01f32ace03
paths, and construct paths for all definitions. Also, stop rewriting DefIds for closures, and instead just load the closure data from the original def-id, which may be in another crate.
1155 lines
40 KiB
Rust
1155 lines
40 KiB
Rust
// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
|
|
// file at the top-level directory of this distribution and at
|
|
// http://rust-lang.org/COPYRIGHT.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
|
|
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
|
|
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
|
|
// option. This file may not be copied, modified, or distributed
|
|
// except according to those terms.
|
|
|
|
#![allow(non_camel_case_types, non_snake_case)]
|
|
|
|
//! Code that is useful in various trans modules.
|
|
|
|
pub use self::ExprOrMethodCall::*;
|
|
|
|
use session::Session;
|
|
use llvm;
|
|
use llvm::{ValueRef, BasicBlockRef, BuilderRef, ContextRef};
|
|
use llvm::{True, False, Bool};
|
|
use middle::cfg;
|
|
use middle::def;
|
|
use middle::def_id::DefId;
|
|
use middle::infer;
|
|
use middle::lang_items::LangItem;
|
|
use middle::subst::{self, Substs};
|
|
use trans::base;
|
|
use trans::build;
|
|
use trans::callee;
|
|
use trans::cleanup;
|
|
use trans::consts;
|
|
use trans::datum;
|
|
use trans::debuginfo::{self, DebugLoc};
|
|
use trans::declare;
|
|
use trans::machine;
|
|
use trans::monomorphize;
|
|
use trans::type_::Type;
|
|
use trans::type_of;
|
|
use middle::traits;
|
|
use middle::ty::{self, HasTypeFlags, Ty};
|
|
use middle::ty::fold::{TypeFolder, TypeFoldable};
|
|
use rustc_front::hir;
|
|
use util::nodemap::{FnvHashMap, NodeMap};
|
|
|
|
use arena::TypedArena;
|
|
use libc::{c_uint, c_char};
|
|
use std::ffi::CString;
|
|
use std::cell::{Cell, RefCell};
|
|
use std::vec::Vec;
|
|
use syntax::ast;
|
|
use syntax::codemap::{DUMMY_SP, Span};
|
|
use syntax::parse::token::InternedString;
|
|
use syntax::parse::token;
|
|
|
|
pub use trans::context::CrateContext;
|
|
|
|
/// Is the type's representation size known at compile time?
|
|
pub fn type_is_sized<'tcx>(tcx: &ty::ctxt<'tcx>, ty: Ty<'tcx>) -> bool {
|
|
ty.is_sized(&tcx.empty_parameter_environment(), DUMMY_SP)
|
|
}
|
|
|
|
pub fn type_is_fat_ptr<'tcx>(cx: &ty::ctxt<'tcx>, ty: Ty<'tcx>) -> bool {
|
|
match ty.sty {
|
|
ty::TyRawPtr(ty::TypeAndMut{ty, ..}) |
|
|
ty::TyRef(_, ty::TypeAndMut{ty, ..}) |
|
|
ty::TyBox(ty) => {
|
|
!type_is_sized(cx, ty)
|
|
}
|
|
_ => {
|
|
false
|
|
}
|
|
}
|
|
}
|
|
|
|
/// If `type_needs_drop` returns true, then `ty` is definitely
|
|
/// non-copy and *might* have a destructor attached; if it returns
|
|
/// false, then `ty` definitely has no destructor (i.e. no drop glue).
|
|
///
|
|
/// (Note that this implies that if `ty` has a destructor attached,
|
|
/// then `type_needs_drop` will definitely return `true` for `ty`.)
|
|
pub fn type_needs_drop<'tcx>(cx: &ty::ctxt<'tcx>, ty: Ty<'tcx>) -> bool {
|
|
type_needs_drop_given_env(cx, ty, &cx.empty_parameter_environment())
|
|
}
|
|
|
|
/// Core implementation of type_needs_drop, potentially making use of
|
|
/// and/or updating caches held in the `param_env`.
|
|
fn type_needs_drop_given_env<'a,'tcx>(cx: &ty::ctxt<'tcx>,
|
|
ty: Ty<'tcx>,
|
|
param_env: &ty::ParameterEnvironment<'a,'tcx>) -> bool {
|
|
// Issue #22536: We first query type_moves_by_default. It sees a
|
|
// normalized version of the type, and therefore will definitely
|
|
// know whether the type implements Copy (and thus needs no
|
|
// cleanup/drop/zeroing) ...
|
|
let implements_copy = !ty.moves_by_default(param_env, DUMMY_SP);
|
|
|
|
if implements_copy { return false; }
|
|
|
|
// ... (issue #22536 continued) but as an optimization, still use
|
|
// prior logic of asking if the `needs_drop` bit is set; we need
|
|
// not zero non-Copy types if they have no destructor.
|
|
|
|
// FIXME(#22815): Note that calling `ty::type_contents` is a
|
|
// conservative heuristic; it may report that `needs_drop` is set
|
|
// when actual type does not actually have a destructor associated
|
|
// with it. But since `ty` absolutely did not have the `Copy`
|
|
// bound attached (see above), it is sound to treat it as having a
|
|
// destructor (e.g. zero its memory on move).
|
|
|
|
let contents = ty.type_contents(cx);
|
|
debug!("type_needs_drop ty={:?} contents={:?}", ty, contents);
|
|
contents.needs_drop(cx)
|
|
}
|
|
|
|
fn type_is_newtype_immediate<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>, ty: Ty<'tcx>) -> bool {
|
|
match ty.sty {
|
|
ty::TyStruct(def, substs) => {
|
|
let fields = &def.struct_variant().fields;
|
|
fields.len() == 1 && {
|
|
type_is_immediate(ccx, monomorphize::field_ty(ccx.tcx(), substs, &fields[0]))
|
|
}
|
|
}
|
|
_ => false
|
|
}
|
|
}
|
|
|
|
pub fn type_is_immediate<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>, ty: Ty<'tcx>) -> bool {
|
|
use trans::machine::llsize_of_alloc;
|
|
use trans::type_of::sizing_type_of;
|
|
|
|
let tcx = ccx.tcx();
|
|
let simple = ty.is_scalar() ||
|
|
ty.is_unique() || ty.is_region_ptr() ||
|
|
type_is_newtype_immediate(ccx, ty) ||
|
|
ty.is_simd();
|
|
if simple && !type_is_fat_ptr(tcx, ty) {
|
|
return true;
|
|
}
|
|
if !type_is_sized(tcx, ty) {
|
|
return false;
|
|
}
|
|
match ty.sty {
|
|
ty::TyStruct(..) | ty::TyEnum(..) | ty::TyTuple(..) | ty::TyArray(_, _) |
|
|
ty::TyClosure(..) => {
|
|
let llty = sizing_type_of(ccx, ty);
|
|
llsize_of_alloc(ccx, llty) <= llsize_of_alloc(ccx, ccx.int_type())
|
|
}
|
|
_ => type_is_zero_size(ccx, ty)
|
|
}
|
|
}
|
|
|
|
/// Identify types which have size zero at runtime.
|
|
pub fn type_is_zero_size<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>, ty: Ty<'tcx>) -> bool {
|
|
use trans::machine::llsize_of_alloc;
|
|
use trans::type_of::sizing_type_of;
|
|
let llty = sizing_type_of(ccx, ty);
|
|
llsize_of_alloc(ccx, llty) == 0
|
|
}
|
|
|
|
/// Identifies types which we declare to be equivalent to `void` in C for the purpose of function
|
|
/// return types. These are `()`, bot, and uninhabited enums. Note that all such types are also
|
|
/// zero-size, but not all zero-size types use a `void` return type (in order to aid with C ABI
|
|
/// compatibility).
|
|
pub fn return_type_is_void(ccx: &CrateContext, ty: Ty) -> bool {
|
|
ty.is_nil() || ty.is_empty(ccx.tcx())
|
|
}
|
|
|
|
/// Generates a unique symbol based off the name given. This is used to create
|
|
/// unique symbols for things like closures.
|
|
pub fn gensym_name(name: &str) -> ast::Name {
|
|
let num = token::gensym(name).0;
|
|
// use one colon which will get translated to a period by the mangler, and
|
|
// we're guaranteed that `num` is globally unique for this crate.
|
|
token::gensym(&format!("{}:{}", name, num))
|
|
}
|
|
|
|
/*
|
|
* A note on nomenclature of linking: "extern", "foreign", and "upcall".
|
|
*
|
|
* An "extern" is an LLVM symbol we wind up emitting an undefined external
|
|
* reference to. This means "we don't have the thing in this compilation unit,
|
|
* please make sure you link it in at runtime". This could be a reference to
|
|
* C code found in a C library, or rust code found in a rust crate.
|
|
*
|
|
* Most "externs" are implicitly declared (automatically) as a result of a
|
|
* user declaring an extern _module_ dependency; this causes the rust driver
|
|
* to locate an extern crate, scan its compilation metadata, and emit extern
|
|
* declarations for any symbols used by the declaring crate.
|
|
*
|
|
* A "foreign" is an extern that references C (or other non-rust ABI) code.
|
|
* There is no metadata to scan for extern references so in these cases either
|
|
* a header-digester like bindgen, or manual function prototypes, have to
|
|
* serve as declarators. So these are usually given explicitly as prototype
|
|
* declarations, in rust code, with ABI attributes on them noting which ABI to
|
|
* link via.
|
|
*
|
|
* An "upcall" is a foreign call generated by the compiler (not corresponding
|
|
* to any user-written call in the code) into the runtime library, to perform
|
|
* some helper task such as bringing a task to life, allocating memory, etc.
|
|
*
|
|
*/
|
|
|
|
#[derive(Copy, Clone)]
|
|
pub struct NodeIdAndSpan {
|
|
pub id: ast::NodeId,
|
|
pub span: Span,
|
|
}
|
|
|
|
pub fn expr_info(expr: &hir::Expr) -> NodeIdAndSpan {
|
|
NodeIdAndSpan { id: expr.id, span: expr.span }
|
|
}
|
|
|
|
/// The concrete version of ty::FieldDef. The name is the field index if
|
|
/// the field is numeric.
|
|
pub struct Field<'tcx>(pub ast::Name, pub Ty<'tcx>);
|
|
|
|
/// The concrete version of ty::VariantDef
|
|
pub struct VariantInfo<'tcx> {
|
|
pub discr: ty::Disr,
|
|
pub fields: Vec<Field<'tcx>>
|
|
}
|
|
|
|
impl<'tcx> VariantInfo<'tcx> {
|
|
pub fn from_ty(tcx: &ty::ctxt<'tcx>,
|
|
ty: Ty<'tcx>,
|
|
opt_def: Option<def::Def>)
|
|
-> Self
|
|
{
|
|
match ty.sty {
|
|
ty::TyStruct(adt, substs) | ty::TyEnum(adt, substs) => {
|
|
let variant = match opt_def {
|
|
None => adt.struct_variant(),
|
|
Some(def) => adt.variant_of_def(def)
|
|
};
|
|
|
|
VariantInfo {
|
|
discr: variant.disr_val,
|
|
fields: variant.fields.iter().map(|f| {
|
|
Field(f.name, monomorphize::field_ty(tcx, substs, f))
|
|
}).collect()
|
|
}
|
|
}
|
|
|
|
ty::TyTuple(ref v) => {
|
|
VariantInfo {
|
|
discr: 0,
|
|
fields: v.iter().enumerate().map(|(i, &t)| {
|
|
Field(token::intern(&i.to_string()), t)
|
|
}).collect()
|
|
}
|
|
}
|
|
|
|
_ => {
|
|
tcx.sess.bug(&format!(
|
|
"cannot get field types from the type {:?}",
|
|
ty));
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Return the variant corresponding to a given node (e.g. expr)
|
|
pub fn of_node(tcx: &ty::ctxt<'tcx>, ty: Ty<'tcx>, id: ast::NodeId) -> Self {
|
|
let node_def = tcx.def_map.borrow().get(&id).map(|v| v.full_def());
|
|
Self::from_ty(tcx, ty, node_def)
|
|
}
|
|
|
|
pub fn field_index(&self, name: ast::Name) -> usize {
|
|
self.fields.iter().position(|&Field(n,_)| n == name).unwrap_or_else(|| {
|
|
panic!("unknown field `{}`", name)
|
|
})
|
|
}
|
|
}
|
|
|
|
pub struct BuilderRef_res {
|
|
pub b: BuilderRef,
|
|
}
|
|
|
|
impl Drop for BuilderRef_res {
|
|
fn drop(&mut self) {
|
|
unsafe {
|
|
llvm::LLVMDisposeBuilder(self.b);
|
|
}
|
|
}
|
|
}
|
|
|
|
pub fn BuilderRef_res(b: BuilderRef) -> BuilderRef_res {
|
|
BuilderRef_res {
|
|
b: b
|
|
}
|
|
}
|
|
|
|
pub type ExternMap = FnvHashMap<String, ValueRef>;
|
|
|
|
pub fn validate_substs(substs: &Substs) {
|
|
assert!(!substs.types.needs_infer());
|
|
}
|
|
|
|
// work around bizarre resolve errors
|
|
type RvalueDatum<'tcx> = datum::Datum<'tcx, datum::Rvalue>;
|
|
pub type LvalueDatum<'tcx> = datum::Datum<'tcx, datum::Lvalue>;
|
|
|
|
#[derive(Clone, Debug)]
|
|
struct HintEntry<'tcx> {
|
|
// The datum for the dropflag-hint itself; note that many
|
|
// source-level Lvalues will be associated with the same
|
|
// dropflag-hint datum.
|
|
datum: cleanup::DropHintDatum<'tcx>,
|
|
}
|
|
|
|
pub struct DropFlagHintsMap<'tcx> {
|
|
// Maps NodeId for expressions that read/write unfragmented state
|
|
// to that state's drop-flag "hint." (A stack-local hint
|
|
// indicates either that (1.) it is certain that no-drop is
|
|
// needed, or (2.) inline drop-flag must be consulted.)
|
|
node_map: NodeMap<HintEntry<'tcx>>,
|
|
}
|
|
|
|
impl<'tcx> DropFlagHintsMap<'tcx> {
|
|
pub fn new() -> DropFlagHintsMap<'tcx> { DropFlagHintsMap { node_map: NodeMap() } }
|
|
pub fn has_hint(&self, id: ast::NodeId) -> bool { self.node_map.contains_key(&id) }
|
|
pub fn insert(&mut self, id: ast::NodeId, datum: cleanup::DropHintDatum<'tcx>) {
|
|
self.node_map.insert(id, HintEntry { datum: datum });
|
|
}
|
|
pub fn hint_datum(&self, id: ast::NodeId) -> Option<cleanup::DropHintDatum<'tcx>> {
|
|
self.node_map.get(&id).map(|t|t.datum)
|
|
}
|
|
}
|
|
|
|
// Function context. Every LLVM function we create will have one of
|
|
// these.
|
|
pub struct FunctionContext<'a, 'tcx: 'a> {
|
|
// The ValueRef returned from a call to llvm::LLVMAddFunction; the
|
|
// address of the first instruction in the sequence of
|
|
// instructions for this function that will go in the .text
|
|
// section of the executable we're generating.
|
|
pub llfn: ValueRef,
|
|
|
|
// always an empty parameter-environment NOTE: @jroesch another use of ParamEnv
|
|
pub param_env: ty::ParameterEnvironment<'a, 'tcx>,
|
|
|
|
// The environment argument in a closure.
|
|
pub llenv: Option<ValueRef>,
|
|
|
|
// A pointer to where to store the return value. If the return type is
|
|
// immediate, this points to an alloca in the function. Otherwise, it's a
|
|
// pointer to the hidden first parameter of the function. After function
|
|
// construction, this should always be Some.
|
|
pub llretslotptr: Cell<Option<ValueRef>>,
|
|
|
|
// These pub elements: "hoisted basic blocks" containing
|
|
// administrative activities that have to happen in only one place in
|
|
// the function, due to LLVM's quirks.
|
|
// A marker for the place where we want to insert the function's static
|
|
// allocas, so that LLVM will coalesce them into a single alloca call.
|
|
pub alloca_insert_pt: Cell<Option<ValueRef>>,
|
|
pub llreturn: Cell<Option<BasicBlockRef>>,
|
|
|
|
// If the function has any nested return's, including something like:
|
|
// fn foo() -> Option<Foo> { Some(Foo { x: return None }) }, then
|
|
// we use a separate alloca for each return
|
|
pub needs_ret_allocas: bool,
|
|
|
|
// The a value alloca'd for calls to upcalls.rust_personality. Used when
|
|
// outputting the resume instruction.
|
|
pub personality: Cell<Option<ValueRef>>,
|
|
|
|
// True if the caller expects this fn to use the out pointer to
|
|
// return. Either way, your code should write into the slot llretslotptr
|
|
// points to, but if this value is false, that slot will be a local alloca.
|
|
pub caller_expects_out_pointer: bool,
|
|
|
|
// Maps the DefId's for local variables to the allocas created for
|
|
// them in llallocas.
|
|
pub lllocals: RefCell<NodeMap<LvalueDatum<'tcx>>>,
|
|
|
|
// Same as above, but for closure upvars
|
|
pub llupvars: RefCell<NodeMap<ValueRef>>,
|
|
|
|
// Carries info about drop-flags for local bindings (longer term,
|
|
// paths) for the code being compiled.
|
|
pub lldropflag_hints: RefCell<DropFlagHintsMap<'tcx>>,
|
|
|
|
// The NodeId of the function, or -1 if it doesn't correspond to
|
|
// a user-defined function.
|
|
pub id: ast::NodeId,
|
|
|
|
// If this function is being monomorphized, this contains the type
|
|
// substitutions used.
|
|
pub param_substs: &'tcx Substs<'tcx>,
|
|
|
|
// The source span and nesting context where this function comes from, for
|
|
// error reporting and symbol generation.
|
|
pub span: Option<Span>,
|
|
|
|
// The arena that blocks are allocated from.
|
|
pub block_arena: &'a TypedArena<BlockS<'a, 'tcx>>,
|
|
|
|
// This function's enclosing crate context.
|
|
pub ccx: &'a CrateContext<'a, 'tcx>,
|
|
|
|
// Used and maintained by the debuginfo module.
|
|
pub debug_context: debuginfo::FunctionDebugContext,
|
|
|
|
// Cleanup scopes.
|
|
pub scopes: RefCell<Vec<cleanup::CleanupScope<'a, 'tcx>>>,
|
|
|
|
pub cfg: Option<cfg::CFG>,
|
|
}
|
|
|
|
impl<'a, 'tcx> FunctionContext<'a, 'tcx> {
|
|
pub fn arg_offset(&self) -> usize {
|
|
self.env_arg_pos() + if self.llenv.is_some() { 1 } else { 0 }
|
|
}
|
|
|
|
pub fn env_arg_pos(&self) -> usize {
|
|
if self.caller_expects_out_pointer {
|
|
1
|
|
} else {
|
|
0
|
|
}
|
|
}
|
|
|
|
pub fn cleanup(&self) {
|
|
unsafe {
|
|
llvm::LLVMInstructionEraseFromParent(self.alloca_insert_pt
|
|
.get()
|
|
.unwrap());
|
|
}
|
|
}
|
|
|
|
pub fn get_llreturn(&self) -> BasicBlockRef {
|
|
if self.llreturn.get().is_none() {
|
|
|
|
self.llreturn.set(Some(unsafe {
|
|
llvm::LLVMAppendBasicBlockInContext(self.ccx.llcx(), self.llfn,
|
|
"return\0".as_ptr() as *const _)
|
|
}))
|
|
}
|
|
|
|
self.llreturn.get().unwrap()
|
|
}
|
|
|
|
pub fn get_ret_slot(&self, bcx: Block<'a, 'tcx>,
|
|
output: ty::FnOutput<'tcx>,
|
|
name: &str) -> ValueRef {
|
|
if self.needs_ret_allocas {
|
|
base::alloca(bcx, match output {
|
|
ty::FnConverging(output_type) => type_of::type_of(bcx.ccx(), output_type),
|
|
ty::FnDiverging => Type::void(bcx.ccx())
|
|
}, name)
|
|
} else {
|
|
self.llretslotptr.get().unwrap()
|
|
}
|
|
}
|
|
|
|
pub fn new_block(&'a self,
|
|
is_lpad: bool,
|
|
name: &str,
|
|
opt_node_id: Option<ast::NodeId>)
|
|
-> Block<'a, 'tcx> {
|
|
unsafe {
|
|
let name = CString::new(name).unwrap();
|
|
let llbb = llvm::LLVMAppendBasicBlockInContext(self.ccx.llcx(),
|
|
self.llfn,
|
|
name.as_ptr());
|
|
BlockS::new(llbb, is_lpad, opt_node_id, self)
|
|
}
|
|
}
|
|
|
|
pub fn new_id_block(&'a self,
|
|
name: &str,
|
|
node_id: ast::NodeId)
|
|
-> Block<'a, 'tcx> {
|
|
self.new_block(false, name, Some(node_id))
|
|
}
|
|
|
|
pub fn new_temp_block(&'a self,
|
|
name: &str)
|
|
-> Block<'a, 'tcx> {
|
|
self.new_block(false, name, None)
|
|
}
|
|
|
|
pub fn join_blocks(&'a self,
|
|
id: ast::NodeId,
|
|
in_cxs: &[Block<'a, 'tcx>])
|
|
-> Block<'a, 'tcx> {
|
|
let out = self.new_id_block("join", id);
|
|
let mut reachable = false;
|
|
for bcx in in_cxs {
|
|
if !bcx.unreachable.get() {
|
|
build::Br(*bcx, out.llbb, DebugLoc::None);
|
|
reachable = true;
|
|
}
|
|
}
|
|
if !reachable {
|
|
build::Unreachable(out);
|
|
}
|
|
return out;
|
|
}
|
|
|
|
pub fn monomorphize<T>(&self, value: &T) -> T
|
|
where T : TypeFoldable<'tcx> + HasTypeFlags
|
|
{
|
|
monomorphize::apply_param_substs(self.ccx.tcx(),
|
|
self.param_substs,
|
|
value)
|
|
}
|
|
|
|
/// This is the same as `common::type_needs_drop`, except that it
|
|
/// may use or update caches within this `FunctionContext`.
|
|
pub fn type_needs_drop(&self, ty: Ty<'tcx>) -> bool {
|
|
type_needs_drop_given_env(self.ccx.tcx(), ty, &self.param_env)
|
|
}
|
|
|
|
pub fn eh_personality(&self) -> ValueRef {
|
|
// The exception handling personality function.
|
|
//
|
|
// If our compilation unit has the `eh_personality` lang item somewhere
|
|
// within it, then we just need to translate that. Otherwise, we're
|
|
// building an rlib which will depend on some upstream implementation of
|
|
// this function, so we just codegen a generic reference to it. We don't
|
|
// specify any of the types for the function, we just make it a symbol
|
|
// that LLVM can later use.
|
|
//
|
|
// Note that MSVC is a little special here in that we don't use the
|
|
// `eh_personality` lang item at all. Currently LLVM has support for
|
|
// both Dwarf and SEH unwind mechanisms for MSVC targets and uses the
|
|
// *name of the personality function* to decide what kind of unwind side
|
|
// tables/landing pads to emit. It looks like Dwarf is used by default,
|
|
// injecting a dependency on the `_Unwind_Resume` symbol for resuming
|
|
// an "exception", but for MSVC we want to force SEH. This means that we
|
|
// can't actually have the personality function be our standard
|
|
// `rust_eh_personality` function, but rather we wired it up to the
|
|
// CRT's custom personality function, which forces LLVM to consider
|
|
// landing pads as "landing pads for SEH".
|
|
let target = &self.ccx.sess().target.target;
|
|
match self.ccx.tcx().lang_items.eh_personality() {
|
|
Some(def_id) if !base::wants_msvc_seh(self.ccx.sess()) => {
|
|
callee::trans_fn_ref(self.ccx, def_id, ExprId(0),
|
|
self.param_substs).val
|
|
}
|
|
_ => {
|
|
let mut personality = self.ccx.eh_personality().borrow_mut();
|
|
match *personality {
|
|
Some(llpersonality) => llpersonality,
|
|
None => {
|
|
let name = if !base::wants_msvc_seh(self.ccx.sess()) {
|
|
"rust_eh_personality"
|
|
} else if target.arch == "x86" {
|
|
"_except_handler3"
|
|
} else {
|
|
"__C_specific_handler"
|
|
};
|
|
let fty = Type::variadic_func(&[], &Type::i32(self.ccx));
|
|
let f = declare::declare_cfn(self.ccx, name, fty,
|
|
self.ccx.tcx().types.i32);
|
|
*personality = Some(f);
|
|
f
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// By default, LLVM lowers `resume` instructions into calls to `_Unwind_Resume`
|
|
/// defined in libgcc, however, unlike personality routines, there is no easy way to
|
|
/// override that symbol. This method injects a local-scoped `_Unwind_Resume` function
|
|
/// which immediately defers to the user-defined `eh_unwind_resume` lang item.
|
|
pub fn inject_unwind_resume_hook(&self) {
|
|
let ccx = self.ccx;
|
|
if !ccx.sess().target.target.options.custom_unwind_resume ||
|
|
ccx.unwind_resume_hooked().get() {
|
|
return;
|
|
}
|
|
|
|
let new_resume = match ccx.tcx().lang_items.eh_unwind_resume() {
|
|
Some(did) => callee::trans_fn_ref(ccx, did, ExprId(0), &self.param_substs).val,
|
|
None => {
|
|
let fty = Type::variadic_func(&[], &Type::void(self.ccx));
|
|
declare::declare_cfn(self.ccx, "rust_eh_unwind_resume", fty,
|
|
self.ccx.tcx().mk_nil())
|
|
}
|
|
};
|
|
|
|
unsafe {
|
|
let resume_type = Type::func(&[Type::i8(ccx).ptr_to()], &Type::void(ccx));
|
|
let old_resume = llvm::LLVMAddFunction(ccx.llmod(),
|
|
"_Unwind_Resume\0".as_ptr() as *const _,
|
|
resume_type.to_ref());
|
|
llvm::SetLinkage(old_resume, llvm::InternalLinkage);
|
|
let llbb = llvm::LLVMAppendBasicBlockInContext(ccx.llcx(),
|
|
old_resume,
|
|
"\0".as_ptr() as *const _);
|
|
let builder = ccx.builder();
|
|
builder.position_at_end(llbb);
|
|
builder.call(new_resume, &[llvm::LLVMGetFirstParam(old_resume)], None);
|
|
builder.unreachable(); // it should never return
|
|
|
|
// Until DwarfEHPrepare pass has run, _Unwind_Resume is not referenced by any live code
|
|
// and is subject to dead code elimination. Here we add _Unwind_Resume to @llvm.globals
|
|
// to prevent that.
|
|
let i8p_ty = Type::i8p(ccx);
|
|
let used_ty = Type::array(&i8p_ty, 1);
|
|
let used = llvm::LLVMAddGlobal(ccx.llmod(), used_ty.to_ref(),
|
|
"llvm.used\0".as_ptr() as *const _);
|
|
let old_resume = llvm::LLVMConstBitCast(old_resume, i8p_ty.to_ref());
|
|
llvm::LLVMSetInitializer(used, C_array(i8p_ty, &[old_resume]));
|
|
llvm::SetLinkage(used, llvm::AppendingLinkage);
|
|
llvm::LLVMSetSection(used, "llvm.metadata\0".as_ptr() as *const _)
|
|
}
|
|
ccx.unwind_resume_hooked().set(true);
|
|
}
|
|
}
|
|
|
|
// Basic block context. We create a block context for each basic block
|
|
// (single-entry, single-exit sequence of instructions) we generate from Rust
|
|
// code. Each basic block we generate is attached to a function, typically
|
|
// with many basic blocks per function. All the basic blocks attached to a
|
|
// function are organized as a directed graph.
|
|
pub struct BlockS<'blk, 'tcx: 'blk> {
|
|
// The BasicBlockRef returned from a call to
|
|
// llvm::LLVMAppendBasicBlock(llfn, name), which adds a basic
|
|
// block to the function pointed to by llfn. We insert
|
|
// instructions into that block by way of this block context.
|
|
// The block pointing to this one in the function's digraph.
|
|
pub llbb: BasicBlockRef,
|
|
pub terminated: Cell<bool>,
|
|
pub unreachable: Cell<bool>,
|
|
|
|
// Is this block part of a landing pad?
|
|
pub is_lpad: bool,
|
|
|
|
// AST node-id associated with this block, if any. Used for
|
|
// debugging purposes only.
|
|
pub opt_node_id: Option<ast::NodeId>,
|
|
|
|
// The function context for the function to which this block is
|
|
// attached.
|
|
pub fcx: &'blk FunctionContext<'blk, 'tcx>,
|
|
}
|
|
|
|
pub type Block<'blk, 'tcx> = &'blk BlockS<'blk, 'tcx>;
|
|
|
|
impl<'blk, 'tcx> BlockS<'blk, 'tcx> {
|
|
pub fn new(llbb: BasicBlockRef,
|
|
is_lpad: bool,
|
|
opt_node_id: Option<ast::NodeId>,
|
|
fcx: &'blk FunctionContext<'blk, 'tcx>)
|
|
-> Block<'blk, 'tcx> {
|
|
fcx.block_arena.alloc(BlockS {
|
|
llbb: llbb,
|
|
terminated: Cell::new(false),
|
|
unreachable: Cell::new(false),
|
|
is_lpad: is_lpad,
|
|
opt_node_id: opt_node_id,
|
|
fcx: fcx
|
|
})
|
|
}
|
|
|
|
pub fn ccx(&self) -> &'blk CrateContext<'blk, 'tcx> {
|
|
self.fcx.ccx
|
|
}
|
|
pub fn tcx(&self) -> &'blk ty::ctxt<'tcx> {
|
|
self.fcx.ccx.tcx()
|
|
}
|
|
pub fn sess(&self) -> &'blk Session { self.fcx.ccx.sess() }
|
|
|
|
pub fn name(&self, name: ast::Name) -> String {
|
|
name.to_string()
|
|
}
|
|
|
|
pub fn node_id_to_string(&self, id: ast::NodeId) -> String {
|
|
self.tcx().map.node_to_string(id).to_string()
|
|
}
|
|
|
|
pub fn def(&self, nid: ast::NodeId) -> def::Def {
|
|
match self.tcx().def_map.borrow().get(&nid) {
|
|
Some(v) => v.full_def(),
|
|
None => {
|
|
self.tcx().sess.bug(&format!(
|
|
"no def associated with node id {}", nid));
|
|
}
|
|
}
|
|
}
|
|
|
|
pub fn val_to_string(&self, val: ValueRef) -> String {
|
|
self.ccx().tn().val_to_string(val)
|
|
}
|
|
|
|
pub fn llty_str(&self, ty: Type) -> String {
|
|
self.ccx().tn().type_to_string(ty)
|
|
}
|
|
|
|
pub fn to_str(&self) -> String {
|
|
format!("[block {:p}]", self)
|
|
}
|
|
|
|
pub fn monomorphize<T>(&self, value: &T) -> T
|
|
where T : TypeFoldable<'tcx> + HasTypeFlags
|
|
{
|
|
monomorphize::apply_param_substs(self.tcx(),
|
|
self.fcx.param_substs,
|
|
value)
|
|
}
|
|
}
|
|
|
|
pub struct Result<'blk, 'tcx: 'blk> {
|
|
pub bcx: Block<'blk, 'tcx>,
|
|
pub val: ValueRef
|
|
}
|
|
|
|
impl<'b, 'tcx> Result<'b, 'tcx> {
|
|
pub fn new(bcx: Block<'b, 'tcx>, val: ValueRef) -> Result<'b, 'tcx> {
|
|
Result {
|
|
bcx: bcx,
|
|
val: val,
|
|
}
|
|
}
|
|
}
|
|
|
|
pub fn val_ty(v: ValueRef) -> Type {
|
|
unsafe {
|
|
Type::from_ref(llvm::LLVMTypeOf(v))
|
|
}
|
|
}
|
|
|
|
// LLVM constant constructors.
|
|
pub fn C_null(t: Type) -> ValueRef {
|
|
unsafe {
|
|
llvm::LLVMConstNull(t.to_ref())
|
|
}
|
|
}
|
|
|
|
pub fn C_undef(t: Type) -> ValueRef {
|
|
unsafe {
|
|
llvm::LLVMGetUndef(t.to_ref())
|
|
}
|
|
}
|
|
|
|
pub fn C_integral(t: Type, u: u64, sign_extend: bool) -> ValueRef {
|
|
unsafe {
|
|
llvm::LLVMConstInt(t.to_ref(), u, sign_extend as Bool)
|
|
}
|
|
}
|
|
|
|
pub fn C_floating(s: &str, t: Type) -> ValueRef {
|
|
unsafe {
|
|
let s = CString::new(s).unwrap();
|
|
llvm::LLVMConstRealOfString(t.to_ref(), s.as_ptr())
|
|
}
|
|
}
|
|
|
|
pub fn C_nil(ccx: &CrateContext) -> ValueRef {
|
|
C_struct(ccx, &[], false)
|
|
}
|
|
|
|
pub fn C_bool(ccx: &CrateContext, val: bool) -> ValueRef {
|
|
C_integral(Type::i1(ccx), val as u64, false)
|
|
}
|
|
|
|
pub fn C_i32(ccx: &CrateContext, i: i32) -> ValueRef {
|
|
C_integral(Type::i32(ccx), i as u64, true)
|
|
}
|
|
|
|
pub fn C_u32(ccx: &CrateContext, i: u32) -> ValueRef {
|
|
C_integral(Type::i32(ccx), i as u64, false)
|
|
}
|
|
|
|
pub fn C_u64(ccx: &CrateContext, i: u64) -> ValueRef {
|
|
C_integral(Type::i64(ccx), i, false)
|
|
}
|
|
|
|
pub fn C_int<I: AsI64>(ccx: &CrateContext, i: I) -> ValueRef {
|
|
let v = i.as_i64();
|
|
|
|
let bit_size = machine::llbitsize_of_real(ccx, ccx.int_type());
|
|
|
|
if bit_size < 64 {
|
|
// make sure it doesn't overflow
|
|
assert!(v < (1<<(bit_size-1)) && v >= -(1<<(bit_size-1)));
|
|
}
|
|
|
|
C_integral(ccx.int_type(), v as u64, true)
|
|
}
|
|
|
|
pub fn C_uint<I: AsU64>(ccx: &CrateContext, i: I) -> ValueRef {
|
|
let v = i.as_u64();
|
|
|
|
let bit_size = machine::llbitsize_of_real(ccx, ccx.int_type());
|
|
|
|
if bit_size < 64 {
|
|
// make sure it doesn't overflow
|
|
assert!(v < (1<<bit_size));
|
|
}
|
|
|
|
C_integral(ccx.int_type(), v, false)
|
|
}
|
|
|
|
pub trait AsI64 { fn as_i64(self) -> i64; }
|
|
pub trait AsU64 { fn as_u64(self) -> u64; }
|
|
|
|
// FIXME: remove the intptr conversions, because they
|
|
// are host-architecture-dependent
|
|
impl AsI64 for i64 { fn as_i64(self) -> i64 { self as i64 }}
|
|
impl AsI64 for i32 { fn as_i64(self) -> i64 { self as i64 }}
|
|
impl AsI64 for isize { fn as_i64(self) -> i64 { self as i64 }}
|
|
|
|
impl AsU64 for u64 { fn as_u64(self) -> u64 { self as u64 }}
|
|
impl AsU64 for u32 { fn as_u64(self) -> u64 { self as u64 }}
|
|
impl AsU64 for usize { fn as_u64(self) -> u64 { self as u64 }}
|
|
|
|
pub fn C_u8(ccx: &CrateContext, i: u8) -> ValueRef {
|
|
C_integral(Type::i8(ccx), i as u64, false)
|
|
}
|
|
|
|
|
|
// This is a 'c-like' raw string, which differs from
|
|
// our boxed-and-length-annotated strings.
|
|
pub fn C_cstr(cx: &CrateContext, s: InternedString, null_terminated: bool) -> ValueRef {
|
|
unsafe {
|
|
match cx.const_cstr_cache().borrow().get(&s) {
|
|
Some(&llval) => return llval,
|
|
None => ()
|
|
}
|
|
|
|
let sc = llvm::LLVMConstStringInContext(cx.llcx(),
|
|
s.as_ptr() as *const c_char,
|
|
s.len() as c_uint,
|
|
!null_terminated as Bool);
|
|
|
|
let gsym = token::gensym("str");
|
|
let sym = format!("str{}", gsym.0);
|
|
let g = declare::define_global(cx, &sym[..], val_ty(sc)).unwrap_or_else(||{
|
|
cx.sess().bug(&format!("symbol `{}` is already defined", sym));
|
|
});
|
|
llvm::LLVMSetInitializer(g, sc);
|
|
llvm::LLVMSetGlobalConstant(g, True);
|
|
llvm::SetLinkage(g, llvm::InternalLinkage);
|
|
|
|
cx.const_cstr_cache().borrow_mut().insert(s, g);
|
|
g
|
|
}
|
|
}
|
|
|
|
// NB: Do not use `do_spill_noroot` to make this into a constant string, or
|
|
// you will be kicked off fast isel. See issue #4352 for an example of this.
|
|
pub fn C_str_slice(cx: &CrateContext, s: InternedString) -> ValueRef {
|
|
let len = s.len();
|
|
let cs = consts::ptrcast(C_cstr(cx, s, false), Type::i8p(cx));
|
|
C_named_struct(cx.tn().find_type("str_slice").unwrap(), &[cs, C_uint(cx, len)])
|
|
}
|
|
|
|
pub fn C_struct(cx: &CrateContext, elts: &[ValueRef], packed: bool) -> ValueRef {
|
|
C_struct_in_context(cx.llcx(), elts, packed)
|
|
}
|
|
|
|
pub fn C_struct_in_context(llcx: ContextRef, elts: &[ValueRef], packed: bool) -> ValueRef {
|
|
unsafe {
|
|
llvm::LLVMConstStructInContext(llcx,
|
|
elts.as_ptr(), elts.len() as c_uint,
|
|
packed as Bool)
|
|
}
|
|
}
|
|
|
|
pub fn C_named_struct(t: Type, elts: &[ValueRef]) -> ValueRef {
|
|
unsafe {
|
|
llvm::LLVMConstNamedStruct(t.to_ref(), elts.as_ptr(), elts.len() as c_uint)
|
|
}
|
|
}
|
|
|
|
pub fn C_array(ty: Type, elts: &[ValueRef]) -> ValueRef {
|
|
unsafe {
|
|
return llvm::LLVMConstArray(ty.to_ref(), elts.as_ptr(), elts.len() as c_uint);
|
|
}
|
|
}
|
|
|
|
pub fn C_vector(elts: &[ValueRef]) -> ValueRef {
|
|
unsafe {
|
|
return llvm::LLVMConstVector(elts.as_ptr(), elts.len() as c_uint);
|
|
}
|
|
}
|
|
|
|
pub fn C_bytes(cx: &CrateContext, bytes: &[u8]) -> ValueRef {
|
|
C_bytes_in_context(cx.llcx(), bytes)
|
|
}
|
|
|
|
pub fn C_bytes_in_context(llcx: ContextRef, bytes: &[u8]) -> ValueRef {
|
|
unsafe {
|
|
let ptr = bytes.as_ptr() as *const c_char;
|
|
return llvm::LLVMConstStringInContext(llcx, ptr, bytes.len() as c_uint, True);
|
|
}
|
|
}
|
|
|
|
pub fn const_get_elt(cx: &CrateContext, v: ValueRef, us: &[c_uint])
|
|
-> ValueRef {
|
|
unsafe {
|
|
let r = llvm::LLVMConstExtractValue(v, us.as_ptr(), us.len() as c_uint);
|
|
|
|
debug!("const_get_elt(v={}, us={:?}, r={})",
|
|
cx.tn().val_to_string(v), us, cx.tn().val_to_string(r));
|
|
|
|
return r;
|
|
}
|
|
}
|
|
|
|
pub fn const_to_int(v: ValueRef) -> i64 {
|
|
unsafe {
|
|
llvm::LLVMConstIntGetSExtValue(v)
|
|
}
|
|
}
|
|
|
|
pub fn const_to_uint(v: ValueRef) -> u64 {
|
|
unsafe {
|
|
llvm::LLVMConstIntGetZExtValue(v)
|
|
}
|
|
}
|
|
|
|
fn is_const_integral(v: ValueRef) -> bool {
|
|
unsafe {
|
|
!llvm::LLVMIsAConstantInt(v).is_null()
|
|
}
|
|
}
|
|
|
|
pub fn const_to_opt_int(v: ValueRef) -> Option<i64> {
|
|
unsafe {
|
|
if is_const_integral(v) {
|
|
Some(llvm::LLVMConstIntGetSExtValue(v))
|
|
} else {
|
|
None
|
|
}
|
|
}
|
|
}
|
|
|
|
pub fn const_to_opt_uint(v: ValueRef) -> Option<u64> {
|
|
unsafe {
|
|
if is_const_integral(v) {
|
|
Some(llvm::LLVMConstIntGetZExtValue(v))
|
|
} else {
|
|
None
|
|
}
|
|
}
|
|
}
|
|
|
|
pub fn is_undef(val: ValueRef) -> bool {
|
|
unsafe {
|
|
llvm::LLVMIsUndef(val) != False
|
|
}
|
|
}
|
|
|
|
#[allow(dead_code)] // potentially useful
|
|
pub fn is_null(val: ValueRef) -> bool {
|
|
unsafe {
|
|
llvm::LLVMIsNull(val) != False
|
|
}
|
|
}
|
|
|
|
pub fn monomorphize_type<'blk, 'tcx>(bcx: &BlockS<'blk, 'tcx>, t: Ty<'tcx>) -> Ty<'tcx> {
|
|
bcx.fcx.monomorphize(&t)
|
|
}
|
|
|
|
pub fn node_id_type<'blk, 'tcx>(bcx: &BlockS<'blk, 'tcx>, id: ast::NodeId) -> Ty<'tcx> {
|
|
let tcx = bcx.tcx();
|
|
let t = tcx.node_id_to_type(id);
|
|
monomorphize_type(bcx, t)
|
|
}
|
|
|
|
pub fn expr_ty<'blk, 'tcx>(bcx: &BlockS<'blk, 'tcx>, ex: &hir::Expr) -> Ty<'tcx> {
|
|
node_id_type(bcx, ex.id)
|
|
}
|
|
|
|
pub fn expr_ty_adjusted<'blk, 'tcx>(bcx: &BlockS<'blk, 'tcx>, ex: &hir::Expr) -> Ty<'tcx> {
|
|
monomorphize_type(bcx, bcx.tcx().expr_ty_adjusted(ex))
|
|
}
|
|
|
|
/// Attempts to resolve an obligation. The result is a shallow vtable resolution -- meaning that we
|
|
/// do not (necessarily) resolve all nested obligations on the impl. Note that type check should
|
|
/// guarantee to us that all nested obligations *could be* resolved if we wanted to.
|
|
pub fn fulfill_obligation<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>,
|
|
span: Span,
|
|
trait_ref: ty::PolyTraitRef<'tcx>)
|
|
-> traits::Vtable<'tcx, ()>
|
|
{
|
|
let tcx = ccx.tcx();
|
|
|
|
// Remove any references to regions; this helps improve caching.
|
|
let trait_ref = tcx.erase_regions(&trait_ref);
|
|
|
|
// First check the cache.
|
|
match ccx.trait_cache().borrow().get(&trait_ref) {
|
|
Some(vtable) => {
|
|
info!("Cache hit: {:?}", trait_ref);
|
|
return (*vtable).clone();
|
|
}
|
|
None => { }
|
|
}
|
|
|
|
debug!("trans fulfill_obligation: trait_ref={:?} def_id={:?}",
|
|
trait_ref, trait_ref.def_id());
|
|
|
|
|
|
// Do the initial selection for the obligation. This yields the
|
|
// shallow result we are looking for -- that is, what specific impl.
|
|
let infcx = infer::normalizing_infer_ctxt(tcx, &tcx.tables);
|
|
let mut selcx = traits::SelectionContext::new(&infcx);
|
|
|
|
let obligation =
|
|
traits::Obligation::new(traits::ObligationCause::misc(span, ast::DUMMY_NODE_ID),
|
|
trait_ref.to_poly_trait_predicate());
|
|
let selection = match selcx.select(&obligation) {
|
|
Ok(Some(selection)) => selection,
|
|
Ok(None) => {
|
|
// Ambiguity can happen when monomorphizing during trans
|
|
// expands to some humongo type that never occurred
|
|
// statically -- this humongo type can then overflow,
|
|
// leading to an ambiguous result. So report this as an
|
|
// overflow bug, since I believe this is the only case
|
|
// where ambiguity can result.
|
|
debug!("Encountered ambiguity selecting `{:?}` during trans, \
|
|
presuming due to overflow",
|
|
trait_ref);
|
|
ccx.sess().span_fatal(
|
|
span,
|
|
"reached the recursion limit during monomorphization (selection ambiguity)");
|
|
}
|
|
Err(e) => {
|
|
tcx.sess.span_bug(
|
|
span,
|
|
&format!("Encountered error `{:?}` selecting `{:?}` during trans",
|
|
e,
|
|
trait_ref))
|
|
}
|
|
};
|
|
|
|
// Currently, we use a fulfillment context to completely resolve
|
|
// all nested obligations. This is because they can inform the
|
|
// inference of the impl's type parameters.
|
|
let mut fulfill_cx = infcx.fulfillment_cx.borrow_mut();
|
|
let vtable = selection.map(|predicate| {
|
|
fulfill_cx.register_predicate_obligation(&infcx, predicate);
|
|
});
|
|
let vtable = infer::drain_fulfillment_cx_or_panic(
|
|
span, &infcx, &mut fulfill_cx, &vtable
|
|
);
|
|
|
|
info!("Cache miss: {:?} => {:?}", trait_ref, vtable);
|
|
|
|
ccx.trait_cache().borrow_mut().insert(trait_ref, vtable.clone());
|
|
|
|
vtable
|
|
}
|
|
|
|
/// Normalizes the predicates and checks whether they hold. If this
|
|
/// returns false, then either normalize encountered an error or one
|
|
/// of the predicates did not hold. Used when creating vtables to
|
|
/// check for unsatisfiable methods.
|
|
pub fn normalize_and_test_predicates<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>,
|
|
predicates: Vec<ty::Predicate<'tcx>>)
|
|
-> bool
|
|
{
|
|
debug!("normalize_and_test_predicates(predicates={:?})",
|
|
predicates);
|
|
|
|
let tcx = ccx.tcx();
|
|
let infcx = infer::normalizing_infer_ctxt(tcx, &tcx.tables);
|
|
let mut selcx = traits::SelectionContext::new(&infcx);
|
|
let mut fulfill_cx = infcx.fulfillment_cx.borrow_mut();
|
|
let cause = traits::ObligationCause::dummy();
|
|
let traits::Normalized { value: predicates, obligations } =
|
|
traits::normalize(&mut selcx, cause.clone(), &predicates);
|
|
for obligation in obligations {
|
|
fulfill_cx.register_predicate_obligation(&infcx, obligation);
|
|
}
|
|
for predicate in predicates {
|
|
let obligation = traits::Obligation::new(cause.clone(), predicate);
|
|
fulfill_cx.register_predicate_obligation(&infcx, obligation);
|
|
}
|
|
|
|
infer::drain_fulfillment_cx(&infcx, &mut fulfill_cx, &()).is_ok()
|
|
}
|
|
|
|
// Key used to lookup values supplied for type parameters in an expr.
|
|
#[derive(Copy, Clone, PartialEq, Debug)]
|
|
pub enum ExprOrMethodCall {
|
|
// Type parameters for a path like `None::<int>`
|
|
ExprId(ast::NodeId),
|
|
|
|
// Type parameters for a method call like `a.foo::<int>()`
|
|
MethodCallKey(ty::MethodCall)
|
|
}
|
|
|
|
pub fn node_id_substs<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>,
|
|
node: ExprOrMethodCall,
|
|
param_substs: &subst::Substs<'tcx>)
|
|
-> subst::Substs<'tcx> {
|
|
let tcx = ccx.tcx();
|
|
|
|
let substs = match node {
|
|
ExprId(id) => {
|
|
tcx.node_id_item_substs(id).substs
|
|
}
|
|
MethodCallKey(method_call) => {
|
|
tcx.tables.borrow().method_map[&method_call].substs.clone()
|
|
}
|
|
};
|
|
|
|
if substs.types.needs_infer() {
|
|
tcx.sess.bug(&format!("type parameters for node {:?} include inference types: {:?}",
|
|
node, substs));
|
|
}
|
|
|
|
monomorphize::apply_param_substs(tcx,
|
|
param_substs,
|
|
&substs.erase_regions())
|
|
}
|
|
|
|
pub fn langcall(bcx: Block,
|
|
span: Option<Span>,
|
|
msg: &str,
|
|
li: LangItem)
|
|
-> DefId {
|
|
match bcx.tcx().lang_items.require(li) {
|
|
Ok(id) => id,
|
|
Err(s) => {
|
|
let msg = format!("{} {}", msg, s);
|
|
match span {
|
|
Some(span) => bcx.tcx().sess.span_fatal(span, &msg[..]),
|
|
None => bcx.tcx().sess.fatal(&msg[..]),
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Return the VariantDef corresponding to an inlined variant node
|
|
pub fn inlined_variant_def<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>,
|
|
inlined_vid: ast::NodeId)
|
|
-> ty::VariantDef<'tcx>
|
|
{
|
|
|
|
let ctor_ty = ccx.tcx().node_id_to_type(inlined_vid);
|
|
debug!("inlined_variant_def: ctor_ty={:?} inlined_vid={:?}", ctor_ty,
|
|
inlined_vid);
|
|
let adt_def = match ctor_ty.sty {
|
|
ty::TyBareFn(_, &ty::BareFnTy { sig: ty::Binder(ty::FnSig {
|
|
output: ty::FnConverging(ty), ..
|
|
}), ..}) => ty,
|
|
_ => ctor_ty
|
|
}.ty_adt_def().unwrap();
|
|
let inlined_vid_def_id = ccx.tcx().map.local_def_id(inlined_vid);
|
|
adt_def.variants.iter().find(|v| {
|
|
inlined_vid_def_id == v.did ||
|
|
ccx.external().borrow().get(&v.did) == Some(&Some(inlined_vid))
|
|
}).unwrap_or_else(|| {
|
|
ccx.sess().bug(&format!("no variant for {:?}::{}", adt_def, inlined_vid))
|
|
})
|
|
}
|