Fixes multiple issue with counters, with simplification Includes a change to the implicit else span in ast_lowering, so coverage of the implicit else no longer spans the `then` block. Adds coverage for unused closures and async function bodies. Fixes: #78542 Adding unreachable regions for known MIR missing from coverage map Cleaned up PR commits, and removed link-dead-code requirement and tests Coverage no longer depends on Issue #76038 (`-C link-dead-code` is no longer needed or enforced, so MSVC can use the same tests as Linux and MacOS now) Restrict adding unreachable regions to covered files Improved the code that adds coverage for uncalled functions (with MIR but not-codegenned) to avoid generating coverage in files not already included in the files with covered functions. Resolved last known issue requiring --emit llvm-ir workaround Fixed bugs in how unreachable code spans were added.
369 lines
13 KiB
Rust
369 lines
13 KiB
Rust
//! Set and unset common attributes on LLVM values.
|
|
|
|
use std::ffi::CString;
|
|
|
|
use rustc_codegen_ssa::traits::*;
|
|
use rustc_data_structures::const_cstr;
|
|
use rustc_data_structures::fx::FxHashMap;
|
|
use rustc_data_structures::small_c_str::SmallCStr;
|
|
use rustc_hir::def_id::DefId;
|
|
use rustc_middle::middle::codegen_fn_attrs::CodegenFnAttrFlags;
|
|
use rustc_middle::ty::layout::HasTyCtxt;
|
|
use rustc_middle::ty::query::Providers;
|
|
use rustc_middle::ty::{self, TyCtxt};
|
|
use rustc_session::config::{OptLevel, SanitizerSet};
|
|
use rustc_session::Session;
|
|
|
|
use crate::attributes;
|
|
use crate::llvm::AttributePlace::Function;
|
|
use crate::llvm::{self, Attribute};
|
|
use crate::llvm_util;
|
|
pub use rustc_attr::{InlineAttr, InstructionSetAttr, OptimizeAttr};
|
|
|
|
use crate::context::CodegenCx;
|
|
use crate::value::Value;
|
|
|
|
/// Mark LLVM function to use provided inline heuristic.
|
|
#[inline]
|
|
fn inline(cx: &CodegenCx<'ll, '_>, val: &'ll Value, inline: InlineAttr) {
|
|
use self::InlineAttr::*;
|
|
match inline {
|
|
Hint => Attribute::InlineHint.apply_llfn(Function, val),
|
|
Always => Attribute::AlwaysInline.apply_llfn(Function, val),
|
|
Never => {
|
|
if cx.tcx().sess.target.arch != "amdgpu" {
|
|
Attribute::NoInline.apply_llfn(Function, val);
|
|
}
|
|
}
|
|
None => {}
|
|
};
|
|
}
|
|
|
|
/// Apply LLVM sanitize attributes.
|
|
#[inline]
|
|
pub fn sanitize(cx: &CodegenCx<'ll, '_>, no_sanitize: SanitizerSet, llfn: &'ll Value) {
|
|
let enabled = cx.tcx.sess.opts.debugging_opts.sanitizer - no_sanitize;
|
|
if enabled.contains(SanitizerSet::ADDRESS) {
|
|
llvm::Attribute::SanitizeAddress.apply_llfn(Function, llfn);
|
|
}
|
|
if enabled.contains(SanitizerSet::MEMORY) {
|
|
llvm::Attribute::SanitizeMemory.apply_llfn(Function, llfn);
|
|
}
|
|
if enabled.contains(SanitizerSet::THREAD) {
|
|
llvm::Attribute::SanitizeThread.apply_llfn(Function, llfn);
|
|
}
|
|
}
|
|
|
|
/// Tell LLVM to emit or not emit the information necessary to unwind the stack for the function.
|
|
#[inline]
|
|
pub fn emit_uwtable(val: &'ll Value, emit: bool) {
|
|
Attribute::UWTable.toggle_llfn(Function, val, emit);
|
|
}
|
|
|
|
/// Tell LLVM if this function should be 'naked', i.e., skip the epilogue and prologue.
|
|
#[inline]
|
|
fn naked(val: &'ll Value, is_naked: bool) {
|
|
Attribute::Naked.toggle_llfn(Function, val, is_naked);
|
|
}
|
|
|
|
pub fn set_frame_pointer_elimination(cx: &CodegenCx<'ll, '_>, llfn: &'ll Value) {
|
|
if cx.sess().must_not_eliminate_frame_pointers() {
|
|
llvm::AddFunctionAttrStringValue(
|
|
llfn,
|
|
llvm::AttributePlace::Function,
|
|
const_cstr!("frame-pointer"),
|
|
const_cstr!("all"),
|
|
);
|
|
}
|
|
}
|
|
|
|
/// Tell LLVM what instrument function to insert.
|
|
#[inline]
|
|
fn set_instrument_function(cx: &CodegenCx<'ll, '_>, llfn: &'ll Value) {
|
|
if cx.sess().instrument_mcount() {
|
|
// Similar to `clang -pg` behavior. Handled by the
|
|
// `post-inline-ee-instrument` LLVM pass.
|
|
|
|
// The function name varies on platforms.
|
|
// See test/CodeGen/mcount.c in clang.
|
|
let mcount_name = CString::new(cx.sess().target.mcount.as_str().as_bytes()).unwrap();
|
|
|
|
llvm::AddFunctionAttrStringValue(
|
|
llfn,
|
|
llvm::AttributePlace::Function,
|
|
const_cstr!("instrument-function-entry-inlined"),
|
|
&mcount_name,
|
|
);
|
|
}
|
|
}
|
|
|
|
fn set_probestack(cx: &CodegenCx<'ll, '_>, llfn: &'ll Value) {
|
|
// Only use stack probes if the target specification indicates that we
|
|
// should be using stack probes
|
|
if !cx.sess().target.stack_probes {
|
|
return;
|
|
}
|
|
|
|
// Currently stack probes seem somewhat incompatible with the address
|
|
// sanitizer and thread sanitizer. With asan we're already protected from
|
|
// stack overflow anyway so we don't really need stack probes regardless.
|
|
if cx
|
|
.sess()
|
|
.opts
|
|
.debugging_opts
|
|
.sanitizer
|
|
.intersects(SanitizerSet::ADDRESS | SanitizerSet::THREAD)
|
|
{
|
|
return;
|
|
}
|
|
|
|
// probestack doesn't play nice either with `-C profile-generate`.
|
|
if cx.sess().opts.cg.profile_generate.enabled() {
|
|
return;
|
|
}
|
|
|
|
// probestack doesn't play nice either with gcov profiling.
|
|
if cx.sess().opts.debugging_opts.profile {
|
|
return;
|
|
}
|
|
|
|
// Flag our internal `__rust_probestack` function as the stack probe symbol.
|
|
// This is defined in the `compiler-builtins` crate for each architecture.
|
|
llvm::AddFunctionAttrStringValue(
|
|
llfn,
|
|
llvm::AttributePlace::Function,
|
|
const_cstr!("probe-stack"),
|
|
const_cstr!("__rust_probestack"),
|
|
);
|
|
}
|
|
|
|
pub fn llvm_target_features(sess: &Session) -> impl Iterator<Item = &str> {
|
|
const RUSTC_SPECIFIC_FEATURES: &[&str] = &["crt-static"];
|
|
|
|
let cmdline = sess
|
|
.opts
|
|
.cg
|
|
.target_feature
|
|
.split(',')
|
|
.filter(|f| !RUSTC_SPECIFIC_FEATURES.iter().any(|s| f.contains(s)));
|
|
sess.target.features.split(',').chain(cmdline).filter(|l| !l.is_empty())
|
|
}
|
|
|
|
pub fn apply_target_cpu_attr(cx: &CodegenCx<'ll, '_>, llfn: &'ll Value) {
|
|
let target_cpu = SmallCStr::new(llvm_util::target_cpu(cx.tcx.sess));
|
|
llvm::AddFunctionAttrStringValue(
|
|
llfn,
|
|
llvm::AttributePlace::Function,
|
|
const_cstr!("target-cpu"),
|
|
target_cpu.as_c_str(),
|
|
);
|
|
}
|
|
|
|
pub fn apply_tune_cpu_attr(cx: &CodegenCx<'ll, '_>, llfn: &'ll Value) {
|
|
if let Some(tune) = llvm_util::tune_cpu(cx.tcx.sess) {
|
|
let tune_cpu = SmallCStr::new(tune);
|
|
llvm::AddFunctionAttrStringValue(
|
|
llfn,
|
|
llvm::AttributePlace::Function,
|
|
const_cstr!("tune-cpu"),
|
|
tune_cpu.as_c_str(),
|
|
);
|
|
}
|
|
}
|
|
|
|
/// Sets the `NonLazyBind` LLVM attribute on a given function,
|
|
/// assuming the codegen options allow skipping the PLT.
|
|
pub fn non_lazy_bind(sess: &Session, llfn: &'ll Value) {
|
|
// Don't generate calls through PLT if it's not necessary
|
|
if !sess.needs_plt() {
|
|
Attribute::NonLazyBind.apply_llfn(Function, llfn);
|
|
}
|
|
}
|
|
|
|
pub(crate) fn default_optimisation_attrs(sess: &Session, llfn: &'ll Value) {
|
|
match sess.opts.optimize {
|
|
OptLevel::Size => {
|
|
llvm::Attribute::MinSize.unapply_llfn(Function, llfn);
|
|
llvm::Attribute::OptimizeForSize.apply_llfn(Function, llfn);
|
|
llvm::Attribute::OptimizeNone.unapply_llfn(Function, llfn);
|
|
}
|
|
OptLevel::SizeMin => {
|
|
llvm::Attribute::MinSize.apply_llfn(Function, llfn);
|
|
llvm::Attribute::OptimizeForSize.apply_llfn(Function, llfn);
|
|
llvm::Attribute::OptimizeNone.unapply_llfn(Function, llfn);
|
|
}
|
|
OptLevel::No => {
|
|
llvm::Attribute::MinSize.unapply_llfn(Function, llfn);
|
|
llvm::Attribute::OptimizeForSize.unapply_llfn(Function, llfn);
|
|
llvm::Attribute::OptimizeNone.unapply_llfn(Function, llfn);
|
|
}
|
|
_ => {}
|
|
}
|
|
}
|
|
|
|
/// Composite function which sets LLVM attributes for function depending on its AST (`#[attribute]`)
|
|
/// attributes.
|
|
pub fn from_fn_attrs(cx: &CodegenCx<'ll, 'tcx>, llfn: &'ll Value, instance: ty::Instance<'tcx>) {
|
|
let codegen_fn_attrs = cx.tcx.codegen_fn_attrs(instance.def_id());
|
|
|
|
match codegen_fn_attrs.optimize {
|
|
OptimizeAttr::None => {
|
|
default_optimisation_attrs(cx.tcx.sess, llfn);
|
|
}
|
|
OptimizeAttr::Speed => {
|
|
llvm::Attribute::MinSize.unapply_llfn(Function, llfn);
|
|
llvm::Attribute::OptimizeForSize.unapply_llfn(Function, llfn);
|
|
llvm::Attribute::OptimizeNone.unapply_llfn(Function, llfn);
|
|
}
|
|
OptimizeAttr::Size => {
|
|
llvm::Attribute::MinSize.apply_llfn(Function, llfn);
|
|
llvm::Attribute::OptimizeForSize.apply_llfn(Function, llfn);
|
|
llvm::Attribute::OptimizeNone.unapply_llfn(Function, llfn);
|
|
}
|
|
}
|
|
|
|
let inline_attr = if codegen_fn_attrs.flags.contains(CodegenFnAttrFlags::NAKED) {
|
|
InlineAttr::Never
|
|
} else if codegen_fn_attrs.inline == InlineAttr::None && instance.def.requires_inline(cx.tcx) {
|
|
InlineAttr::Hint
|
|
} else {
|
|
codegen_fn_attrs.inline
|
|
};
|
|
inline(cx, llfn, inline_attr);
|
|
|
|
// The `uwtable` attribute according to LLVM is:
|
|
//
|
|
// This attribute indicates that the ABI being targeted requires that an
|
|
// unwind table entry be produced for this function even if we can show
|
|
// that no exceptions passes by it. This is normally the case for the
|
|
// ELF x86-64 abi, but it can be disabled for some compilation units.
|
|
//
|
|
// Typically when we're compiling with `-C panic=abort` (which implies this
|
|
// `no_landing_pads` check) we don't need `uwtable` because we can't
|
|
// generate any exceptions! On Windows, however, exceptions include other
|
|
// events such as illegal instructions, segfaults, etc. This means that on
|
|
// Windows we end up still needing the `uwtable` attribute even if the `-C
|
|
// panic=abort` flag is passed.
|
|
//
|
|
// You can also find more info on why Windows always requires uwtables here:
|
|
// https://bugzilla.mozilla.org/show_bug.cgi?id=1302078
|
|
if cx.sess().must_emit_unwind_tables() {
|
|
attributes::emit_uwtable(llfn, true);
|
|
}
|
|
|
|
set_frame_pointer_elimination(cx, llfn);
|
|
set_instrument_function(cx, llfn);
|
|
set_probestack(cx, llfn);
|
|
|
|
if codegen_fn_attrs.flags.contains(CodegenFnAttrFlags::COLD) {
|
|
Attribute::Cold.apply_llfn(Function, llfn);
|
|
}
|
|
if codegen_fn_attrs.flags.contains(CodegenFnAttrFlags::FFI_RETURNS_TWICE) {
|
|
Attribute::ReturnsTwice.apply_llfn(Function, llfn);
|
|
}
|
|
if codegen_fn_attrs.flags.contains(CodegenFnAttrFlags::FFI_PURE) {
|
|
Attribute::ReadOnly.apply_llfn(Function, llfn);
|
|
}
|
|
if codegen_fn_attrs.flags.contains(CodegenFnAttrFlags::FFI_CONST) {
|
|
Attribute::ReadNone.apply_llfn(Function, llfn);
|
|
}
|
|
if codegen_fn_attrs.flags.contains(CodegenFnAttrFlags::NAKED) {
|
|
naked(llfn, true);
|
|
}
|
|
if codegen_fn_attrs.flags.contains(CodegenFnAttrFlags::ALLOCATOR) {
|
|
Attribute::NoAlias.apply_llfn(llvm::AttributePlace::ReturnValue, llfn);
|
|
}
|
|
if codegen_fn_attrs.flags.contains(CodegenFnAttrFlags::CMSE_NONSECURE_ENTRY) {
|
|
llvm::AddFunctionAttrString(llfn, Function, const_cstr!("cmse_nonsecure_entry"));
|
|
}
|
|
sanitize(cx, codegen_fn_attrs.no_sanitize, llfn);
|
|
|
|
// Always annotate functions with the target-cpu they are compiled for.
|
|
// Without this, ThinLTO won't inline Rust functions into Clang generated
|
|
// functions (because Clang annotates functions this way too).
|
|
apply_target_cpu_attr(cx, llfn);
|
|
// tune-cpu is only conveyed through the attribute for our purpose.
|
|
// The target doesn't care; the subtarget reads our attribute.
|
|
apply_tune_cpu_attr(cx, llfn);
|
|
|
|
let features = llvm_target_features(cx.tcx.sess)
|
|
.map(|s| s.to_string())
|
|
.chain(codegen_fn_attrs.target_features.iter().map(|f| {
|
|
let feature = &f.as_str();
|
|
format!("+{}", llvm_util::to_llvm_feature(cx.tcx.sess, feature))
|
|
}))
|
|
.chain(codegen_fn_attrs.instruction_set.iter().map(|x| match x {
|
|
InstructionSetAttr::ArmA32 => "-thumb-mode".to_string(),
|
|
InstructionSetAttr::ArmT32 => "+thumb-mode".to_string(),
|
|
}))
|
|
.collect::<Vec<String>>()
|
|
.join(",");
|
|
|
|
if !features.is_empty() {
|
|
let val = CString::new(features).unwrap();
|
|
llvm::AddFunctionAttrStringValue(
|
|
llfn,
|
|
llvm::AttributePlace::Function,
|
|
const_cstr!("target-features"),
|
|
&val,
|
|
);
|
|
}
|
|
|
|
// Note that currently the `wasm-import-module` doesn't do anything, but
|
|
// eventually LLVM 7 should read this and ferry the appropriate import
|
|
// module to the output file.
|
|
if cx.tcx.sess.target.arch == "wasm32" {
|
|
if let Some(module) = wasm_import_module(cx.tcx, instance.def_id()) {
|
|
llvm::AddFunctionAttrStringValue(
|
|
llfn,
|
|
llvm::AttributePlace::Function,
|
|
const_cstr!("wasm-import-module"),
|
|
&module,
|
|
);
|
|
|
|
let name =
|
|
codegen_fn_attrs.link_name.unwrap_or_else(|| cx.tcx.item_name(instance.def_id()));
|
|
let name = CString::new(&name.as_str()[..]).unwrap();
|
|
llvm::AddFunctionAttrStringValue(
|
|
llfn,
|
|
llvm::AttributePlace::Function,
|
|
const_cstr!("wasm-import-name"),
|
|
&name,
|
|
);
|
|
}
|
|
}
|
|
}
|
|
|
|
pub fn provide_both(providers: &mut Providers) {
|
|
providers.wasm_import_module_map = |tcx, cnum| {
|
|
// Build up a map from DefId to a `NativeLib` structure, where
|
|
// `NativeLib` internally contains information about
|
|
// `#[link(wasm_import_module = "...")]` for example.
|
|
let native_libs = tcx.native_libraries(cnum);
|
|
|
|
let def_id_to_native_lib = native_libs
|
|
.iter()
|
|
.filter_map(|lib| lib.foreign_module.map(|id| (id, lib)))
|
|
.collect::<FxHashMap<_, _>>();
|
|
|
|
let mut ret = FxHashMap::default();
|
|
for (def_id, lib) in tcx.foreign_modules(cnum).iter() {
|
|
let module = def_id_to_native_lib.get(&def_id).and_then(|s| s.wasm_import_module);
|
|
let module = match module {
|
|
Some(s) => s,
|
|
None => continue,
|
|
};
|
|
ret.extend(lib.foreign_items.iter().map(|id| {
|
|
assert_eq!(id.krate, cnum);
|
|
(*id, module.to_string())
|
|
}));
|
|
}
|
|
|
|
ret
|
|
};
|
|
}
|
|
|
|
fn wasm_import_module(tcx: TyCtxt<'_>, id: DefId) -> Option<CString> {
|
|
tcx.wasm_import_module_map(id.krate).get(&id).map(|s| CString::new(&s[..]).unwrap())
|
|
}
|