rust/clippy_utils/src/ty.rs
xFrednet e444cbe5d6
New index_refutable_slice lint
* Finding pattern slices for `avoidable_slice_indexing`
* `avoidable_slice_indexing` analysing slice usage
* Add configuration to `avoidable_slice_indexing`
* Emitting `avoidable_slice_indexing` with suggestions
* Dogfooding and fixing bugs
* Add ui-toml test for `avoidable_slice_indexing`
* Correctly suggest `ref` keywords for `avoidable_slice_indexing`
* Test and document `mut` for `avoid_slice_indexing`
* Handle macros with `avoidable_slice_indexing` lint
* Ignore slices with sub patterns in `avoidable_slice_indexing`
* Update lint description for `avoidable_slice_indexing`
* Move `avoidable_slice_indexing` to nursery
* Added more tests for `avoidable_slice_indexing`
* Update documentation and message for `avoidable_slice_indexing`
* Teach `avoidable_slice_indexing` about `HirId`s and `Visitors`
* Rename lint to `index_refutable_slice` and connected config
2021-11-11 17:34:02 +01:00

394 lines
15 KiB
Rust

//! Util methods for [`rustc_middle::ty`]
#![allow(clippy::module_name_repetitions)]
use rustc_ast::ast::Mutability;
use rustc_data_structures::fx::FxHashMap;
use rustc_hir as hir;
use rustc_hir::def_id::DefId;
use rustc_hir::{TyKind, Unsafety};
use rustc_infer::infer::TyCtxtInferExt;
use rustc_lint::LateContext;
use rustc_middle::ty::subst::{GenericArg, GenericArgKind};
use rustc_middle::ty::{self, AdtDef, IntTy, Ty, TyCtxt, TypeFoldable, UintTy};
use rustc_span::sym;
use rustc_span::symbol::{Ident, Symbol};
use rustc_span::DUMMY_SP;
use rustc_trait_selection::infer::InferCtxtExt;
use rustc_trait_selection::traits::query::normalize::AtExt;
use crate::{match_def_path, must_use_attr};
// Checks if the given type implements copy.
pub fn is_copy<'tcx>(cx: &LateContext<'tcx>, ty: Ty<'tcx>) -> bool {
ty.is_copy_modulo_regions(cx.tcx.at(DUMMY_SP), cx.param_env)
}
/// Checks whether a type can be partially moved.
pub fn can_partially_move_ty(cx: &LateContext<'tcx>, ty: Ty<'tcx>) -> bool {
if has_drop(cx, ty) || is_copy(cx, ty) {
return false;
}
match ty.kind() {
ty::Param(_) => false,
ty::Adt(def, subs) => def.all_fields().any(|f| !is_copy(cx, f.ty(cx.tcx, subs))),
_ => true,
}
}
/// Walks into `ty` and returns `true` if any inner type is the same as `other_ty`
pub fn contains_ty<'tcx>(tcx: TyCtxt<'tcx>, ty: Ty<'tcx>, other_ty: Ty<'tcx>) -> bool {
ty.walk(tcx).any(|inner| match inner.unpack() {
GenericArgKind::Type(inner_ty) => ty::TyS::same_type(other_ty, inner_ty),
GenericArgKind::Lifetime(_) | GenericArgKind::Const(_) => false,
})
}
/// Walks into `ty` and returns `true` if any inner type is an instance of the given adt
/// constructor.
pub fn contains_adt_constructor<'tcx>(tcx: TyCtxt<'tcx>, ty: Ty<'tcx>, adt: &'tcx AdtDef) -> bool {
ty.walk(tcx).any(|inner| match inner.unpack() {
GenericArgKind::Type(inner_ty) => inner_ty.ty_adt_def() == Some(adt),
GenericArgKind::Lifetime(_) | GenericArgKind::Const(_) => false,
})
}
/// Resolves `<T as Iterator>::Item` for `T`
/// Do not invoke without first verifying that the type implements `Iterator`
pub fn get_iterator_item_ty<'tcx>(cx: &LateContext<'tcx>, ty: Ty<'tcx>) -> Option<Ty<'tcx>> {
cx.tcx
.get_diagnostic_item(sym::Iterator)
.and_then(|iter_did| {
cx.tcx.associated_items(iter_did).find_by_name_and_kind(
cx.tcx,
Ident::from_str("Item"),
ty::AssocKind::Type,
iter_did,
)
})
.map(|assoc| {
let proj = cx.tcx.mk_projection(assoc.def_id, cx.tcx.mk_substs_trait(ty, &[]));
cx.tcx.normalize_erasing_regions(cx.param_env, proj)
})
}
/// Returns true if ty has `iter` or `iter_mut` methods
pub fn has_iter_method(cx: &LateContext<'_>, probably_ref_ty: Ty<'_>) -> Option<Symbol> {
// FIXME: instead of this hard-coded list, we should check if `<adt>::iter`
// exists and has the desired signature. Unfortunately FnCtxt is not exported
// so we can't use its `lookup_method` method.
let into_iter_collections: &[Symbol] = &[
sym::Vec,
sym::Option,
sym::Result,
sym::BTreeMap,
sym::BTreeSet,
sym::VecDeque,
sym::LinkedList,
sym::BinaryHeap,
sym::HashSet,
sym::HashMap,
sym::PathBuf,
sym::Path,
sym::Receiver,
];
let ty_to_check = match probably_ref_ty.kind() {
ty::Ref(_, ty_to_check, _) => ty_to_check,
_ => probably_ref_ty,
};
let def_id = match ty_to_check.kind() {
ty::Array(..) => return Some(sym::array),
ty::Slice(..) => return Some(sym::slice),
ty::Adt(adt, _) => adt.did,
_ => return None,
};
for &name in into_iter_collections {
if cx.tcx.is_diagnostic_item(name, def_id) {
return Some(cx.tcx.item_name(def_id));
}
}
None
}
/// Checks whether a type implements a trait.
/// The function returns false in case the type contains an inference variable.
///
/// See:
/// * [`get_trait_def_id`](super::get_trait_def_id) to get a trait [`DefId`].
/// * [Common tools for writing lints] for an example how to use this function and other options.
///
/// [Common tools for writing lints]: https://github.com/rust-lang/rust-clippy/blob/master/doc/common_tools_writing_lints.md#checking-if-a-type-implements-a-specific-trait
pub fn implements_trait<'tcx>(
cx: &LateContext<'tcx>,
ty: Ty<'tcx>,
trait_id: DefId,
ty_params: &[GenericArg<'tcx>],
) -> bool {
// Clippy shouldn't have infer types
assert!(!ty.needs_infer());
let ty = cx.tcx.erase_regions(ty);
if ty.has_escaping_bound_vars() {
return false;
}
let ty_params = cx.tcx.mk_substs(ty_params.iter());
cx.tcx.infer_ctxt().enter(|infcx| {
infcx
.type_implements_trait(trait_id, ty, ty_params, cx.param_env)
.must_apply_modulo_regions()
})
}
/// Checks whether this type implements `Drop`.
pub fn has_drop<'tcx>(cx: &LateContext<'tcx>, ty: Ty<'tcx>) -> bool {
match ty.ty_adt_def() {
Some(def) => def.has_dtor(cx.tcx),
None => false,
}
}
// Returns whether the type has #[must_use] attribute
pub fn is_must_use_ty<'tcx>(cx: &LateContext<'tcx>, ty: Ty<'tcx>) -> bool {
match ty.kind() {
ty::Adt(adt, _) => must_use_attr(cx.tcx.get_attrs(adt.did)).is_some(),
ty::Foreign(ref did) => must_use_attr(cx.tcx.get_attrs(*did)).is_some(),
ty::Slice(ty) | ty::Array(ty, _) | ty::RawPtr(ty::TypeAndMut { ty, .. }) | ty::Ref(_, ty, _) => {
// for the Array case we don't need to care for the len == 0 case
// because we don't want to lint functions returning empty arrays
is_must_use_ty(cx, *ty)
},
ty::Tuple(substs) => substs.types().any(|ty| is_must_use_ty(cx, ty)),
ty::Opaque(ref def_id, _) => {
for (predicate, _) in cx.tcx.explicit_item_bounds(*def_id) {
if let ty::PredicateKind::Trait(trait_predicate) = predicate.kind().skip_binder() {
if must_use_attr(cx.tcx.get_attrs(trait_predicate.trait_ref.def_id)).is_some() {
return true;
}
}
}
false
},
ty::Dynamic(binder, _) => {
for predicate in binder.iter() {
if let ty::ExistentialPredicate::Trait(ref trait_ref) = predicate.skip_binder() {
if must_use_attr(cx.tcx.get_attrs(trait_ref.def_id)).is_some() {
return true;
}
}
}
false
},
_ => false,
}
}
// FIXME: Per https://doc.rust-lang.org/nightly/nightly-rustc/rustc_trait_selection/infer/at/struct.At.html#method.normalize
// this function can be removed once the `normalize` method does not panic when normalization does
// not succeed
/// Checks if `Ty` is normalizable. This function is useful
/// to avoid crashes on `layout_of`.
pub fn is_normalizable<'tcx>(cx: &LateContext<'tcx>, param_env: ty::ParamEnv<'tcx>, ty: Ty<'tcx>) -> bool {
is_normalizable_helper(cx, param_env, ty, &mut FxHashMap::default())
}
fn is_normalizable_helper<'tcx>(
cx: &LateContext<'tcx>,
param_env: ty::ParamEnv<'tcx>,
ty: Ty<'tcx>,
cache: &mut FxHashMap<Ty<'tcx>, bool>,
) -> bool {
if let Some(&cached_result) = cache.get(ty) {
return cached_result;
}
// prevent recursive loops, false-negative is better than endless loop leading to stack overflow
cache.insert(ty, false);
let result = cx.tcx.infer_ctxt().enter(|infcx| {
let cause = rustc_middle::traits::ObligationCause::dummy();
if infcx.at(&cause, param_env).normalize(ty).is_ok() {
match ty.kind() {
ty::Adt(def, substs) => def.variants.iter().all(|variant| {
variant
.fields
.iter()
.all(|field| is_normalizable_helper(cx, param_env, field.ty(cx.tcx, substs), cache))
}),
_ => ty.walk(cx.tcx).all(|generic_arg| match generic_arg.unpack() {
GenericArgKind::Type(inner_ty) if inner_ty != ty => {
is_normalizable_helper(cx, param_env, inner_ty, cache)
},
_ => true, // if inner_ty == ty, we've already checked it
}),
}
} else {
false
}
});
cache.insert(ty, result);
result
}
/// Returns `true` if the given type is a non aggregate primitive (a `bool` or `char`, any
/// integer or floating-point number type). For checking aggregation of primitive types (e.g.
/// tuples and slices of primitive type) see `is_recursively_primitive_type`
pub fn is_non_aggregate_primitive_type(ty: Ty<'_>) -> bool {
matches!(ty.kind(), ty::Bool | ty::Char | ty::Int(_) | ty::Uint(_) | ty::Float(_))
}
/// Returns `true` if the given type is a primitive (a `bool` or `char`, any integer or
/// floating-point number type, a `str`, or an array, slice, or tuple of those types).
pub fn is_recursively_primitive_type(ty: Ty<'_>) -> bool {
match ty.kind() {
ty::Bool | ty::Char | ty::Int(_) | ty::Uint(_) | ty::Float(_) | ty::Str => true,
ty::Ref(_, inner, _) if *inner.kind() == ty::Str => true,
ty::Array(inner_type, _) | ty::Slice(inner_type) => is_recursively_primitive_type(inner_type),
ty::Tuple(inner_types) => inner_types.types().all(is_recursively_primitive_type),
_ => false,
}
}
/// Checks if the type is a reference equals to a diagnostic item
pub fn is_type_ref_to_diagnostic_item(cx: &LateContext<'_>, ty: Ty<'_>, diag_item: Symbol) -> bool {
match ty.kind() {
ty::Ref(_, ref_ty, _) => match ref_ty.kind() {
ty::Adt(adt, _) => cx.tcx.is_diagnostic_item(diag_item, adt.did),
_ => false,
},
_ => false,
}
}
/// Checks if the type is equal to a diagnostic item. To check if a type implements a
/// trait marked with a diagnostic item use [`implements_trait`].
///
/// For a further exploitation what diagnostic items are see [diagnostic items] in
/// rustc-dev-guide.
///
/// ---
///
/// If you change the signature, remember to update the internal lint `MatchTypeOnDiagItem`
///
/// [Diagnostic Items]: https://rustc-dev-guide.rust-lang.org/diagnostics/diagnostic-items.html
pub fn is_type_diagnostic_item(cx: &LateContext<'_>, ty: Ty<'_>, diag_item: Symbol) -> bool {
match ty.kind() {
ty::Adt(adt, _) => cx.tcx.is_diagnostic_item(diag_item, adt.did),
_ => false,
}
}
/// Checks if the type is equal to a lang item.
///
/// Returns `false` if the `LangItem` is not defined.
pub fn is_type_lang_item(cx: &LateContext<'_>, ty: Ty<'_>, lang_item: hir::LangItem) -> bool {
match ty.kind() {
ty::Adt(adt, _) => cx.tcx.lang_items().require(lang_item).map_or(false, |li| li == adt.did),
_ => false,
}
}
/// Return `true` if the passed `typ` is `isize` or `usize`.
pub fn is_isize_or_usize(typ: Ty<'_>) -> bool {
matches!(typ.kind(), ty::Int(IntTy::Isize) | ty::Uint(UintTy::Usize))
}
/// Checks if type is struct, enum or union type with the given def path.
///
/// If the type is a diagnostic item, use `is_type_diagnostic_item` instead.
/// If you change the signature, remember to update the internal lint `MatchTypeOnDiagItem`
pub fn match_type(cx: &LateContext<'_>, ty: Ty<'_>, path: &[&str]) -> bool {
match ty.kind() {
ty::Adt(adt, _) => match_def_path(cx, adt.did, path),
_ => false,
}
}
/// Peels off all references on the type. Returns the underlying type and the number of references
/// removed.
pub fn peel_mid_ty_refs(ty: Ty<'_>) -> (Ty<'_>, usize) {
fn peel(ty: Ty<'_>, count: usize) -> (Ty<'_>, usize) {
if let ty::Ref(_, ty, _) = ty.kind() {
peel(ty, count + 1)
} else {
(ty, count)
}
}
peel(ty, 0)
}
/// Peels off all references on the type.Returns the underlying type, the number of references
/// removed, and whether the pointer is ultimately mutable or not.
pub fn peel_mid_ty_refs_is_mutable(ty: Ty<'_>) -> (Ty<'_>, usize, Mutability) {
fn f(ty: Ty<'_>, count: usize, mutability: Mutability) -> (Ty<'_>, usize, Mutability) {
match ty.kind() {
ty::Ref(_, ty, Mutability::Mut) => f(ty, count + 1, mutability),
ty::Ref(_, ty, Mutability::Not) => f(ty, count + 1, Mutability::Not),
_ => (ty, count, mutability),
}
}
f(ty, 0, Mutability::Mut)
}
/// Returns `true` if the given type is an `unsafe` function.
pub fn type_is_unsafe_function<'tcx>(cx: &LateContext<'tcx>, ty: Ty<'tcx>) -> bool {
match ty.kind() {
ty::FnDef(..) | ty::FnPtr(_) => ty.fn_sig(cx.tcx).unsafety() == Unsafety::Unsafe,
_ => false,
}
}
/// Returns the base type for HIR references and pointers.
pub fn walk_ptrs_hir_ty<'tcx>(ty: &'tcx hir::Ty<'tcx>) -> &'tcx hir::Ty<'tcx> {
match ty.kind {
TyKind::Ptr(ref mut_ty) | TyKind::Rptr(_, ref mut_ty) => walk_ptrs_hir_ty(mut_ty.ty),
_ => ty,
}
}
/// Returns the base type for references and raw pointers, and count reference
/// depth.
pub fn walk_ptrs_ty_depth(ty: Ty<'_>) -> (Ty<'_>, usize) {
fn inner(ty: Ty<'_>, depth: usize) -> (Ty<'_>, usize) {
match ty.kind() {
ty::Ref(_, ty, _) => inner(ty, depth + 1),
_ => (ty, depth),
}
}
inner(ty, 0)
}
/// Returns `true` if types `a` and `b` are same types having same `Const` generic args,
/// otherwise returns `false`
pub fn same_type_and_consts(a: Ty<'tcx>, b: Ty<'tcx>) -> bool {
match (&a.kind(), &b.kind()) {
(&ty::Adt(did_a, substs_a), &ty::Adt(did_b, substs_b)) => {
if did_a != did_b {
return false;
}
substs_a
.iter()
.zip(substs_b.iter())
.all(|(arg_a, arg_b)| match (arg_a.unpack(), arg_b.unpack()) {
(GenericArgKind::Const(inner_a), GenericArgKind::Const(inner_b)) => inner_a == inner_b,
(GenericArgKind::Type(type_a), GenericArgKind::Type(type_b)) => {
same_type_and_consts(type_a, type_b)
},
_ => true,
})
},
_ => a == b,
}
}
/// Checks if a given type looks safe to be uninitialized.
pub fn is_uninit_value_valid_for_ty(cx: &LateContext<'_>, ty: Ty<'_>) -> bool {
match ty.kind() {
ty::Array(component, _) => is_uninit_value_valid_for_ty(cx, component),
ty::Tuple(types) => types.types().all(|ty| is_uninit_value_valid_for_ty(cx, ty)),
ty::Adt(adt, _) => cx.tcx.lang_items().maybe_uninit() == Some(adt.did),
_ => false,
}
}