rust/src/librustc/middle/trans/meth.rs
bors 6ee56c9a5f auto merge of #18688 : bkoropoff/rust/unboxed-closure-subst-fixes, r=nikomatsakis
This resolves some issues that remained after adding support for monomorphizing unboxed closures in trans.

There were a few places where a set of substitutions for an unboxed closure type were dropped on the floor and later recalculated from scratch based on the def ID, but this failed spectacularly when the closure originated from a different param environment.  The substitutions are now plumbed through end-to-end.  Closes #18661

There was also a conflict in the meaning of the self param space within the body of the unboxed closure.  Trans attempted to insert the unboxed closure type as the self type, but this could conflict with the self type from the param environment when an unboxed closure was used within a default method on a trait.  Since the body of an unboxed closure cannot refer to its own self type or value, there's no need for it to actually use the self space.  The downstream consumers of the substitutions in trans do not seem to need it either since they look up the type of the closure some other way, so I just stopped setting it.  Closes #18685.

r? @pcwalton @nikomatsakis
2014-11-07 20:41:29 +00:00

780 lines
31 KiB
Rust

// Copyright 2012 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use back::abi;
use llvm;
use llvm::ValueRef;
use metadata::csearch;
use middle::subst::{Subst,Substs};
use middle::subst::VecPerParamSpace;
use middle::subst;
use middle::traits;
use middle::trans::base::*;
use middle::trans::build::*;
use middle::trans::callee::*;
use middle::trans::callee;
use middle::trans::cleanup;
use middle::trans::common::*;
use middle::trans::datum::*;
use middle::trans::expr::{SaveIn, Ignore};
use middle::trans::expr;
use middle::trans::glue;
use middle::trans::machine;
use middle::trans::type_::Type;
use middle::trans::type_of::*;
use middle::ty;
use middle::typeck;
use middle::typeck::MethodCall;
use util::ppaux::Repr;
use std::c_str::ToCStr;
use std::rc::Rc;
use syntax::abi::{Rust, RustCall};
use syntax::parse::token;
use syntax::{ast, ast_map, attr, visit};
use syntax::ast_util::PostExpansionMethod;
use syntax::codemap::DUMMY_SP;
// drop_glue pointer, size, align.
static VTABLE_OFFSET: uint = 3;
/**
The main "translation" pass for methods. Generates code
for non-monomorphized methods only. Other methods will
be generated once they are invoked with specific type parameters,
see `trans::base::lval_static_fn()` or `trans::base::monomorphic_fn()`.
*/
pub fn trans_impl(ccx: &CrateContext,
name: ast::Ident,
impl_items: &[ast::ImplItem],
generics: &ast::Generics,
id: ast::NodeId) {
let _icx = push_ctxt("meth::trans_impl");
let tcx = ccx.tcx();
debug!("trans_impl(name={}, id={})", name.repr(tcx), id);
// Both here and below with generic methods, be sure to recurse and look for
// items that we need to translate.
if !generics.ty_params.is_empty() {
let mut v = TransItemVisitor{ ccx: ccx };
for impl_item in impl_items.iter() {
match *impl_item {
ast::MethodImplItem(ref method) => {
visit::walk_method_helper(&mut v, &**method);
}
ast::TypeImplItem(_) => {}
}
}
return;
}
for impl_item in impl_items.iter() {
match *impl_item {
ast::MethodImplItem(ref method) => {
if method.pe_generics().ty_params.len() == 0u {
let trans_everywhere = attr::requests_inline(method.attrs.as_slice());
for (ref ccx, is_origin) in ccx.maybe_iter(trans_everywhere) {
let llfn = get_item_val(ccx, method.id);
trans_fn(ccx,
method.pe_fn_decl(),
method.pe_body(),
llfn,
&param_substs::empty(),
method.id,
[]);
update_linkage(ccx,
llfn,
Some(method.id),
if is_origin { OriginalTranslation } else { InlinedCopy });
}
}
let mut v = TransItemVisitor {
ccx: ccx,
};
visit::walk_method_helper(&mut v, &**method);
}
ast::TypeImplItem(_) => {}
}
}
}
pub fn trans_method_callee<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
method_call: MethodCall,
self_expr: Option<&ast::Expr>,
arg_cleanup_scope: cleanup::ScopeId)
-> Callee<'blk, 'tcx> {
let _icx = push_ctxt("meth::trans_method_callee");
let (origin, method_ty) =
bcx.tcx().method_map
.borrow()
.get(&method_call)
.map(|method| (method.origin.clone(), method.ty))
.unwrap();
match origin {
typeck::MethodStatic(did) |
typeck::MethodStaticUnboxedClosure(did) => {
Callee {
bcx: bcx,
data: Fn(callee::trans_fn_ref(bcx,
did,
MethodCall(method_call))),
}
}
typeck::MethodTypeParam(typeck::MethodParam {
ref trait_ref,
method_num
}) => {
let trait_ref =
Rc::new(trait_ref.subst(bcx.tcx(),
&bcx.fcx.param_substs.substs));
let span = bcx.tcx().map.span(method_call.expr_id);
let origin = fulfill_obligation(bcx.ccx(),
span,
(*trait_ref).clone());
debug!("origin = {}", origin.repr(bcx.tcx()));
trans_monomorphized_callee(bcx, method_call, trait_ref.def_id,
method_num, origin)
}
typeck::MethodTraitObject(ref mt) => {
let self_expr = match self_expr {
Some(self_expr) => self_expr,
None => {
bcx.sess().span_bug(bcx.tcx().map.span(method_call.expr_id),
"self expr wasn't provided for trait object \
callee (trying to call overloaded op?)")
}
};
trans_trait_callee(bcx,
monomorphize_type(bcx, method_ty),
mt.real_index,
self_expr,
arg_cleanup_scope)
}
}
}
pub fn trans_static_method_callee(bcx: Block,
method_id: ast::DefId,
trait_id: ast::DefId,
expr_id: ast::NodeId)
-> ValueRef
{
let _icx = push_ctxt("meth::trans_static_method_callee");
let ccx = bcx.ccx();
debug!("trans_static_method_callee(method_id={}, trait_id={}, \
expr_id={})",
method_id,
ty::item_path_str(bcx.tcx(), trait_id),
expr_id);
let mname = if method_id.krate == ast::LOCAL_CRATE {
match bcx.tcx().map.get(method_id.node) {
ast_map::NodeTraitItem(method) => {
let ident = match *method {
ast::RequiredMethod(ref m) => m.ident,
ast::ProvidedMethod(ref m) => m.pe_ident(),
ast::TypeTraitItem(_) => {
bcx.tcx().sess.bug("trans_static_method_callee() on \
an associated type?!")
}
};
ident.name
}
_ => panic!("callee is not a trait method")
}
} else {
csearch::get_item_path(bcx.tcx(), method_id).last().unwrap().name()
};
debug!("trans_static_method_callee: method_id={}, expr_id={}, \
name={}", method_id, expr_id, token::get_name(mname));
// Find the substitutions for the fn itself. This includes
// type parameters that belong to the trait but also some that
// belong to the method:
let rcvr_substs = node_id_substs(bcx, ExprId(expr_id));
let subst::SeparateVecsPerParamSpace {
types: rcvr_type,
selfs: rcvr_self,
assocs: rcvr_assoc,
fns: rcvr_method
} = rcvr_substs.types.split();
// Lookup the precise impl being called. To do that, we need to
// create a trait reference identifying the self type and other
// input type parameters. To create that trait reference, we have
// to pick apart the type parameters to identify just those that
// pertain to the trait. This is easiest to explain by example:
//
// trait Convert {
// fn from<U:Foo>(n: U) -> Option<Self>;
// }
// ...
// let f = <Vec<int> as Convert>::from::<String>(...)
//
// Here, in this call, which I've written with explicit UFCS
// notation, the set of type parameters will be:
//
// rcvr_type: [] <-- nothing declared on the trait itself
// rcvr_self: [Vec<int>] <-- the self type
// rcvr_method: [String] <-- method type parameter
//
// So we create a trait reference using the first two,
// basically corresponding to `<Vec<int> as Convert>`.
// The remaining type parameters (`rcvr_method`) will be used below.
let trait_substs =
Substs::erased(VecPerParamSpace::new(rcvr_type,
rcvr_self,
rcvr_assoc,
Vec::new()));
debug!("trait_substs={}", trait_substs.repr(bcx.tcx()));
let trait_ref = Rc::new(ty::TraitRef { def_id: trait_id,
substs: trait_substs });
let vtbl = fulfill_obligation(bcx.ccx(),
DUMMY_SP,
trait_ref);
// Now that we know which impl is being used, we can dispatch to
// the actual function:
match vtbl {
traits::VtableImpl(traits::VtableImplData {
impl_def_id: impl_did,
substs: impl_substs,
nested: _ }) =>
{
assert!(impl_substs.types.all(|t| !ty::type_needs_infer(*t)));
// Create the substitutions that are in scope. This combines
// the type parameters from the impl with those declared earlier.
// To see what I mean, consider a possible impl:
//
// impl<T> Convert for Vec<T> {
// fn from<U:Foo>(n: U) { ... }
// }
//
// Recall that we matched `<Vec<int> as Convert>`. Trait
// resolution will have given us a substitution
// containing `impl_substs=[[T=int],[],[]]` (the type
// parameters defined on the impl). We combine
// that with the `rcvr_method` from before, which tells us
// the type parameters from the *method*, to yield
// `callee_substs=[[T=int],[],[U=String]]`.
let subst::SeparateVecsPerParamSpace {
types: impl_type,
selfs: impl_self,
assocs: impl_assoc,
fns: _
} = impl_substs.types.split();
let callee_substs =
Substs::erased(VecPerParamSpace::new(impl_type,
impl_self,
impl_assoc,
rcvr_method));
let mth_id = method_with_name(ccx, impl_did, mname);
let llfn = trans_fn_ref_with_substs(bcx, mth_id, ExprId(expr_id),
callee_substs);
let callee_ty = node_id_type(bcx, expr_id);
let llty = type_of_fn_from_ty(ccx, callee_ty).ptr_to();
PointerCast(bcx, llfn, llty)
}
_ => {
bcx.tcx().sess.bug(
format!("static call to invalid vtable: {}",
vtbl.repr(bcx.tcx())).as_slice());
}
}
}
fn method_with_name(ccx: &CrateContext, impl_id: ast::DefId, name: ast::Name)
-> ast::DefId {
match ccx.impl_method_cache().borrow().find_copy(&(impl_id, name)) {
Some(m) => return m,
None => {}
}
let impl_items = ccx.tcx().impl_items.borrow();
let impl_items =
impl_items.get(&impl_id)
.expect("could not find impl while translating");
let meth_did = impl_items.iter()
.find(|&did| {
ty::impl_or_trait_item(ccx.tcx(), did.def_id()).name() == name
}).expect("could not find method while \
translating");
ccx.impl_method_cache().borrow_mut().insert((impl_id, name),
meth_did.def_id());
meth_did.def_id()
}
fn trans_monomorphized_callee<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
method_call: MethodCall,
trait_id: ast::DefId,
n_method: uint,
vtable: traits::Vtable<()>)
-> Callee<'blk, 'tcx> {
let _icx = push_ctxt("meth::trans_monomorphized_callee");
match vtable {
traits::VtableImpl(vtable_impl) => {
let ccx = bcx.ccx();
let impl_did = vtable_impl.impl_def_id;
let mname = match ty::trait_item(ccx.tcx(), trait_id, n_method) {
ty::MethodTraitItem(method) => method.name,
ty::TypeTraitItem(_) => {
bcx.tcx().sess.bug("can't monomorphize an associated \
type")
}
};
let mth_id = method_with_name(bcx.ccx(), impl_did, mname);
// create a concatenated set of substitutions which includes
// those from the impl and those from the method:
let callee_substs =
combine_impl_and_methods_tps(
bcx, MethodCall(method_call), vtable_impl.substs);
// translate the function
let llfn = trans_fn_ref_with_substs(bcx,
mth_id,
MethodCall(method_call),
callee_substs);
Callee { bcx: bcx, data: Fn(llfn) }
}
traits::VtableUnboxedClosure(closure_def_id, substs) => {
// The substitutions should have no type parameters remaining
// after passing through fulfill_obligation
let llfn = trans_fn_ref_with_substs(bcx,
closure_def_id,
MethodCall(method_call),
substs);
Callee {
bcx: bcx,
data: Fn(llfn),
}
}
_ => {
bcx.tcx().sess.bug(
"vtable_param left in monomorphized function's vtable substs");
}
}
}
fn combine_impl_and_methods_tps(bcx: Block,
node: ExprOrMethodCall,
rcvr_substs: subst::Substs)
-> subst::Substs
{
/*!
* Creates a concatenated set of substitutions which includes
* those from the impl and those from the method. This are
* some subtle complications here. Statically, we have a list
* of type parameters like `[T0, T1, T2, M1, M2, M3]` where
* `Tn` are type parameters that appear on the receiver. For
* example, if the receiver is a method parameter `A` with a
* bound like `trait<B,C,D>` then `Tn` would be `[B,C,D]`.
*
* The weird part is that the type `A` might now be bound to
* any other type, such as `foo<X>`. In that case, the vector
* we want is: `[X, M1, M2, M3]`. Therefore, what we do now is
* to slice off the method type parameters and append them to
* the type parameters from the type that the receiver is
* mapped to.
*/
let ccx = bcx.ccx();
let node_substs = node_id_substs(bcx, node);
debug!("rcvr_substs={}", rcvr_substs.repr(ccx.tcx()));
debug!("node_substs={}", node_substs.repr(ccx.tcx()));
// Break apart the type parameters from the node and type
// parameters from the receiver.
let node_method = node_substs.types.split().fns;
let subst::SeparateVecsPerParamSpace {
types: rcvr_type,
selfs: rcvr_self,
assocs: rcvr_assoc,
fns: rcvr_method
} = rcvr_substs.types.clone().split();
assert!(rcvr_method.is_empty());
subst::Substs {
regions: subst::ErasedRegions,
types: subst::VecPerParamSpace::new(rcvr_type, rcvr_self, rcvr_assoc, node_method)
}
}
fn trans_trait_callee<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
method_ty: ty::t,
n_method: uint,
self_expr: &ast::Expr,
arg_cleanup_scope: cleanup::ScopeId)
-> Callee<'blk, 'tcx> {
/*!
* Create a method callee where the method is coming from a trait
* object (e.g., Box<Trait> type). In this case, we must pull the fn
* pointer out of the vtable that is packaged up with the object.
* Objects are represented as a pair, so we first evaluate the self
* expression and then extract the self data and vtable out of the
* pair.
*/
let _icx = push_ctxt("meth::trans_trait_callee");
let mut bcx = bcx;
// Translate self_datum and take ownership of the value by
// converting to an rvalue.
let self_datum = unpack_datum!(
bcx, expr::trans(bcx, self_expr));
let llval = if ty::type_needs_drop(bcx.tcx(), self_datum.ty) {
let self_datum = unpack_datum!(
bcx, self_datum.to_rvalue_datum(bcx, "trait_callee"));
// Convert to by-ref since `trans_trait_callee_from_llval` wants it
// that way.
let self_datum = unpack_datum!(
bcx, self_datum.to_ref_datum(bcx));
// Arrange cleanup in case something should go wrong before the
// actual call occurs.
self_datum.add_clean(bcx.fcx, arg_cleanup_scope)
} else {
// We don't have to do anything about cleanups for &Trait and &mut Trait.
assert!(self_datum.kind.is_by_ref());
self_datum.val
};
trans_trait_callee_from_llval(bcx, method_ty, n_method, llval)
}
pub fn trans_trait_callee_from_llval<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
callee_ty: ty::t,
n_method: uint,
llpair: ValueRef)
-> Callee<'blk, 'tcx> {
/*!
* Same as `trans_trait_callee()` above, except that it is given
* a by-ref pointer to the object pair.
*/
let _icx = push_ctxt("meth::trans_trait_callee");
let ccx = bcx.ccx();
// Load the data pointer from the object.
debug!("(translating trait callee) loading second index from pair");
let llboxptr = GEPi(bcx, llpair, [0u, abi::trt_field_box]);
let llbox = Load(bcx, llboxptr);
let llself = PointerCast(bcx, llbox, Type::i8p(ccx));
// Load the function from the vtable and cast it to the expected type.
debug!("(translating trait callee) loading method");
// Replace the self type (&Self or Box<Self>) with an opaque pointer.
let llcallee_ty = match ty::get(callee_ty).sty {
ty::ty_bare_fn(ref f) if f.abi == Rust || f.abi == RustCall => {
type_of_rust_fn(ccx,
Some(Type::i8p(ccx)),
f.sig.inputs.slice_from(1),
f.sig.output,
f.abi)
}
_ => {
ccx.sess().bug("meth::trans_trait_callee given non-bare-rust-fn");
}
};
let llvtable = Load(bcx,
PointerCast(bcx,
GEPi(bcx, llpair,
[0u, abi::trt_field_vtable]),
Type::vtable(ccx).ptr_to().ptr_to()));
let mptr = Load(bcx, GEPi(bcx, llvtable, [0u, n_method + VTABLE_OFFSET]));
let mptr = PointerCast(bcx, mptr, llcallee_ty.ptr_to());
return Callee {
bcx: bcx,
data: TraitItem(MethodData {
llfn: mptr,
llself: llself,
})
};
}
/// Creates a returns a dynamic vtable for the given type and vtable origin.
/// This is used only for objects.
///
/// The `trait_ref` encodes the erased self type. Hence if we are
/// making an object `Foo<Trait>` from a value of type `Foo<T>`, then
/// `trait_ref` would map `T:Trait`, but `box_ty` would be
/// `Foo<T>`. This `box_ty` is primarily used to encode the destructor.
/// This will hopefully change now that DST is underway.
pub fn get_vtable(bcx: Block,
box_ty: ty::t,
trait_ref: Rc<ty::TraitRef>)
-> ValueRef
{
debug!("get_vtable(box_ty={}, trait_ref={})",
box_ty.repr(bcx.tcx()),
trait_ref.repr(bcx.tcx()));
let tcx = bcx.tcx();
let ccx = bcx.ccx();
let _icx = push_ctxt("meth::get_vtable");
// Check the cache.
let cache_key = (box_ty, trait_ref.clone());
match ccx.vtables().borrow().get(&cache_key) {
Some(&val) => { return val }
None => { }
}
// Not in the cache. Build it.
let methods = traits::supertraits(tcx, trait_ref.clone()).flat_map(|trait_ref| {
let vtable = fulfill_obligation(bcx.ccx(),
DUMMY_SP,
trait_ref.clone());
match vtable {
traits::VtableBuiltin(_) => {
Vec::new().into_iter()
}
traits::VtableImpl(
traits::VtableImplData {
impl_def_id: id,
substs,
nested: _ }) => {
emit_vtable_methods(bcx, id, substs).into_iter()
}
traits::VtableUnboxedClosure(closure_def_id, substs) => {
// Look up closure type
let self_ty = ty::node_id_to_type(bcx.tcx(), closure_def_id.node);
// Apply substitutions from closure param environment.
// The substitutions should have no type parameters
// remaining after passing through fulfill_obligation
let self_ty = self_ty.subst(bcx.tcx(), &substs);
let mut llfn = trans_fn_ref_with_substs(
bcx,
closure_def_id,
ExprId(0),
substs.clone());
{
let unboxed_closures = bcx.tcx()
.unboxed_closures
.borrow();
let closure_info =
unboxed_closures.get(&closure_def_id)
.expect("get_vtable(): didn't find \
unboxed closure");
if closure_info.kind == ty::FnOnceUnboxedClosureKind {
// Untuple the arguments and create an unboxing shim.
let (new_inputs, new_output) = match ty::get(self_ty).sty {
ty::ty_unboxed_closure(_, _, ref substs) => {
let mut new_inputs = vec![self_ty.clone()];
match ty::get(closure_info.closure_type
.sig
.inputs[0]).sty {
ty::ty_tup(ref elements) => {
for element in elements.iter() {
new_inputs.push(element.subst(bcx.tcx(), substs));
}
}
ty::ty_nil => {}
_ => {
bcx.tcx().sess.bug("get_vtable(): closure \
type wasn't a tuple")
}
}
(new_inputs,
closure_info.closure_type.sig.output.subst(bcx.tcx(), substs))
},
_ => bcx.tcx().sess.bug("get_vtable(): def wasn't an unboxed closure")
};
let closure_type = ty::BareFnTy {
fn_style: closure_info.closure_type.fn_style,
abi: Rust,
sig: ty::FnSig {
binder_id: closure_info.closure_type
.sig
.binder_id,
inputs: new_inputs,
output: new_output,
variadic: false,
},
};
debug!("get_vtable(): closure type is {}",
closure_type.repr(bcx.tcx()));
llfn = trans_unboxing_shim(bcx,
llfn,
&closure_type,
closure_def_id,
substs);
}
}
(vec!(llfn)).into_iter()
}
traits::VtableParam(..) => {
bcx.sess().bug(
format!("resolved vtable for {} to bad vtable {} in trans",
trait_ref.repr(bcx.tcx()),
vtable.repr(bcx.tcx())).as_slice());
}
}
});
let size_ty = sizing_type_of(ccx, trait_ref.self_ty());
let size = machine::llsize_of_alloc(ccx, size_ty);
let ll_size = C_uint(ccx, size);
let align = align_of(ccx, trait_ref.self_ty());
let ll_align = C_uint(ccx, align);
// Generate a destructor for the vtable.
let drop_glue = glue::get_drop_glue(ccx, box_ty);
let vtable = make_vtable(ccx, drop_glue, ll_size, ll_align, methods);
ccx.vtables().borrow_mut().insert(cache_key, vtable);
vtable
}
/// Helper function to declare and initialize the vtable.
pub fn make_vtable<I: Iterator<ValueRef>>(ccx: &CrateContext,
drop_glue: ValueRef,
size: ValueRef,
align: ValueRef,
ptrs: I)
-> ValueRef {
let _icx = push_ctxt("meth::make_vtable");
let head = vec![drop_glue, size, align];
let components: Vec<_> = head.into_iter().chain(ptrs).collect();
unsafe {
let tbl = C_struct(ccx, components.as_slice(), false);
let sym = token::gensym("vtable");
let vt_gvar = format!("vtable{}", sym.uint()).with_c_str(|buf| {
llvm::LLVMAddGlobal(ccx.llmod(), val_ty(tbl).to_ref(), buf)
});
llvm::LLVMSetInitializer(vt_gvar, tbl);
llvm::LLVMSetGlobalConstant(vt_gvar, llvm::True);
llvm::SetLinkage(vt_gvar, llvm::InternalLinkage);
vt_gvar
}
}
fn emit_vtable_methods(bcx: Block,
impl_id: ast::DefId,
substs: subst::Substs)
-> Vec<ValueRef> {
let ccx = bcx.ccx();
let tcx = ccx.tcx();
let trt_id = match ty::impl_trait_ref(tcx, impl_id) {
Some(t_id) => t_id.def_id,
None => ccx.sess().bug("make_impl_vtable: don't know how to \
make a vtable for a type impl!")
};
ty::populate_implementations_for_trait_if_necessary(bcx.tcx(), trt_id);
let trait_item_def_ids = ty::trait_item_def_ids(tcx, trt_id);
trait_item_def_ids.iter().flat_map(|method_def_id| {
let method_def_id = method_def_id.def_id();
let name = ty::impl_or_trait_item(tcx, method_def_id).name();
// The substitutions we have are on the impl, so we grab
// the method type from the impl to substitute into.
let m_id = method_with_name(ccx, impl_id, name);
let ti = ty::impl_or_trait_item(tcx, m_id);
match ti {
ty::MethodTraitItem(m) => {
debug!("(making impl vtable) emitting method {} at subst {}",
m.repr(tcx),
substs.repr(tcx));
if m.generics.has_type_params(subst::FnSpace) ||
ty::type_has_self(ty::mk_bare_fn(tcx, m.fty.clone())) {
debug!("(making impl vtable) method has self or type \
params: {}",
token::get_name(name));
Some(C_null(Type::nil(ccx).ptr_to())).into_iter()
} else {
let mut fn_ref = trans_fn_ref_with_substs(
bcx,
m_id,
ExprId(0),
substs.clone());
if m.explicit_self == ty::ByValueExplicitSelfCategory {
fn_ref = trans_unboxing_shim(bcx,
fn_ref,
&m.fty,
m_id,
substs.clone());
}
Some(fn_ref).into_iter()
}
}
ty::TypeTraitItem(_) => {
None.into_iter()
}
}
}).collect()
}
pub fn trans_trait_cast<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
datum: Datum<Expr>,
id: ast::NodeId,
trait_ref: Rc<ty::TraitRef>,
dest: expr::Dest)
-> Block<'blk, 'tcx> {
/*!
* Generates the code to convert from a pointer (`Box<T>`, `&T`, etc)
* into an object (`Box<Trait>`, `&Trait`, etc). This means creating a
* pair where the first word is the vtable and the second word is
* the pointer.
*/
let mut bcx = bcx;
let _icx = push_ctxt("meth::trans_trait_cast");
let lldest = match dest {
Ignore => {
return datum.clean(bcx, "trait_trait_cast", id);
}
SaveIn(dest) => dest
};
debug!("trans_trait_cast: trait_ref={}",
trait_ref.repr(bcx.tcx()));
let datum_ty = datum.ty;
let llbox_ty = type_of(bcx.ccx(), datum_ty);
// Store the pointer into the first half of pair.
let llboxdest = GEPi(bcx, lldest, [0u, abi::trt_field_box]);
let llboxdest = PointerCast(bcx, llboxdest, llbox_ty.ptr_to());
bcx = datum.store_to(bcx, llboxdest);
// Store the vtable into the second half of pair.
let vtable = get_vtable(bcx, datum_ty, trait_ref);
let llvtabledest = GEPi(bcx, lldest, [0u, abi::trt_field_vtable]);
let llvtabledest = PointerCast(bcx, llvtabledest, val_ty(vtable).ptr_to());
Store(bcx, vtable, llvtabledest);
bcx
}