKind::Call(..) if expr.span.is_desugaring(DesugaringKind::TryBlock) => {}
ExprKind::Call(callee, _) => self.warn_if_unreachable(expr.hir_id, callee.span, "call"),
ExprKind::MethodCall(segment, ..) => {
self.warn_if_unreachable(expr.hir_id, segment.ident.span, "call")
}
_ => self.warn_if_unreachable(expr.hir_id, expr.span, "expression"),
}
// Any expression that produces a value of type `!` must have diverged
if ty.is_never() {
self.diverges.set(self.diverges.get() | Diverges::always(expr.span));
}
// Record the type, which applies it effects.
// We need to do this after the warning above, so that
// we don't warn for the diverging expression itself.
self.write_ty(expr.hir_id, ty);
// Combine the diverging and has_error flags.
self.diverges.set(self.diverges.get() | old_diverges);
self.has_errors.set(self.has_errors.get() | old_has_errors);
debug!("type of {} is...", self.tcx.hir().node_to_string(expr.hir_id));
debug!("... {:?}, expected is {:?}", ty, expected);
ty
}
#[instrument(skip(self, expr), level = "debug")]
fn check_expr_kind(
&self,
expr: &'tcx hir::Expr<'tcx>,
expected: Expectation<'tcx>,
) -> Ty<'tcx> {
trace!("expr={:#?}", expr);
let tcx = self.tcx;
match expr.kind {
ExprKind::Box(subexpr) => self.check_expr_box(subexpr, expected),
ExprKind::Lit(ref lit) => self.check_lit(&lit, expected),
ExprKind::Binary(op, lhs, rhs) => self.check_binop(expr, op, lhs, rhs, expected),
ExprKind::Assign(lhs, rhs, span) => {
self.check_expr_assign(expr, expected, lhs, rhs, span)
}
ExprKind::AssignOp(op, lhs, rhs) => {
self.check_binop_assign(expr, op, lhs, rhs, expected)
}
ExprKind::Unary(unop, oprnd) => self.check_expr_unary(unop, oprnd, expected, expr),
ExprKind::AddrOf(kind, mutbl, oprnd) => {
self.check_expr_addr_of(kind, mutbl, oprnd, expected, expr)
}
ExprKind::Path(QPath::LangItem(lang_item, _, hir_id)) => {
self.check_lang_item_path(lang_item, expr, hir_id)
}
ExprKind::Path(ref qpath) => self.check_expr_path(qpath, expr, &[]),
ExprKind::InlineAsm(asm) => {
// We defer some asm checks as we may not have resolved the input and output types yet (they may still be infer vars).
self.deferred_asm_checks.borrow_mut().push((asm, expr.hir_id));
self.check_expr_asm(asm)
}
ExprKind::Break(destination, ref expr_opt) => {
self.check_expr_break(destination, expr_opt.as_deref(), expr)
}
ExprKind::Continue(destination) => {
if destination.target_id.is_ok() {
tcx.types.never
} else {
// There was an error; make type-check fail.
tcx.ty_error()
}
}
ExprKind::Ret(ref expr_opt) => self.check_expr_return(expr_opt.as_deref(), expr),
ExprKind::Let(let_expr) => self.check_expr_let(let_expr),
ExprKind::Loop(body, _, source, _) => {
self.check_expr_loop(body, source, expected, expr)
}
ExprKind::Match(discrim, arms, match_src) => {
self.check_match(expr, &discrim, arms, expected, match_src)
}
ExprKind::Closure(&Closure { capture_clause, fn_decl, body, movability, .. }) => {
self.check_expr_closure(expr, capture_clause, &fn_decl, body, movability, expected)
}
ExprKind::Block(body, _) => self.check_block_with_expected(&body, expected),
ExprKind::Call(callee, args) => self.check_call(expr, &callee, args, expected),
ExprKind::MethodCall(segment, receiver, args, _) => {
self.check_method_call(expr, segment, receiver, args, expected)
}
ExprKind::Cast(e, t) => self.check_expr_cast(e, t, expr),
ExprKind::Type(e, t) => {
let ty = self.to_ty_saving_user_provided_ty(&t);
self.check_expr_eq_type(&e, ty);
ty
}
ExprKind::If(cond, then_expr, opt_else_expr) => {
self.check_then_else(cond, then_expr, opt_else_expr, expr.span, expected)
}
ExprKind::DropTemps(e) => self.check_expr_with_expectation(e, expected),
ExprKind::Array(args) => self.check_expr_array(args, expected, expr),
ExprKind::ConstBlock(ref anon_const) => {
self.check_expr_const_block(anon_const, expected, expr)
}
ExprKind::Repeat(element, ref count) => {
self.check_expr_repeat(element, count, expected, expr)
}
ExprKind::Tup(elts) => self.check_expr_tuple(elts, expected, expr),
ExprKind::Struct(qpath, fields, ref base_expr) => {
self.check_expr_struct(expr, expected, qpath, fields, base_expr)
}
ExprKind::Field(base, field) => self.check_field(expr, &base, field),
ExprKind::Index(base, idx) => self.check_expr_index(base, idx, expr),
ExprKind::Yield(value, ref src) => self.check_expr_yield(value, expr, src),
hir::ExprKind::Err => tcx.ty_error(),
}
}
fn check_expr_box(&self, expr: &'tcx hir::Expr<'tcx>, expected: Expectation<'tcx>) -> Ty<'tcx> {
let expected_inner = expected.to_option(self).map_or(NoExpectation, |ty| match ty.kind() {
ty::Adt(def, _) if def.is_box() => Expectation::rvalue_hint(self, ty.boxed_ty()),
_ => NoExpectation,
});
let referent_ty = self.check_expr_with_expectation(expr, expected_inner);
self.require_type_is_sized(referent_ty, expr.span, traits::SizedBoxType);
self.tcx.mk_box(referent_ty)
}
fn check_expr_unary(
&self,
unop: hir::UnOp,
oprnd: &'tcx hir::Expr<'tcx>,
expected: Expectation<'tcx>,
expr: &'tcx hir::Expr<'tcx>,
) -> Ty<'tcx> {
let tcx = self.tcx;
let expected_inner = match unop {
hir::UnOp::Not | hir::UnOp::Neg => expected,
hir::UnOp::Deref => NoExpectation,
};
let mut oprnd_t = self.check_expr_with_expectation(&oprnd, expected_inner);
if !oprnd_t.references_error() {
oprnd_t = self.structurally_resolved_type(expr.span, oprnd_t);
match unop {
hir::UnOp::Deref => {
if let Some(ty) = self.lookup_derefing(expr, oprnd, oprnd_t) {
oprnd_t = ty;
} else {
let mut err = type_error_struct!(
tcx.sess,
expr.span,
oprnd_t,
E0614,
"type `{oprnd_t}` cannot be dereferenced",
);
let sp = tcx.sess.source_map().start_point(expr.span);
if let Some(sp) =
tcx.sess.parse_sess.ambiguous_block_expr_parse.borrow().get(&sp)
{
err.subdiagnostic(ExprParenthesesNeeded::surrounding(*sp));
}
err.emit();
oprnd_t = tcx.ty_error();
}
}
hir::UnOp::Not => {
let result = self.check_user_unop(expr, oprnd_t, unop, expected_inner);
// If it's builtin, we can reuse the type, this helps inference.
if !(oprnd_t.is_integral() || *oprnd_t.kind() == ty::Bool) {
oprnd_t = result;
}
}
hir::UnOp::Neg => {
let result = self.check_user_unop(expr, oprnd_t, unop, expected_inner);
// If it's builtin, we can reuse the type, this helps inference.
if !oprnd_t.is_numeric() {
oprnd_t = result;
}
}
}
}
oprnd_t
}
fn check_expr_addr_of(
&self,
kind: hir::BorrowKind,
mutbl: hir::Mutability,
oprnd: &'tcx hir::Expr<'tcx>,
expected: Expectation<'tcx>,
expr: &'tcx hir::Expr<'tcx>,
) -> Ty<'tcx> {
let hint = expected.only_has_type(self).map_or(NoExpectation, |ty| {
match ty.kind() {
ty::Ref(_, ty, _) | ty::RawPtr(ty::TypeAndMut { ty, .. }) => {
if oprnd.is_syntactic_place_expr() {
// Places may legitimately have unsized types.
// For example, dereferences of a fat pointer and
// the last field of a struct can be unsized.
ExpectHasType(*ty)
} else {
Expectation::rvalue_hint(self, *ty)
}
}
_ => NoExpectation,
}
});
let ty =
self.check_expr_with_expectation_and_needs(&oprnd, hint, Needs::maybe_mut_place(mutbl));
let tm = ty::TypeAndMut { ty, mutbl };
match kind {
_ if tm.ty.references_error() => self.tcx.ty_error(),
hir::BorrowKind::Raw => {
self.check_named_place_expr(oprnd);
self.tcx.mk_ptr(tm)
}
hir::BorrowKind::Ref => {
// Note: at this point, we cannot say what the best lifetime
// is to use for resulting pointer. We want to use the
// shortest lifetime possible so as to avoid spurious borrowck
// errors. Moreover, the longest lifetime will depend on the
// precise details of the value whose address is being taken
// (and how long it is valid), which we don't know yet until
// type inference is complete.
//
// Therefore, here we simply generate a region variable. The
// region inferencer will then select a suitable value.
// Finally, borrowck will infer the value of the region again,
// this time with enough precision to check that the value
// whose address was taken can actually be made to live as long
// as it needs to live.
let region = self.next_region_var(infer::AddrOfRegion(expr.span));
self.tcx.mk_ref(region, tm)
}
}
}
/// Does this expression refer to a place that either:
/// * Is based on a local or static.
/// * Contains a dereference
/// Note that the adjustments for the children of `expr` should already
/// have been resolved.
fn check_named_place_expr(&self, oprnd: &'tcx hir::Expr<'tcx>) {
let is_named = oprnd.is_place_expr(|base| {
// Allow raw borrows if there are any deref adjustments.
//
// const VAL: (i32,) = (0,);
// const REF: &(i32,) = &(0,);
//
// &raw const VAL.0; // ERROR
// &raw const REF.0; // OK, same as &raw const (*REF).0;
//
// This is maybe too permissive, since it allows
// `let u = &raw const Box::new((1,)).0`, which creates an
// immediately dangling raw pointer.
self.typeck_results
.borrow()
.adjustments()
.get(base.hir_id)
.map_or(false, |x| x.iter().any(|adj| matches!(adj.kind, Adjust::Deref(_))))
});
if !is_named {
self.tcx.sess.emit_err(AddressOfTemporaryTaken { span: oprnd.span });
}
}
fn check_lang_item_path(
&self,
lang_item: hir::LangItem,
expr: &'tcx hir::Expr<'tcx>,
hir_id: Option<hir::HirId>,
) -> Ty<'tcx> {
self.resolve_lang_item_path(lang_item, expr.span, expr.hir_id, hir_id).1
}
pub(crate) fn check_expr_path(
&self,
qpath: &'tcx hir::QPath<'tcx>,
expr: &'tcx hir::Expr<'tcx>,
args: &'tcx [hir::Expr<'tcx>],
) -> Ty<'tcx> {
let tcx = self.tcx;
let (res, opt_ty, segs) =
self.resolve_ty_and_res_fully_qualified_call(qpath, expr.hir_id, expr.span);
let ty = match res {
Res::Err => {
self.set_tainted_by_errors();
tcx.ty_error()
}
Res::Def(DefKind::Ctor(_, CtorKind::Fictive), _) => {
report_unexpected_variant_res(tcx, res, qpath, expr.span);
tcx.ty_error()
}
_ => self.instantiate_value_path(segs, opt_ty, res, expr.span, expr.hir_id).0,
};
if let ty::FnDef(did, ..) = *ty.kind() {
let fn_sig = ty.fn_sig(tcx);
if tcx.fn_sig(did).abi() == RustIntrinsic && tcx.item_name(did) == sym::transmute {
let from = fn_sig.inputs().skip_binder()[0];
let to = fn_sig.output().skip_binder();
// We defer the transmute to the end of typeck, once all inference vars have
// been resolved or we errored. This is important as we can only check transmute
// on concrete types, but the output type may not be known yet (it would only
// be known if explicitly specified via turbofish).
self.deferred_transmute_checks.borrow_mut().push((from, to, expr.hir_id));
}
if !tcx.features().unsized_fn_params {
// We want to remove some Sized bounds from std functions,
// but don't want to expose the removal to stable Rust.
// i.e., we don't want to allow
//
// ```rust
// drop as fn(str);
// ```
//
// to work in stable even if the Sized bound on `drop` is relaxed.
for i in 0..fn_sig.inputs().skip_binder().len() {
// We just want to check sizedness, so instead of introducing
// placeholder lifetimes with probing, we just replace higher lifetimes
// with fresh vars.
let span = args.get(i).map(|a| a.span).unwrap_or(expr.span);
let input = self.replace_bound_vars_with_fresh_vars(
span,
infer::LateBoundRegionConversionTime::FnCall,
fn_sig.input(i),
);
self.require_type_is_sized_deferred(
input,
span,
traits::SizedArgumentType(None),
);
}
}
// Here we want to prevent struct constructors from returning unsized types.
// There were two cases this happened: fn pointer coercion in stable
// and usual function call in presence of unsized_locals.
// Also, as we just want to check sizedness, instead of introducing
// placeholder lifetimes with probing, we just replace higher lifetimes
// with fresh vars.
let output = self.replace_bound_vars_with_fresh_vars(
expr.span,
infer::LateBoundRegionConversionTime::FnCall,
fn_sig.output(),
);
self.require_type_is_sized_deferred(output, expr.span, traits::SizedReturnType);
}
// We always require that the type provided as the value for
// a type parameter outlives the moment of instantiation.
let substs = self.typeck_results.borrow().node_substs(expr.hir_id);
self.add_wf_bounds(substs, expr);
ty
}
fn check_expr_break(
&self,
destination: hir::Destination,
expr_opt: Option<&'tcx hir::Expr<'tcx>>,
expr: &'tcx hir::Expr<'tcx>,
) -> Ty<'tcx> {
let tcx = self.tcx;
if let Ok(target_id) = destination.target_id {
let (e_ty, cause);
if let Some(e) = expr_opt {
// If this is a break with a value, we need to type-check
// the expression. Get an expected type from the loop context.
let opt_coerce_to = {
// We should release `enclosing_breakables` before the `check_expr_with_hint`
// below, so can't move this block of code to the enclosing scope and share
// `ctxt` with the second `enclosing_breakables` borrow below.
let mut enclosing_breakables = self.enclosing_breakables.borrow_mut();
match enclosing_breakables.opt_find_breakable(target_id) {
Some(ctxt) => ctxt.coerce.as_ref().map(|coerce| coerce.expected_ty()),
None => {
// Avoid ICE when `break` is inside a closure (#65383).
return tcx.ty_error_with_message(
expr.span,
"break was outside loop, but no error was emitted",
);
}
}
};
// If the loop context is not a `loop { }`, then break with
// a value is illegal, and `opt_coerce_to` will be `None`.
// Just set expectation to error in that case.
let coerce_to = opt_coerce_to.unwrap_or_else(|| tcx.ty_error());
// Recurse without `enclosing_breakables` borrowed.
e_ty = self.check_expr_with_hint(e, coerce_to);
cause = self.misc(e.span);
} else {
// Otherwise, this is a break *without* a value. That's
// always legal, and is equivalent to `break ()`.
e_ty = tcx.mk_unit();
cause = self.misc(expr.span);
}
// Now that we have type-checked `expr_opt`, borrow
// the `enclosing_loops` field and let's coerce the
// type of `expr_opt` into what is expected.
let mut enclosing_breakables = self.enclosing_breakables.borrow_mut();
let Some(ctxt) = enclosing_breakables.opt_find_breakable(target_id) else {
// Avoid ICE when `break` is inside a closure (#65383).
return tcx.ty_error_with_message(
expr.span,
"break was outside loop, but no error was emitted",
);
};
if let Some(ref mut coerce) = ctxt.coerce {
if let Some(ref e) = expr_opt {
coerce.coerce(self, &cause, e, e_ty);
} else {
assert!(e_ty.is_unit());
let ty = coerce.expected_ty();
coerce.coerce_forced_unit(
self,
&cause,
&mut |mut err| {
self.suggest_mismatched_types_on_tail(
&mut err, expr, ty, e_ty, target_id,
);
if let Some(val) = ty_kind_suggestion(ty) {
let label = destination
.label
.map(|l| format!(" {}", l.ident))
.unwrap_or_else(String::new);
err.span_suggestion(
expr.span,
"give it a value of the expected type",
format!("break{label} {val}"),
Applicability::HasPlaceholders,
);
}
},
false,
);
}
} else {
// If `ctxt.coerce` is `None`, we can just ignore
// the type of the expression. This is because
// either this was a break *without* a value, in
// which case it is always a legal type (`()`), or
// else an error would have been flagged by the
// `loops` pass for using break with an expression
// where you are not supposed to.
assert!(expr_opt.is_none() || self.tcx.sess.has_errors().is_some());
}
// If we encountered a `break`, then (no surprise) it may be possible to break from the
// loop... unless the value being returned from the loop diverges itself, e.g.
// `break return 5` or `break loop {}`.
ctxt.may_break |= !self.diverges.get().is_always();
// the type of a `break` is always `!`, since it diverges
tcx.types.never
} else {
// Otherwise, we failed to find the enclosing loop;
// this can only happen if the `break` was not
// inside a loop at all, which is caught by the
// loop-checking pass.
let err = self.tcx.ty_error_with_message(
expr.span,
"break was outside loop, but no error was emitted",
);
// We still need to assign a type to the inner expression to
// prevent the ICE in #43162.
if let Some(e) = expr_opt {
self.check_expr_with_hint(e, err);
// ... except when we try to 'break rust;'.
// ICE this expression in particular (see #43162).
if let ExprKind::Path(QPath::Resolved(_, path)) = e.kind {
if path.segments.len() == 1 && path.segments[0].ident.name == sym::rust {
fatally_break_rust(self.tcx.sess);
}
}
}
// There was an error; make type-check fail.
err
}
}
fn check_expr_return(
&self,
expr_opt: Option<&'tcx hir::Expr<'tcx>>,
expr: &'tcx hir::Expr<'tcx>,
) -> Ty<'tcx> {
if self.ret_coercion.is_none() {
let mut err = ReturnStmtOutsideOfFnBody {
span: expr.span,
encl_body_span: None,
encl_fn_span: None,
};
let encl_item_id = self.tcx.hir().get_parent_item(expr.hir_id);
if let Some(hir::Node::Item(hir::Item {
kind: hir::ItemKind::Fn(..),
span: encl_fn_span,
..
}))
| Some(hir::Node::TraitItem(hir::TraitItem {
kind: hir::TraitItemKind::Fn(_, hir::TraitFn::Provided(_)),
span: encl_fn_span,
..
}))
| Some(hir::Node::ImplItem(hir::ImplItem {
kind: hir::ImplItemKind::Fn(..),
span: encl_fn_span,
..
})) = self.tcx.hir().find_by_def_id(encl_item_id.def_id)
{
// We are inside a function body, so reporting "return statement
// outside of function body" needs an explanation.
let encl_body_owner_id = self.tcx.hir().enclosing_body_owner(expr.hir_id);
// If this didn't hold, we would not have to report an error in
// the first place.
assert_ne!(encl_item_id.def_id, encl_body_owner_id);
let encl_body_id = self.tcx.hir().body_owned_by(encl_body_owner_id);
let encl_body = self.tcx.hir().body(encl_body_id);
err.encl_body_span = Some(encl_body.value.span);
err.encl_fn_span = Some(*encl_fn_span);
}
self.tcx.sess.emit_err(err);
if let Some(e) = expr_opt {
// We still have to type-check `e` (issue #86188), but calling
// `check_return_expr` only works inside fn bodies.
self.check_expr(e);
}
} else if let Some(e) = expr_opt {
if self.ret_coercion_span.get().is_none() {
self.ret_coercion_span.set(Some(e.span));
}
self.check_return_expr(e, true);
} else {
let mut coercion = self.ret_coercion.as_ref().unwrap().borrow_mut();
if self.ret_coercion_span.get().is_none() {
self.ret_coercion_span.set(Some(expr.span));
}
let cause = self.cause(expr.span, ObligationCauseCode::ReturnNoExpression);
if let Some((fn_decl, _)) = self.get_fn_decl(expr.hir_id) {
coercion.coerce_forced_unit(
self,
&cause,
&mut |db| {
let span = fn_decl.output.span();
if let Ok(snippet) = self.tcx.sess.source_map().span_to_snippet(span) {
db.span_label(
span,
format!("expected `{snippet}` because of this return type"),
);
}
},
true,
);
} else {
coercion.coerce_forced_unit(self, &cause, &mut |_| (), true);
}
}
self.tcx.types.never
}
/// `explicit_return` is `true` if we're checking an explicit `return expr`,
/// and `false` if we're checking a trailing expression.
pub(super) fn check_return_expr(
&self,
return_expr: &'tcx hir::Expr<'tcx>,
explicit_return: bool,
) {
let ret_coercion = self.ret_coercion.as_ref().unwrap_or_else(|| {
span_bug!(return_expr.span, "check_return_expr called outside fn body")
});
let ret_ty = ret_coercion.borrow().expected_ty();
let return_expr_ty = self.check_expr_with_hint(return_expr, ret_ty);
let mut span = return_expr.span;
// Use the span of the trailing expression for our cause,
// not the span of the entire function
if !explicit_return {
if let ExprKind::Block(body, _) = return_expr.kind && let Some(last_expr) = body.expr {
span = last_expr.span;
}
}
ret_coercion.borrow_mut().coerce(
self,
&self.cause(span, ObligationCauseCode::ReturnValue(return_expr.hir_id)),
return_expr,
return_expr_ty,
);
if self.return_type_has_opaque {
// Point any obligations that were registered due to opaque type
// inference at the return expression.
self.select_obligations_where_possible(false, |errors| {
self.point_at_return_for_opaque_ty_error(errors, span, return_expr_ty);
});
}
}
fn point_at_return_for_opaque_ty_error(
&self,
errors: &mut Vec<traits::FulfillmentError<'tcx>>,
span: Span,
return_expr_ty: Ty<'tcx>,
) {
// Don't point at the whole block if it's empty
if span == self.tcx.hir().span(self.body_id) {
return;
}
for err in errors {
let cause = &mut err.obligation.cause;
if let ObligationCauseCode::OpaqueReturnType(None) = cause.code() {
let new_cause = ObligationCause::new(
cause.span,
cause.body_id,
ObligationCauseCode::OpaqueReturnType(Some((return_expr_ty, span))),
);
*cause = new_cause;
}
}
}
pub(crate) fn check_lhs_assignable(
&self,
lhs: &'tcx hir::Expr<'tcx>,
err_code: &'static str,
op_span: Span,
adjust_err: impl FnOnce(&mut Diagnostic),
) {
if lhs.is_syntactic_place_expr() {
return;
}
// FIXME: Make this use Diagnostic once error codes can be dynamically set.
let mut err = self.tcx.sess.struct_span_err_with_code(
op_span,
"invalid left-hand side of assignment",
DiagnosticId::Error(err_code.into()),
);
err.span_label(lhs.span, "cannot assign to this expression");
self.comes_from_while_condition(lhs.hir_id, |expr| {
err.span_suggestion_verbose(
expr.span.shrink_to_lo(),
"you might have meant to use pattern destructuring",
"let ",
Applicability::MachineApplicable,
);
});
adjust_err(&mut err);
err.emit();
}
// Check if an expression `original_expr_id` comes from the condition of a while loop,
// as opposed from the body of a while loop, which we can naively check by iterating
// parents until we find a loop...
pub(super) fn comes_from_while_condition(
&self,
original_expr_id: HirId,
then: impl FnOnce(&hir::Expr<'_>),
) {
let mut parent = self.tcx.hir().get_parent_node(original_expr_id);
while let Some(node) = self.tcx.hir().find(parent) {
match node {
hir::Node::Expr(hir::Expr {
kind:
hir::ExprKind::Loop(
hir::Block {
expr:
Some(hir::Expr {
kind:
hir::ExprKind::Match(expr, ..) | hir::ExprKind::If(expr, ..),
..
}),
..
},
_,
hir::LoopSource::While,
_,
),
..
}) => {
// Check if our original expression is a child of the condition of a while loop
let expr_is_ancestor = std::iter::successors(Some(original_expr_id), |id| {
self.tcx.hir().find_parent_node(*id)
})
.take_while(|id| *id != parent)
.any(|id| id == expr.hir_id);
// if it is, then we have a situation like `while Some(0) = value.get(0) {`,
// where `while let` was more likely intended.
if expr_is_ancestor {
then(expr);
}
break;
}
hir::Node::Item(_)
| hir::Node::ImplItem(_)
| hir::Node::TraitItem(_)
| hir::Node::Crate(_) => break,
_ => {
parent = self.tcx.hir().get_parent_node(parent);
}
}
}
}
// A generic function for checking the 'then' and 'else' clauses in an 'if'
// or 'if-else' expression.
fn check_then_else(
&self,
cond_expr: &'tcx hir::Expr<'tcx>,
then_expr: &'tcx hir::Expr<'tcx>,
opt_else_expr: Option<&'tcx hir::Expr<'tcx>>,
sp: Span,
orig_expected: Expectation<'tcx>,
) -> Ty<'tcx> {
let cond_ty = self.check_expr_has_type_or_error(cond_expr, self.tcx.types.bool, |_| {});
self.warn_if_unreachable(
cond_expr.hir_id,
then_expr.span,
"block in `if` or `while` expression",
);
let cond_diverges = self.diverges.get();
self.diverges.set(Diverges::Maybe);
let expected = orig_expected.adjust_for_branches(self);
let then_ty = self.check_expr_with_expectation(then_expr, expected);
let then_diverges = self.diverges.get();
self.diverges.set(Diverges::Maybe);
// We've already taken the expected type's preferences
// into account when typing the `then` branch. To figure
// out the initial shot at a LUB, we thus only consider
// `expected` if it represents a *hard* constraint
// (`only_has_type`); otherwise, we just go with a
// fresh type variable.
let coerce_to_ty = expected.coercion_target_type(self, sp);
let mut coerce: DynamicCoerceMany<'_> = CoerceMany::new(coerce_to_ty);
coerce.coerce(self, &self.misc(sp), then_expr, then_ty);
if let Some(else_expr) = opt_else_expr {
let else_ty = self.check_expr_with_expectation(else_expr, expected);
let else_diverges = self.diverges.get();
let opt_suggest_box_span = self.opt_suggest_box_span(then_ty, else_ty, orig_expected);
let if_cause = self.if_cause(
sp,
cond_expr.span,
then_expr,
else_expr,
then_ty,
else_ty,
opt_suggest_box_span,
);
coerce.coerce(self, &if_cause, else_expr, else_ty);
// We won't diverge unless both branches do (or the condition does).
self.diverges.set(cond_diverges | then_diverges & else_diverges);
} else {
self.if_fallback_coercion(sp, then_expr, &mut coerce);
// If the condition is false we can't diverge.
self.diverges.set(cond_diverges);
}
let result_ty = coerce.complete(self);
if cond_ty.references_error() { self.tcx.ty_error() } else { result_ty }
}
/// Type check assignment expression `expr` of form `lhs = rhs`.
/// The expected type is `()` and is passed to the function for the purposes of diagnostics.
fn check_expr_assign(
&self,
expr: &'tcx hir::Expr<'tcx>,
expected: Expectation<'tcx>,
lhs: &'tcx hir::Expr<'tcx>,
rhs: &'tcx hir::Expr<'tcx>,
span: Span,
) -> Ty<'tcx> {
let expected_ty = expected.coercion_target_type(self, expr.span);
if expected_ty == self.tcx.types.bool {
// The expected type is `bool` but this will result in `()` so we can reasonably
// say that the user intended to write `lhs == rhs` instead of `lhs = rhs`.
// The likely cause of this is `if foo = bar { .. }`.
let actual_ty = self.tcx.mk_unit();
let mut err = self.demand_suptype_diag(expr.span, expected_ty, actual_ty).unwrap();
let lhs_ty = self.check_expr(&lhs);
let rhs_ty = self.check_expr(&rhs);
let (applicability, eq) = if self.can_coerce(rhs_ty, lhs_ty) {
(Applicability::MachineApplicable, true)
} else if let ExprKind::Binary(
Spanned { node: hir::BinOpKind::And | hir::BinOpKind::Or, .. },
_,
rhs_expr,
) = lhs.kind
{
// if x == 1 && y == 2 { .. }
// +
let actual_lhs_ty = self.check_expr(&rhs_expr);
(Applicability::MaybeIncorrect, self.can_coerce(rhs_ty, actual_lhs_ty))
} else if let ExprKind::Binary(
Spanned { node: hir::BinOpKind::And | hir::BinOpKind::Or, .. },
lhs_expr,
_,
) = rhs.kind
{
// if x == 1 && y == 2 { .. }
// +
let actual_rhs_ty = self.check_expr(&lhs_expr);
(Applicability::MaybeIncorrect, self.can_coerce(actual_rhs_ty, lhs_ty))
} else {
(Applicability::MaybeIncorrect, false)
};
if !lhs.is_syntactic_place_expr()
&& lhs.is_approximately_pattern()
&& !matches!(lhs.kind, hir::ExprKind::Lit(_))
{
// Do not suggest `if let x = y` as `==` is way more likely to be the intention.
let hir = self.tcx.hir();
if let hir::Node::Expr(hir::Expr { kind: ExprKind::If { .. }, .. }) =
hir.get(hir.get_parent_node(hir.get_parent_node(expr.hir_id)))
{
err.span_suggestion_verbose(
expr.span.shrink_to_lo(),
"you might have meant to use pattern matching",
"let ",
applicability,
);
};
}
if eq {
err.span_suggestion_verbose(
span.shrink_to_hi(),
"you might have meant to compare for equality",
'=',
applicability,
);
}
// If the assignment expression itself is ill-formed, don't
// bother emitting another error
if lhs_ty.references_error() || rhs_ty.references_error() {
err.delay_as_bug()
} else {
err.emit();
}
return self.tcx.ty_error();
}
let lhs_ty = self.check_expr_with_needs(&lhs, Needs::MutPlace);
let suggest_deref_binop = |err: &mut Diagnostic, rhs_ty: Ty<'tcx>| {
if let Some(lhs_deref_ty) = self.deref_once_mutably_for_diagnostic(lhs_ty) {
// Can only assign if the type is sized, so if `DerefMut` yields a type that is
// unsized, do not suggest dereferencing it.
let lhs_deref_ty_is_sized = self
.infcx
.type_implements_trait(
self.tcx.lang_items().sized_trait().unwrap(),
lhs_deref_ty,
ty::List::empty(),
self.param_env,
)
.may_apply();
if lhs_deref_ty_is_sized && self.can_coerce(rhs_ty, lhs_deref_ty) {
err.span_suggestion_verbose(
lhs.span.shrink_to_lo(),
"consider dereferencing here to assign to the mutably borrowed value",
"*",
Applicability::MachineApplicable,
);
}
}
};
// This is (basically) inlined `check_expr_coercable_to_type`, but we want
// to suggest an additional fixup here in `suggest_deref_binop`.
let rhs_ty = self.check_expr_with_hint(&rhs, lhs_ty);
if let (_, Some(mut diag)) =
self.demand_coerce_diag(rhs, rhs_ty, lhs_ty, Some(lhs), AllowTwoPhase::No)
{
suggest_deref_binop(&mut diag, rhs_ty);
diag.emit();
}
self.check_lhs_assignable(lhs, "E0070", span, |err| {
if let Some(rhs_ty) = self.typeck_results.borrow().expr_ty_opt(rhs) {
suggest_deref_binop(err, rhs_ty);
}
});
self.require_type_is_sized(lhs_ty, lhs.span, traits::AssignmentLhsSized);
if lhs_ty.references_error() || rhs_ty.references_error() {
self.tcx.ty_error()
} else {
self.tcx.mk_unit()
}
}
pub(super) fn check_expr_let(&self, let_expr: &'tcx hir::Let<'tcx>) -> Ty<'tcx> {
// for let statements, this is done in check_stmt
let init = let_expr.init;
self.warn_if_unreachable(init.hir_id, init.span, "block in `let` expression");
// otherwise check exactly as a let statement
self.check_decl(let_expr.into());
// but return a bool, for this is a boolean expression
self.tcx.types.bool
}
fn check_expr_loop(
&self,
body: &'tcx hir::Block<'tcx>,
source: hir::LoopSource,
expected: Expectation<'tcx>,
expr: &'tcx hir::Expr<'tcx>,
) -> Ty<'tcx> {
let coerce = match source {
// you can only use break with a value from a normal `loop { }`
hir::LoopSource::Loop => {
let coerce_to = expected.coercion_target_type(self, body.span);
Some(CoerceMany::new(coerce_to))
}
hir::LoopSource::While | hir::LoopSource::ForLoop => None,
};
let ctxt = BreakableCtxt {
coerce,
may_break: false, // Will get updated if/when we find a `break`.
};
let (ctxt, ()) = self.with_breakable_ctxt(expr.hir_id, ctxt, || {
self.check_block_no_value(&body);
});
if ctxt.may_break {
// No way to know whether it's diverging because
// of a `break` or an outer `break` or `return`.
self.diverges.set(Diverges::Maybe);
}
// If we permit break with a value, then result type is
// the LUB of the breaks (possibly ! if none); else, it
// is nil. This makes sense because infinite loops
// (which would have type !) are only possible iff we
// permit break with a value [1].
if ctxt.coerce.is_none() && !ctxt.may_break {
// [1]
self.tcx.sess.delay_span_bug(body.span, "no coercion, but loop may not break");
}
ctxt.coerce.map(|c| c.complete(self)).unwrap_or_else(|| self.tcx.mk_unit())
}
/// Checks a method call.
fn check_method_call(
&self,
expr: &'tcx hir::Expr<'tcx>,
segment: &hir::PathSegment<'_>,
rcvr: &'tcx hir::Expr<'tcx>,
args: &'tcx [hir::Expr<'tcx>],
expected: Expectation<'tcx>,
) -> Ty<'tcx> {
let rcvr_t = self.check_expr(&rcvr);
// no need to check for bot/err -- callee does that
let rcvr_t = self.structurally_resolved_type(rcvr.span, rcvr_t);
let span = segment.ident.span;
let method = match self.lookup_method(rcvr_t, segment, span, expr, rcvr, args) {
Ok(method) => {
// We could add a "consider `foo::<params>`" suggestion here, but I wasn't able to
// trigger this codepath causing `structurally_resolved_type` to emit an error.
self.write_method_call(expr.hir_id, method);
Ok(method)
}
Err(error) => {
if segment.ident.name != kw::Empty {
if let Some(mut err) = self.report_method_error(
span,
rcvr_t,
segment.ident,
SelfSource::MethodCall(rcvr),
error,
Some((rcvr, args)),
) {
err.emit();
}
}
Err(())
}
};
// Call the generic checker.
self.check_method_argument_types(span, expr, method, &args, DontTupleArguments, expected)
}
fn check_expr_cast(
&self,
e: &'tcx hir::Expr<'tcx>,
t: &'tcx hir::Ty<'tcx>,
expr: &'tcx hir::Expr<'tcx>,
) -> Ty<'tcx> {
// Find the type of `e`. Supply hints based on the type we are casting to,
// if appropriate.
let t_cast = self.to_ty_saving_user_provided_ty(t);
let t_cast = self.resolve_vars_if_possible(t_cast);
let t_expr = self.check_expr_with_expectation(e, ExpectCastableToType(t_cast));
let t_expr = self.resolve_vars_if_possible(t_expr);
// Eagerly check for some obvious errors.
if t_expr.references_error() || t_cast.references_error() {
self.tcx.ty_error()
} else {
// Defer other checks until we're done type checking.
let mut deferred_cast_checks = self.deferred_cast_checks.borrow_mut();
match cast::CastCheck::new(self, e, t_expr, t_cast, t.span, expr.span) {
Ok(cast_check) => {
debug!(
"check_expr_cast: deferring cast from {:?} to {:?}: {:?}",
t_cast, t_expr, cast_check,
);
deferred_cast_checks.push(cast_check);
t_cast
}
Err(_) => self.tcx.ty_error(),
}
}
}
fn check_expr_array(
&self,
args: &'tcx [hir::Expr<'tcx>],
expected: Expectation<'tcx>,
expr: &'tcx hir::Expr<'tcx>,
) -> Ty<'tcx> {
let element_ty = if !args.is_empty() {
let coerce_to = expected
.to_option(self)
.and_then(|uty| match *uty.kind() {
ty::Array(ty, _) | ty::Slice(ty) => Some(ty),
_ => None,
})
.unwrap_or_else(|| {
self.next_ty_var(TypeVariableOrigin {
kind: TypeVariableOriginKind::TypeInference,
span: expr.span,
})
});
let mut coerce = CoerceMany::with_coercion_sites(coerce_to, args);
assert_eq!(self.diverges.get(), Diverges::Maybe);
for e in args {
let e_ty = self.check_expr_with_hint(e, coerce_to);
let cause = self.misc(e.span);
coerce.coerce(self, &cause, e, e_ty);
}
coerce.complete(self)
} else {
self.next_ty_var(TypeVariableOrigin {
kind: TypeVariableOriginKind::TypeInference,
span: expr.span,
})
};
let array_len = args.len() as u64;
self.suggest_array_len(expr, array_len);
self.tcx.mk_array(element_ty, array_len)
}
fn suggest_array_len(&self, expr: &'tcx hir::Expr<'tcx>, array_len: u64) {
let parent_node = self.tcx.hir().parent_iter(expr.hir_id).find(|(_, node)| {
!matches!(node, hir::Node::Expr(hir::Expr { kind: hir::ExprKind::AddrOf(..), .. }))
});
let Some((_,
hir::Node::Local(hir::Local { ty: Some(ty), .. })
| hir::Node::Item(hir::Item { kind: hir::ItemKind::Const(ty, _), .. }))
) = parent_node else {
return
};
if let hir::TyKind::Array(_, length) = ty.peel_refs().kind
&& let hir::ArrayLen::Body(hir::AnonConst { hir_id, .. }) = length
&& let Some(span) = self.tcx.hir().opt_span(hir_id)
{
match self.tcx.sess.diagnostic().steal_diagnostic(span, StashKey::UnderscoreForArrayLengths) {
Some(mut err) => {
err.span_suggestion(
span,
"consider specifying the array length",
array_len,
Applicability::MaybeIncorrect,
);
err.emit();
}
None => ()
}
}
}
fn check_expr_const_block(
&self,
anon_const: &'tcx hir::AnonConst,
expected: Expectation<'tcx>,
_expr: &'tcx hir::Expr<'tcx>,
) -> Ty<'tcx> {
let body = self.tcx.hir().body(anon_const.body);
// Create a new function context.
let fcx = FnCtxt::new(self, self.param_env.with_const(), body.value.hir_id);
crate::check::GatherLocalsVisitor::new(&fcx).visit_body(body);
let ty = fcx.check_expr_with_expectation(&body.value, expected);
fcx.require_type_is_sized(ty, body.value.span, traits::ConstSized);
fcx.write_ty(anon_const.hir_id, ty);
ty
}
fn check_expr_repeat(
&self,
element: &'tcx hir::Expr<'tcx>,
count: &'tcx hir::ArrayLen,
expected: Expectation<'tcx>,
expr: &'tcx hir::Expr<'tcx>,
) -> Ty<'tcx> {
let tcx = self.tcx;
let count = self.array_length_to_const(count);
if let Some(count) = count.try_eval_usize(tcx, self.param_env) {
self.suggest_array_len(expr, count);
}
let uty = match expected {
ExpectHasType(uty) => match *uty.kind() {
ty::Array(ty, _) | ty::Slice(ty) => Some(ty),
_ => None,
},
_ => None,
};
let (element_ty, t) = match uty {
Some(uty) => {
self.check_expr_coercable_to_type(&element, uty, None);
(uty, uty)
}
None => {
let ty = self.next_ty_var(TypeVariableOrigin {
kind: TypeVariableOriginKind::MiscVariable,
span: element.span,
});
let element_ty = self.check_expr_has_type_or_error(&element, ty, |_| {});
(element_ty, ty)
}
};
if element_ty.references_error() {
return tcx.ty_error();
}
self.check_repeat_element_needs_copy_bound(element, count, element_ty);
tcx.mk_ty(ty::Array(t, count))
}
fn check_repeat_element_needs_copy_bound(
&self,
element: &hir::Expr<'_>,
count: ty::Const<'tcx>,
element_ty: Ty<'tcx>,
) {
let tcx = self.tcx;
// Actual constants as the repeat element get inserted repeatedly instead of getting copied via Copy.
match &element.kind {
hir::ExprKind::ConstBlock(..) => return,
hir::ExprKind::Path(qpath) => {
let res = self.typeck_results.borrow().qpath_res(qpath, element.hir_id);
if let Res::Def(DefKind::Const | DefKind::AssocConst | DefKind::AnonConst, _) = res
{
return;
}
}
_ => {}
}
// If someone calls a const fn, they can extract that call out into a separate constant (or a const
// block in the future), so we check that to tell them that in the diagnostic. Does not affect typeck.
let is_const_fn = match element.kind {
hir::ExprKind::Call(func, _args) => match *self.node_ty(func.hir_id).kind() {
ty::FnDef(def_id, _) => tcx.is_const_fn(def_id),
_ => false,
},
_ => false,
};
// If the length is 0, we don't create any elements, so we don't copy any. If the length is 1, we
// don't copy that one element, we move it. Only check for Copy if the length is larger.
if count.try_eval_usize(tcx, self.param_env).map_or(true, |len| len > 1) {
let lang_item = self.tcx.require_lang_item(LangItem::Copy, None);
let code = traits::ObligationCauseCode::RepeatElementCopy { is_const_fn };
self.require_type_meets(element_ty, element.span, code, lang_item);
}
}
fn check_expr_tuple(
&self,
elts: &'tcx [hir::Expr<'tcx>],
expected: Expectation<'tcx>,
expr: &'tcx hir::Expr<'tcx>,
) -> Ty<'tcx> {
let flds = expected.only_has_type(self).and_then(|ty| {
let ty = self.resolve_vars_with_obligations(ty);
match ty.kind() {
ty::Tuple(flds) => Some(&flds[..]),
_ => None,
}
});
let elt_ts_iter = elts.iter().enumerate().map(|(i, e)| match flds {
Some(fs) if i < fs.len() => {
let ety = fs[i];
self.check_expr_coercable_to_type(&e, ety, None);
ety
}
_ => self.check_expr_with_expectation(&e, NoExpectation),
});
let tuple = self.tcx.mk_tup(elt_ts_iter);
if tuple.references_error() {
self.tcx.ty_error()
} else {
self.require_type_is_sized(tuple, expr.span, traits::TupleInitializerSized);
tuple
}
}
fn check_expr_struct(
&self,
expr: &hir::Expr<'_>,
expected: Expectation<'tcx>,
qpath: &QPath<'_>,
fields: &'tcx [hir::ExprField<'tcx>],
base_expr: &'tcx Option<&'tcx hir::Expr<'tcx>>,
) -> Ty<'tcx> {
// Find the relevant variant
let Some((variant, adt_ty)) = self.check_struct_path(qpath, expr.hir_id) else {
self.check_struct_fields_on_error(fields, base_expr);
return self.tcx.ty_error();
};
// Prohibit struct expressions when non-exhaustive flag is set.
let adt = adt_ty.ty_adt_def().expect("`check_struct_path` returned non-ADT type");
if !adt.did().is_local() && variant.is_field_list_non_exhaustive() {
self.tcx
.sess
.emit_err(StructExprNonExhaustive { span: expr.span, what: adt.variant_descr() });
}
self.check_expr_struct_fields(
adt_ty,
expected,
expr.hir_id,
qpath.span(),
variant,
fields,
base_expr,
expr.span,
);
self.require_type_is_sized(adt_ty, expr.span, traits::StructInitializerSized);
adt_ty
}
fn check_expr_struct_fields(
&self,
adt_ty: Ty<'tcx>,
expected: Expectation<'tcx>,
expr_id: hir::HirId,
span: Span,
variant: &'tcx ty::VariantDef,
ast_fields: &'tcx [hir::ExprField<'tcx>],
base_expr: &'tcx Option<&'tcx hir::Expr<'tcx>>,
expr_span: Span,
) {
let tcx = self.tcx;
let expected_inputs =
self.expected_inputs_for_expected_output(span, expected, adt_ty, &[adt_ty]);
let adt_ty_hint = if let Some(expected_inputs) = expected_inputs {
expected_inputs.get(0).cloned().unwrap_or(adt_ty)
} else {
adt_ty
};
// re-link the regions that EIfEO can erase.
self.demand_eqtype(span, adt_ty_hint, adt_ty);
let ty::Adt(adt, substs) = adt_ty.kind() else {
span_bug!(span, "non-ADT passed to check_expr_struct_fields");
};
let adt_kind = adt.adt_kind();
let mut remaining_fields = variant
.fields
.iter()
.enumerate()
.map(|(i, field)| (field.ident(tcx).normalize_to_macros_2_0(), (i, field)))
.collect::<FxHashMap<_, _>>();
let mut seen_fields = FxHashMap::default();
let mut error_happened = false;
// Type-check each field.
for (idx, field) in ast_fields.iter().enumerate() {
let ident = tcx.adjust_ident(field.ident, variant.def_id);
let field_type = if let Some((i, v_field)) = remaining_fields.remove(&ident) {
seen_fields.insert(ident, field.span);
self.write_field_index(field.hir_id, i);
// We don't look at stability attributes on
// struct-like enums (yet...), but it's definitely not
// a bug to have constructed one.
if adt_kind != AdtKind::Enum {
tcx.check_stability(v_field.did, Some(expr_id), field.span, None);
}
self.field_ty(field.span, v_field, substs)
} else {
error_happened = true;
if let Some(prev_span) = seen_fields.get(&ident) {
tcx.sess.emit_err(FieldMultiplySpecifiedInInitializer {
span: field.ident.span,
prev_span: *prev_span,
ident,
});
} else {
self.report_unknown_field(
adt_ty,
variant,
field,
ast_fields,
adt.variant_descr(),
expr_span,
);
}
tcx.ty_error()
};
// Make sure to give a type to the field even if there's
// an error, so we can continue type-checking.
let ty = self.check_expr_with_hint(&field.expr, field_type);
let (_, diag) =
self.demand_coerce_diag(&field.expr, ty, field_type, None, AllowTwoPhase::No);
if let Some(mut diag) = diag {
if idx == ast_fields.len() - 1 && remaining_fields.is_empty() {
self.suggest_fru_from_range(field, variant, substs, &mut diag);
}
diag.emit();
}
}
// Make sure the programmer specified correct number of fields.
if adt_kind == AdtKind::Union {
if ast_fields.len() != 1 {
struct_span_err!(
tcx.sess,
span,
E0784,
"union expressions should have exactly one field",
)
.emit();
}
}
// If check_expr_struct_fields hit an error, do not attempt to populate
// the fields with the base_expr. This could cause us to hit errors later
// when certain fields are assumed to exist that in fact do not.
if error_happened {
return;
}
if let Some(base_expr) = base_expr {
// FIXME: We are currently creating two branches here in order to maintain
// consistency. But they should be merged as much as possible.
let fru_tys = if self.tcx.features().type_changing_struct_update {
if adt.is_struct() {
// Make some fresh substitutions for our ADT type.
let fresh_substs = self.fresh_substs_for_item(base_expr.span, adt.did());
// We do subtyping on the FRU fields first, so we can
// learn exactly what types we expect the base expr
// needs constrained to be compatible with the struct
// type we expect from the expectation value.
let fru_tys = variant
.fields
.iter()
.map(|f| {
let fru_ty = self.normalize_associated_types_in(
expr_span,
self.field_ty(base_expr.span, f, fresh_substs),
);
let ident = self.tcx.adjust_ident(f.ident(self.tcx), variant.def_id);
if let Some(_) = remaining_fields.remove(&ident) {
let target_ty = self.field_ty(base_expr.span, f, substs);
let cause = self.misc(base_expr.span);
match self.at(&cause, self.param_env).sup(target_ty, fru_ty) {
Ok(InferOk { obligations, value: () }) => {
self.register_predicates(obligations)
}
Err(_) => {
// This should never happen, since we're just subtyping the
// remaining_fields, but it's fine to emit this, I guess.
self.err_ctxt()
.report_mismatched_types(
&cause,
target_ty,
fru_ty,
FieldMisMatch(variant.name, ident.name),
)
.emit();
}
}
}
self.resolve_vars_if_possible(fru_ty)
})
.collect();
// The use of fresh substs that we have subtyped against
// our base ADT type's fields allows us to guide inference
// along so that, e.g.
// ```
// MyStruct<'a, F1, F2, const C: usize> {
// f: F1,
// // Other fields that reference `'a`, `F2`, and `C`
// }
//
// let x = MyStruct {
// f: 1usize,
// ..other_struct
// };
// ```
// will have the `other_struct` expression constrained to
// `MyStruct<'a, _, F2, C>`, as opposed to just `_`...
// This is important to allow coercions to happen in
// `other_struct` itself. See `coerce-in-base-expr.rs`.
let fresh_base_ty = self.tcx.mk_adt(*adt, fresh_substs);
self.check_expr_has_type_or_error(
base_expr,
self.resolve_vars_if_possible(fresh_base_ty),
|_| {},
);
fru_tys
} else {
// Check the base_expr, regardless of a bad expected adt_ty, so we can get
// type errors on that expression, too.
self.check_expr(base_expr);
self.tcx
.sess
.emit_err(FunctionalRecordUpdateOnNonStruct { span: base_expr.span });
return;
}
} else {
self.check_expr_has_type_or_error(base_expr, adt_ty, |_| {
let base_ty = self.typeck_results.borrow().expr_ty(*base_expr);
let same_adt = match (adt_ty.kind(), base_ty.kind()) {
(ty::Adt(adt, _), ty::Adt(base_adt, _)) if adt == base_adt => true,
_ => false,
};
if self.tcx.sess.is_nightly_build() && same_adt {
feature_err(
&self.tcx.sess.parse_sess,
sym::type_changing_struct_update,
base_expr.span,
"type changing struct updating is experimental",
)
.emit();
}
});
match adt_ty.kind() {
ty::Adt(adt, substs) if adt.is_struct() => variant
.fields
.iter()
.map(|f| {
self.normalize_associated_types_in(expr_span, f.ty(self.tcx, substs))
})
.collect(),
_ => {
self.tcx
.sess
.emit_err(FunctionalRecordUpdateOnNonStruct { span: base_expr.span });
return;
}
}
};
self.typeck_results.borrow_mut().fru_field_types_mut().insert(expr_id, fru_tys);
} else if adt_kind != AdtKind::Union && !remaining_fields.is_empty() {
debug!(?remaining_fields);
let private_fields: Vec<&ty::FieldDef> = variant
.fields
.iter()
.filter(|field| !field.vis.is_accessible_from(tcx.parent_module(expr_id), tcx))
.collect();
if !private_fields.is_empty() {
self.report_private_fields(adt_ty, span, private_fields, ast_fields);
} else {
self.report_missing_fields(
adt_ty,
span,
remaining_fields,
variant,
ast_fields,
substs,
);
}
}
}
fn check_struct_fields_on_error(
&self,
fields: &'tcx [hir::ExprField<'tcx>],
base_expr: &'tcx Option<&'tcx hir::Expr<'tcx>>,
) {
for field in fields {
self.check_expr(&field.expr);
}
if let Some(base) = *base_expr {
self.check_expr(&base);
}
}
/// Report an error for a struct field expression when there are fields which aren't provided.
///
/// ```text
/// error: missing field `you_can_use_this_field` in initializer of `foo::Foo`
/// --> src/main.rs:8:5
/// |
/// 8 | foo::Foo {};
/// | ^^^^^^^^ missing `you_can_use_this_field`
///
/// error: aborting due to previous error
/// ```
fn report_missing_fields(
&self,
adt_ty: Ty<'tcx>,
span: Span,
remaining_fields: FxHashMap<Ident, (usize, &ty::FieldDef)>,
variant: &'tcx ty::VariantDef,
ast_fields: &'tcx [hir::ExprField<'tcx>],
substs: SubstsRef<'tcx>,
) {
let len = remaining_fields.len();
let mut displayable_field_names: Vec<&str> =
remaining_fields.keys().map(|ident| ident.as_str()).collect();
// sorting &str primitives here, sort_unstable is ok
displayable_field_names.sort_unstable();
let mut truncated_fields_error = String::new();
let remaining_fields_names = match &displayable_field_names[..] {
[field1] => format!("`{}`", field1),
[field1, field2] => format!("`{field1}` and `{field2}`"),
[field1, field2, field3] => format!("`{field1}`, `{field2}` and `{field3}`"),
_ => {
truncated_fields_error =
format!(" and {} other field{}", len - 3, pluralize!(len - 3));
displayable_field_names
.iter()
.take(3)
.map(|n| format!("`{n}`"))
.collect::<Vec<_>>()
.join(", ")
}
};
let mut err = struct_span_err!(
self.tcx.sess,
span,
E0063,
"missing field{} {}{} in initializer of `{}`",
pluralize!(len),
remaining_fields_names,
truncated_fields_error,
adt_ty
);
err.span_label(span, format!("missing {remaining_fields_names}{truncated_fields_error}"));
if let Some(last) = ast_fields.last() {
self.suggest_fru_from_range(last, variant, substs, &mut err);
}
err.emit();
}
/// If the last field is a range literal, but it isn't supposed to be, then they probably
/// meant to use functional update syntax.
fn suggest_fru_from_range(
&self,
last_expr_field: &hir::ExprField<'tcx>,
variant: &ty::VariantDef,
substs: SubstsRef<'tcx>,
err: &mut Diagnostic,
) {
// I don't use 'is_range_literal' because only double-sided, half-open ranges count.
if let ExprKind::Struct(
QPath::LangItem(LangItem::Range, ..),
&[ref range_start, ref range_end],
_,
) = last_expr_field.expr.kind
&& let variant_field =
variant.fields.iter().find(|field| field.ident(self.tcx) == last_expr_field.ident)
&& let range_def_id = self.tcx.lang_items().range_struct()
&& variant_field
.and_then(|field| field.ty(self.tcx, substs).ty_adt_def())
.map(|adt| adt.did())
!= range_def_id
{
let instead = self
.tcx
.sess
.source_map()
.span_to_snippet(range_end.expr.span)
.map(|s| format!(" from `{s}`"))
.unwrap_or_default();
err.span_suggestion(
range_start.span.shrink_to_hi(),
&format!("to set the remaining fields{instead}, separate the last named field with a comma"),
",",
Applicability::MaybeIncorrect,
);
}
}
/// Report an error for a struct field expression when there are invisible fields.
///
/// ```text
/// error: cannot construct `Foo` with struct literal syntax due to private fields
/// --> src/main.rs:8:5
/// |
/// 8 | foo::Foo {};
/// | ^^^^^^^^
///
/// error: aborting due to previous error
/// ```
fn report_private_fields(
&self,
adt_ty: Ty<'tcx>,
span: Span,
private_fields: Vec<&ty::FieldDef>,
used_fields: &'tcx [hir::ExprField<'tcx>],
) {
let mut err = self.tcx.sess.struct_span_err(
span,
&format!(
"cannot construct `{adt_ty}` with struct literal syntax due to private fields",
),
);
let (used_private_fields, remaining_private_fields): (
Vec<(Symbol, Span, bool)>,
Vec<(Symbol, Span, bool)>,
) = private_fields
.iter()
.map(|field| {
match used_fields.iter().find(|used_field| field.name == used_field.ident.name) {
Some(used_field) => (field.name, used_field.span, true),
None => (field.name, self.tcx.def_span(field.did), false),
}
})
.partition(|field| field.2);
err.span_labels(used_private_fields.iter().map(|(_, span, _)| *span), "private field");
if !remaining_private_fields.is_empty() {
let remaining_private_fields_len = remaining_private_fields.len();
let names = match &remaining_private_fields
.iter()
.map(|(name, _, _)| name)
.collect::<Vec<_>>()[..]
{
_ if remaining_private_fields_len > 6 => String::new(),
[name] => format!("`{name}` "),
[names @ .., last] => {
let names = names.iter().map(|name| format!("`{name}`")).collect::<Vec<_>>();
format!("{} and `{last}` ", names.join(", "))
}
[] => unreachable!(),
};
err.note(format!(
"... and other private field{s} {names}that {were} not provided",
s = pluralize!(remaining_private_fields_len),
were = pluralize!("was", remaining_private_fields_len),
));
}
err.emit();
}
fn report_unknown_field(
&self,
ty: Ty<'tcx>,
variant: &'tcx ty::VariantDef,
field: &hir::ExprField<'_>,
skip_fields: &[hir::ExprField<'_>],
kind_name: &str,
expr_span: Span,
) {
if variant.is_recovered() {
self.set_tainted_by_errors();
return;
}
let mut err = self.err_ctxt().type_error_struct_with_diag(
field.ident.span,
|actual| match ty.kind() {
ty::Adt(adt, ..) if adt.is_enum() => struct_span_err!(
self.tcx.sess,
field.ident.span,
E0559,
"{} `{}::{}` has no field named `{}`",
kind_name,
actual,
variant.name,
field.ident
),
_ => struct_span_err!(
self.tcx.sess,
field.ident.span,
E0560,
"{} `{}` has no field named `{}`",
kind_name,
actual,
field.ident
),
},
ty,
);
let variant_ident_span = self.tcx.def_ident_span(variant.def_id).unwrap();
match variant.ctor_kind {
CtorKind::Fn => match ty.kind() {
ty::Adt(adt, ..) if adt.is_enum() => {
err.span_label(
variant_ident_span,
format!(
"`{adt}::{variant}` defined here",
adt = ty,
variant = variant.name,
),
);
err.span_label(field.ident.span, "field does not exist");
err.span_suggestion_verbose(
expr_span,
&format!(
"`{adt}::{variant}` is a tuple {kind_name}, use the appropriate syntax",
adt = ty,
variant = variant.name,
),
format!(
"{adt}::{variant}(/* fields */)",
adt = ty,
variant = variant.name,
),
Applicability::HasPlaceholders,
);
}
_ => {
err.span_label(variant_ident_span, format!("`{adt}` defined here", adt = ty));
err.span_label(field.ident.span, "field does not exist");
err.span_suggestion_verbose(
expr_span,
&format!(
"`{adt}` is a tuple {kind_name}, use the appropriate syntax",
adt = ty,
kind_name = kind_name,
),
format!("{adt}(/* fields */)", adt = ty),
Applicability::HasPlaceholders,
);
}
},
_ => {
// prevent all specified fields from being suggested
let skip_fields = skip_fields.iter().map(|x| x.ident.name);
if let Some(field_name) = self.suggest_field_name(
variant,
field.ident.name,
skip_fields.collect(),
expr_span,
) {
err.span_suggestion(
field.ident.span,
"a field with a similar name exists",
field_name,
Applicability::MaybeIncorrect,
);
} else {
match ty.kind() {
ty::Adt(adt, ..) => {
if adt.is_enum() {
err.span_label(
field.ident.span,
format!("`{}::{}` does not have this field", ty, variant.name),
);
} else {
err.span_label(
field.ident.span,
format!("`{ty}` does not have this field"),
);
}
let available_field_names =
self.available_field_names(variant, expr_span);
if !available_field_names.is_empty() {
err.note(&format!(
"available fields are: {}",
self.name_series_display(available_field_names)
));
}
}
_ => bug!("non-ADT passed to report_unknown_field"),
}
};
}
}
err.emit();
}
// Return a hint about the closest match in field names
fn suggest_field_name(
&self,
variant: &'tcx ty::VariantDef,
field: Symbol,
skip: Vec<Symbol>,
// The span where stability will be checked
span: Span,
) -> Option<Symbol> {
let names = variant
.fields
.iter()
.filter_map(|field| {
// ignore already set fields and private fields from non-local crates
// and unstable fields.
if skip.iter().any(|&x| x == field.name)
|| (!variant.def_id.is_local() && !field.vis.is_public())
|| matches!(
self.tcx.eval_stability(field.did, None, span, None),
stability::EvalResult::Deny { .. }
)
{
None
} else {
Some(field.name)
}
})
.collect::<Vec<Symbol>>();
find_best_match_for_name(&names, field, None)
}
fn available_field_names(
&self,
variant: &'tcx ty::VariantDef,
access_span: Span,
) -> Vec<Symbol> {
variant
.fields
.iter()
.filter(|field| {
let def_scope = self
.tcx
.adjust_ident_and_get_scope(field.ident(self.tcx), variant.def_id, self.body_id)
.1;
field.vis.is_accessible_from(def_scope, self.tcx)
&& !matches!(
self.tcx.eval_stability(field.did, None, access_span, None),
stability::EvalResult::Deny { .. }
)
})
.filter(|field| !self.tcx.is_doc_hidden(field.did))
.map(|field| field.name)
.collect()
}
fn name_series_display(&self, names: Vec<Symbol>) -> String {
// dynamic limit, to never omit just one field
let limit = if names.len() == 6 { 6 } else { 5 };
let mut display =
names.iter().take(limit).map(|n| format!("`{}`", n)).collect::<Vec<_>>().join(", ");
if names.len() > limit {
display = format!("{} ... and {} others", display, names.len() - limit);
}
display
}
// Check field access expressions
fn check_field(
&self,
expr: &'tcx hir::Expr<'tcx>,
base: &'tcx hir::Expr<'tcx>,
field: Ident,
) -> Ty<'tcx> {
debug!("check_field(expr: {:?}, base: {:?}, field: {:?})", expr, base, field);
let base_ty = self.check_expr(base);
let base_ty = self.structurally_resolved_type(base.span, base_ty);
let mut private_candidate = None;
let mut autoderef = self.autoderef(expr.span, base_ty);
while let Some((deref_base_ty, _)) = autoderef.next() {
debug!("deref_base_ty: {:?}", deref_base_ty);
match deref_base_ty.kind() {
ty::Adt(base_def, substs) if !base_def.is_enum() => {
debug!("struct named {:?}", deref_base_ty);
let (ident, def_scope) =
self.tcx.adjust_ident_and_get_scope(field, base_def.did(), self.body_id);
let fields = &base_def.non_enum_variant().fields;
if let Some(index) = fields
.iter()
.position(|f| f.ident(self.tcx).normalize_to_macros_2_0() == ident)
{
let field = &fields[index];
let field_ty = self.field_ty(expr.span, field, substs);
// Save the index of all fields regardless of their visibility in case
// of error recovery.
self.write_field_index(expr.hir_id, index);
let adjustments = self.adjust_steps(&autoderef);
if field.vis.is_accessible_from(def_scope, self.tcx) {
self.apply_adjustments(base, adjustments);
self.register_predicates(autoderef.into_obligations());
self.tcx.check_stability(field.did, Some(expr.hir_id), expr.span, None);
return field_ty;
}
private_candidate = Some((adjustments, base_def.did(), field_ty));
}
}
ty::Tuple(tys) => {
let fstr = field.as_str();
if let Ok(index) = fstr.parse::<usize>() {
if fstr == index.to_string() {
if let Some(&field_ty) = tys.get(index) {
let adjustments = self.adjust_steps(&autoderef);
self.apply_adjustments(base, adjustments);
self.register_predicates(autoderef.into_obligations());
self.write_field_index(expr.hir_id, index);
return field_ty;
}
}
}
}
_ => {}
}
}
self.structurally_resolved_type(autoderef.span(), autoderef.final_ty(false));
if let Some((adjustments, did, field_ty)) = private_candidate {
// (#90483) apply adjustments to avoid ExprUseVisitor from
// creating erroneous projection.
self.apply_adjustments(base, adjustments);
self.ban_private_field_access(expr, base_ty, field, did);
return field_ty;
}
if field.name == kw::Empty {
} else if self.method_exists(field, base_ty, expr.hir_id, true) {
self.ban_take_value_of_method(expr, base_ty, field);
} else if !base_ty.is_primitive_ty() {
self.ban_nonexisting_field(field, base, expr, base_ty);
} else {
let field_name = field.to_string();
let mut err = type_error_struct!(
self.tcx().sess,
field.span,
base_ty,
E0610,
"`{base_ty}` is a primitive type and therefore doesn't have fields",
);
let is_valid_suffix = |field: &str| {
if field == "f32" || field == "f64" {
return true;
}
let mut chars = field.chars().peekable();
match chars.peek() {
Some('e') | Some('E') => {
chars.next();
if let Some(c) = chars.peek()
&& !c.is_numeric() && *c != '-' && *c != '+'
{
return false;
}
while let Some(c) = chars.peek() {
if !c.is_numeric() {
break;
}
chars.next();
}
}
_ => (),
}
let suffix = chars.collect::<String>();
suffix.is_empty() || suffix == "f32" || suffix == "f64"
};
let maybe_partial_suffix = |field: &str| -> Option<&str> {
let first_chars = ['f', 'l'];
if field.len() >= 1
&& field.to_lowercase().starts_with(first_chars)
&& field[1..].chars().all(|c| c.is_ascii_digit())
{
if field.to_lowercase().starts_with(['f']) { Some("f32") } else { Some("f64") }
} else {
None
}
};
if let ty::Infer(ty::IntVar(_)) = base_ty.kind()
&& let ExprKind::Lit(Spanned {
node: ast::LitKind::Int(_, ast::LitIntType::Unsuffixed),
..
}) = base.kind
&& !base.span.from_expansion()
{
if is_valid_suffix(&field_name) {
err.span_suggestion_verbose(
field.span.shrink_to_lo(),
"if intended to be a floating point literal, consider adding a `0` after the period",
'0',
Applicability::MaybeIncorrect,
);
} else if let Some(correct_suffix) = maybe_partial_suffix(&field_name) {
err.span_suggestion_verbose(
field.span,
format!("if intended to be a floating point literal, consider adding a `0` after the period and a `{correct_suffix}` suffix"),
format!("0{correct_suffix}"),
Applicability::MaybeIncorrect,
);
}
}
err.emit();
}
self.tcx().ty_error()
}
fn suggest_await_on_field_access(
&self,
err: &mut Diagnostic,
field_ident: Ident,
base: &'tcx hir::Expr<'tcx>,
ty: Ty<'tcx>,
) {
let output_ty = match self.get_impl_future_output_ty(ty) {
Some(output_ty) => self.resolve_vars_if_possible(output_ty),
_ => return,
};
let mut add_label = true;
if let ty::Adt(def, _) = output_ty.skip_binder().kind() {
// no field access on enum type
if !def.is_enum() {
if def
.non_enum_variant()
.fields
.iter()
.any(|field| field.ident(self.tcx) == field_ident)
{
add_label = false;
err.span_label(
field_ident.span,
"field not available in `impl Future`, but it is available in its `Output`",
);
err.span_suggestion_verbose(
base.span.shrink_to_hi(),
"consider `await`ing on the `Future` and access the field of its `Output`",
".await",
Applicability::MaybeIncorrect,
);
}
}
}
if add_label {
err.span_label(field_ident.span, &format!("field not found in `{ty}`"));
}
}
fn ban_nonexisting_field(
&self,
ident: Ident,
base: &'tcx hir::Expr<'tcx>,
expr: &'tcx hir::Expr<'tcx>,
base_ty: Ty<'tcx>,
) {
debug!(
"ban_nonexisting_field: field={:?}, base={:?}, expr={:?}, base_ty={:?}",
ident, base, expr, base_ty
);
let mut err = self.no_such_field_err(ident, base_ty, base.hir_id);
match *base_ty.peel_refs().kind() {
ty::Array(_, len) => {
self.maybe_suggest_array_indexing(&mut err, expr, base, ident, len);
}
ty::RawPtr(..) => {
self.suggest_first_deref_field(&mut err, expr, base, ident);
}
ty::Adt(def, _) if !def.is_enum() => {
self.suggest_fields_on_recordish(&mut err, def, ident, expr.span);
}
ty::Param(param_ty) => {
self.point_at_param_definition(&mut err, param_ty);
}
ty::Opaque(_, _) => {
self.suggest_await_on_field_access(&mut err, ident, base, base_ty.peel_refs());
}
_ => {}
}
self.suggest_fn_call(&mut err, base, base_ty, |output_ty| {
if let ty::Adt(def, _) = output_ty.kind() && !def.is_enum() {
def.non_enum_variant().fields.iter().any(|field| {
field.ident(self.tcx) == ident
&& field.vis.is_accessible_from(expr.hir_id.owner.def_id, self.tcx)
})
} else if let ty::Tuple(tys) = output_ty.kind()
&& let Ok(idx) = ident.as_str().parse::<usize>()
{
idx < tys.len()
} else {
false
}
});
if ident.name == kw::Await {
// We know by construction that `<expr>.await` is either on Rust 2015
// or results in `ExprKind::Await`. Suggest switching the edition to 2018.
err.note("to `.await` a `Future`, switch to Rust 2018 or later");
err.help_use_latest_edition();
}
err.emit();
}
fn ban_private_field_access(
&self,
expr: &hir::Expr<'_>,
expr_t: Ty<'tcx>,
field: Ident,
base_did: DefId,
) {
let struct_path = self.tcx().def_path_str(base_did);
let kind_name = self.tcx().def_kind(base_did).descr(base_did);
let mut err = struct_span_err!(
self.tcx().sess,
field.span,
E0616,
"field `{field}` of {kind_name} `{struct_path}` is private",
);
err.span_label(field.span, "private field");
// Also check if an accessible method exists, which is often what is meant.
if self.method_exists(field, expr_t, expr.hir_id, false) && !self.expr_in_place(expr.hir_id)
{
self.suggest_method_call(
&mut err,
&format!("a method `{field}` also exists, call it with parentheses"),
field,
expr_t,
expr,
None,
);
}
err.emit();
}
fn ban_take_value_of_method(&self, expr: &hir::Expr<'_>, expr_t: Ty<'tcx>, field: Ident) {
let mut err = type_error_struct!(
self.tcx().sess,
field.span,
expr_t,
E0615,
"attempted to take value of method `{field}` on type `{expr_t}`",
);
err.span_label(field.span, "method, not a field");
let expr_is_call =
if let hir::Node::Expr(hir::Expr { kind: ExprKind::Call(callee, _args), .. }) =
self.tcx.hir().get(self.tcx.hir().get_parent_node(expr.hir_id))
{
expr.hir_id == callee.hir_id
} else {
false
};
let expr_snippet =
self.tcx.sess.source_map().span_to_snippet(expr.span).unwrap_or_default();
let is_wrapped = expr_snippet.starts_with('(') && expr_snippet.ends_with(')');
let after_open = expr.span.lo() + rustc_span::BytePos(1);
let before_close = expr.span.hi() - rustc_span::BytePos(1);
if expr_is_call && is_wrapped {
err.multipart_suggestion(
"remove wrapping parentheses to call the method",
vec![
(expr.span.with_hi(after_open), String::new()),
(expr.span.with_lo(before_close), String::new()),
],
Applicability::MachineApplicable,
);
} else if !self.expr_in_place(expr.hir_id) {
// Suggest call parentheses inside the wrapping parentheses
let span = if is_wrapped {
expr.span.with_lo(after_open).with_hi(before_close)
} else {
expr.span
};
self.suggest_method_call(
&mut err,
"use parentheses to call the method",
field,
expr_t,
expr,
Some(span),
);
} else if let ty::RawPtr(ty_and_mut) = expr_t.kind()
&& let ty::Adt(adt_def, _) = ty_and_mut.ty.kind()
&& let ExprKind::Field(base_expr, _) = expr.kind
&& adt_def.variants().len() == 1
&& adt_def
.variants()
.iter()
.next()
.unwrap()
.fields
.iter()
.any(|f| f.ident(self.tcx) == field)
{
err.multipart_suggestion(
"to access the field, dereference first",
vec![
(base_expr.span.shrink_to_lo(), "(*".to_string()),
(base_expr.span.shrink_to_hi(), ")".to_string()),
],
Applicability::MaybeIncorrect,
);
} else {
err.help("methods are immutable and cannot be assigned to");
}
err.emit();
}
fn point_at_param_definition(&self, err: &mut Diagnostic, param: ty::ParamTy) {
let generics = self.tcx.generics_of(self.body_id.owner.to_def_id());
let generic_param = generics.type_param(&param, self.tcx);
if let ty::GenericParamDefKind::Type { synthetic: true, .. } = generic_param.kind {
return;
}
let param_def_id = generic_param.def_id;
let param_hir_id = match param_def_id.as_local() {
Some(x) => self.tcx.hir().local_def_id_to_hir_id(x),
None => return,
};
let param_span = self.tcx.hir().span(param_hir_id);
let param_name = self.tcx.hir().ty_param_name(param_def_id.expect_local());
err.span_label(param_span, &format!("type parameter '{param_name}' declared here"));
}
fn suggest_fields_on_recordish(
&self,
err: &mut Diagnostic,
def: ty::AdtDef<'tcx>,
field: Ident,
access_span: Span,
) {
if let Some(suggested_field_name) =
self.suggest_field_name(def.non_enum_variant(), field.name, vec![], access_span)
{
err.span_suggestion(
field.span,
"a field with a similar name exists",
suggested_field_name,
Applicability::MaybeIncorrect,
);
} else {
err.span_label(field.span, "unknown field");
let struct_variant_def = def.non_enum_variant();
let field_names = self.available_field_names(struct_variant_def, access_span);
if !field_names.is_empty() {
err.note(&format!(
"available fields are: {}",
self.name_series_display(field_names),
));
}
}
}
fn maybe_suggest_array_indexing(
&self,
err: &mut Diagnostic,
expr: &hir::Expr<'_>,
base: &hir::Expr<'_>,
field: Ident,
len: ty::Const<'tcx>,
) {
if let (Some(len), Ok(user_index)) =
(len.try_eval_usize(self.tcx, self.param_env), field.as_str().parse::<u64>())
&& let Ok(base) = self.tcx.sess.source_map().span_to_snippet(base.span)
{
let help = "instead of using tuple indexing, use array indexing";
let suggestion = format!("{base}[{field}]");
let applicability = if len < user_index {
Applicability::MachineApplicable
} else {
Applicability::MaybeIncorrect
};
err.span_suggestion(expr.span, help, suggestion, applicability);
}
}
fn suggest_first_deref_field(
&self,
err: &mut Diagnostic,
expr: &hir::Expr<'_>,
base: &hir::Expr<'_>,
field: Ident,
) {
if let Ok(base) = self.tcx.sess.source_map().span_to_snippet(base.span) {
let msg = format!("`{base}` is a raw pointer; try dereferencing it");
let suggestion = format!("(*{base}).{field}");
err.span_suggestion(expr.span, &msg, suggestion, Applicability::MaybeIncorrect);
}
}
fn no_such_field_err(
&self,
field: Ident,
expr_t: Ty<'tcx>,
id: HirId,
) -> DiagnosticBuilder<'_, ErrorGuaranteed> {
let span = field.span;
debug!("no_such_field_err(span: {:?}, field: {:?}, expr_t: {:?})", span, field, expr_t);
let mut err = type_error_struct!(
self.tcx().sess,
field.span,
expr_t,
E0609,
"no field `{field}` on type `{expr_t}`",
);
// try to add a suggestion in case the field is a nested field of a field of the Adt
let mod_id = self.tcx.parent_module(id).to_def_id();
if let Some((fields, substs)) =
self.get_field_candidates_considering_privacy(span, expr_t, mod_id)
{
let candidate_fields: Vec<_> = fields
.filter_map(|candidate_field| {
self.check_for_nested_field_satisfying(
span,
&|candidate_field, _| candidate_field.ident(self.tcx()) == field,
candidate_field,
substs,
vec![],
mod_id,
)
})
.map(|mut field_path| {
field_path.pop();
field_path
.iter()
.map(|id| id.name.to_ident_string())
.collect::<Vec<String>>()
.join(".")
})
.collect::<Vec<_>>();
let len = candidate_fields.len();
if len > 0 {
err.span_suggestions(
field.span.shrink_to_lo(),
format!(
"{} of the expressions' fields {} a field of the same name",
if len > 1 { "some" } else { "one" },
if len > 1 { "have" } else { "has" },
),
candidate_fields.iter().map(|path| format!("{path}.")),
Applicability::MaybeIncorrect,
);
}
}
err
}
pub(crate) fn get_field_candidates_considering_privacy(
&self,
span: Span,
base_ty: Ty<'tcx>,
mod_id: DefId,
) -> Option<(impl Iterator<Item = &'tcx ty::FieldDef> + 'tcx, SubstsRef<'tcx>)> {
debug!("get_field_candidates(span: {:?}, base_t: {:?}", span, base_ty);
for (base_t, _) in self.autoderef(span, base_ty) {
match base_t.kind() {
ty::Adt(base_def, substs) if !base_def.is_enum() => {
let tcx = self.tcx;
let fields = &base_def.non_enum_variant().fields;
// Some struct, e.g. some that impl `Deref`, have all private fields
// because you're expected to deref them to access the _real_ fields.
// This, for example, will help us suggest accessing a field through a `Box<T>`.
if fields.iter().all(|field| !field.vis.is_accessible_from(mod_id, tcx)) {
continue;
}
return Some((
fields
.iter()
.filter(move |field| field.vis.is_accessible_from(mod_id, tcx))
// For compile-time reasons put a limit on number of fields we search
.take(100),
substs,
));
}
_ => {}
}
}
None
}
/// This method is called after we have encountered a missing field error to recursively
/// search for the field
pub(crate) fn check_for_nested_field_satisfying(
&self,
span: Span,
matches: &impl Fn(&ty::FieldDef, Ty<'tcx>) -> bool,
candidate_field: &ty::FieldDef,
subst: SubstsRef<'tcx>,
mut field_path: Vec<Ident>,
mod_id: DefId,
) -> Option<Vec<Ident>> {
debug!(
"check_for_nested_field_satisfying(span: {:?}, candidate_field: {:?}, field_path: {:?}",
span, candidate_field, field_path
);
if field_path.len() > 3 {
// For compile-time reasons and to avoid infinite recursion we only check for fields
// up to a depth of three
None
} else {
field_path.push(candidate_field.ident(self.tcx).normalize_to_macros_2_0());
let field_ty = candidate_field.ty(self.tcx, subst);
if matches(candidate_field, field_ty) {
return Some(field_path);
} else if let Some((nested_fields, subst)) =
self.get_field_candidates_considering_privacy(span, field_ty, mod_id)
{
// recursively search fields of `candidate_field` if it's a ty::Adt
for field in nested_fields {
if let Some(field_path) = self.check_for_nested_field_satisfying(
span,
matches,
field,
subst,
field_path.clone(),
mod_id,
) {
return Some(field_path);
}
}
}
None
}
}
fn check_expr_index(
&self,
base: &'tcx hir::Expr<'tcx>,
idx: &'tcx hir::Expr<'tcx>,
expr: &'tcx hir::Expr<'tcx>,
) -> Ty<'tcx> {
let base_t = self.check_expr(&base);
let idx_t = self.check_expr(&idx);
if base_t.references_error() {
base_t
} else if idx_t.references_error() {
idx_t
} else {
let base_t = self.structurally_resolved_type(base.span, base_t);
match self.lookup_indexing(expr, base, base_t, idx, idx_t) {
Some((index_ty, element_ty)) => {
// two-phase not needed because index_ty is never mutable
self.demand_coerce(idx, idx_t, index_ty, None, AllowTwoPhase::No);
self.select_obligations_where_possible(false, |errors| {
self.point_at_index_if_possible(errors, idx.span)
});
element_ty
}
None => {
let mut err = type_error_struct!(
self.tcx.sess,
expr.span,
base_t,
E0608,
"cannot index into a value of type `{base_t}`",
);
// Try to give some advice about indexing tuples.
if let ty::Tuple(..) = base_t.kind() {
let mut needs_note = true;
// If the index is an integer, we can show the actual
// fixed expression:
if let ExprKind::Lit(ref lit) = idx.kind {
if let ast::LitKind::Int(i, ast::LitIntType::Unsuffixed) = lit.node {
let snip = self.tcx.sess.source_map().span_to_snippet(base.span);
if let Ok(snip) = snip {
err.span_suggestion(
expr.span,
"to access tuple elements, use",
format!("{snip}.{i}"),
Applicability::MachineApplicable,
);
needs_note = false;
}
}
}
if needs_note {
err.help(
"to access tuple elements, use tuple indexing \
syntax (e.g., `tuple.0`)",
);
}
}
err.emit();
self.tcx.ty_error()
}
}
}
}
fn point_at_index_if_possible(
&self,
errors: &mut Vec<traits::FulfillmentError<'tcx>>,
span: Span,
) {
for error in errors {
match error.obligation.predicate.kind().skip_binder() {
ty::PredicateKind::Trait(predicate)
if self.tcx.is_diagnostic_item(sym::SliceIndex, predicate.trait_ref.def_id) => {
}
_ => continue,
}
error.obligation.cause.span = span;
}
}
fn check_expr_yield(
&self,
value: &'tcx hir::Expr<'tcx>,
expr: &'tcx hir::Expr<'tcx>,
src: &'tcx hir::YieldSource,
) -> Ty<'tcx> {
match self.resume_yield_tys {
Some((resume_ty, yield_ty)) => {
self.check_expr_coercable_to_type(&value, yield_ty, None);
resume_ty
}
// Given that this `yield` expression was generated as a result of lowering a `.await`,
// we know that the yield type must be `()`; however, the context won't contain this
// information. Hence, we check the source of the yield expression here and check its
// value's type against `()` (this check should always hold).
None if src.is_await() => {
self.check_expr_coercable_to_type(&value, self.tcx.mk_unit(), None);
self.tcx.mk_unit()
}
_ => {
self.tcx.sess.emit_err(YieldExprOutsideOfGenerator { span: expr.span });
// Avoid expressions without types during writeback (#78653).
self.check_expr(value);
self.tcx.mk_unit()
}
}
}
fn check_expr_asm_operand(&self, expr: &'tcx hir::Expr<'tcx>, is_input: bool) {
let needs = if is_input { Needs::None } else { Needs::MutPlace };
let ty = self.check_expr_with_needs(expr, needs);
self.require_type_is_sized(ty, expr.span, traits::InlineAsmSized);
if !is_input && !expr.is_syntactic_place_expr() {
let mut err = self.tcx.sess.struct_span_err(expr.span, "invalid asm output");
err.span_label(expr.span, "cannot assign to this expression");
err.emit();
}
// If this is an input value, we require its type to be fully resolved
// at this point. This allows us to provide helpful coercions which help
// pass the type candidate list in a later pass.
//
// We don't require output types to be resolved at this point, which
// allows them to be inferred based on how they are used later in the
// function.
if is_input {
let ty = self.structurally_resolved_type(expr.span, ty);
match *ty.kind() {
ty::FnDef(..) => {
let fnptr_ty = self.tcx.mk_fn_ptr(ty.fn_sig(self.tcx));
self.demand_coerce(expr, ty, fnptr_ty, None, AllowTwoPhase::No);
}
ty::Ref(_, base_ty, mutbl) => {
let ptr_ty = self.tcx.mk_ptr(ty::TypeAndMut { ty: base_ty, mutbl });
self.demand_coerce(expr, ty, ptr_ty, None, AllowTwoPhase::No);
}
_ => {}
}
}
}
fn check_expr_asm(&self, asm: &'tcx hir::InlineAsm<'tcx>) -> Ty<'tcx> {
for (op, _op_sp) in asm.operands {
match op {
hir::InlineAsmOperand::In { expr, .. } => {
self.check_expr_asm_operand(expr, true);
}
hir::InlineAsmOperand::Out { expr: Some(expr), .. }
| hir::InlineAsmOperand::InOut { expr, .. } => {
self.check_expr_asm_operand(expr, false);
}
hir::InlineAsmOperand::Out { expr: None, .. } => {}
hir::InlineAsmOperand::SplitInOut { in_expr, out_expr, .. } => {
self.check_expr_asm_operand(in_expr, true);
if let Some(out_expr) = out_expr {
self.check_expr_asm_operand(out_expr, false);
}
}
// `AnonConst`s have their own body and is type-checked separately.
// As they don't flow into the type system we don't need them to
// be well-formed.
hir::InlineAsmOperand::Const { .. } | hir::InlineAsmOperand::SymFn { .. } => {}
hir::InlineAsmOperand::SymStatic { .. } => {}
}
}
if asm.options.contains(ast::InlineAsmOptions::NORETURN) {
self.tcx.types.never
} else {
self.tcx.mk_unit()
}
}
}
pub(super) fn ty_kind_suggestion(ty: Ty<'_>) -> Option<&'static str> {
Some(match ty.kind() {
ty::Bool => "true",
ty::Char => "'a'",
ty::Int(_) | ty::Uint(_) => "42",
ty::Float(_) => "3.14159",
ty::Error(_) | ty::Never => return None,
_ => "value",
})
}