John Clements e38cb972dc Simplify PatIdent to contain an Ident rather than a Path
Rationale: for what appear to be historical reasons only, the PatIdent contains
a Path rather than an Ident.  This means that there are many places in the code
where an ident is artificially promoted to a path, and---much more problematically---
a bunch of elements from a path are simply thrown away, which seems like an invitation
to some really nasty bugs.

This commit replaces the Path in a PatIdent with a SpannedIdent, which just contains an ident
and a span.
2014-07-03 12:54:51 -07:00

652 lines
24 KiB
Rust

// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use middle::freevars::freevar_entry;
use middle::freevars;
use middle::subst;
use middle::ty;
use middle::typeck;
use util::ppaux::{Repr, ty_to_str};
use util::ppaux::UserString;
use syntax::ast::*;
use syntax::attr;
use syntax::codemap::Span;
use syntax::print::pprust::{expr_to_str, ident_to_str};
use syntax::{visit};
use syntax::visit::Visitor;
// Kind analysis pass.
//
// There are several kinds defined by various operations. The most restrictive
// kind is noncopyable. The noncopyable kind can be extended with any number
// of the following attributes.
//
// Send: Things that can be sent on channels or included in spawned closures. It
// includes scalar types as well as classes and unique types containing only
// sendable types.
// 'static: Things that do not contain references.
//
// This pass ensures that type parameters are only instantiated with types
// whose kinds are equal or less general than the way the type parameter was
// annotated (with the `Send` bound).
//
// It also verifies that noncopyable kinds are not copied. Sendability is not
// applied, since none of our language primitives send. Instead, the sending
// primitives in the stdlib are explicitly annotated to only take sendable
// types.
#[deriving(Clone)]
pub struct Context<'a> {
tcx: &'a ty::ctxt,
}
impl<'a> Visitor<()> for Context<'a> {
fn visit_expr(&mut self, ex: &Expr, _: ()) {
check_expr(self, ex);
}
fn visit_fn(&mut self, fk: &visit::FnKind, fd: &FnDecl,
b: &Block, s: Span, n: NodeId, _: ()) {
check_fn(self, fk, fd, b, s, n);
}
fn visit_ty(&mut self, t: &Ty, _: ()) {
check_ty(self, t);
}
fn visit_item(&mut self, i: &Item, _: ()) {
check_item(self, i);
}
fn visit_pat(&mut self, p: &Pat, _: ()) {
check_pat(self, p);
}
}
pub fn check_crate(tcx: &ty::ctxt,
krate: &Crate) {
let mut ctx = Context {
tcx: tcx,
};
visit::walk_crate(&mut ctx, krate, ());
tcx.sess.abort_if_errors();
}
fn check_struct_safe_for_destructor(cx: &mut Context,
span: Span,
struct_did: DefId) {
let struct_tpt = ty::lookup_item_type(cx.tcx, struct_did);
if !struct_tpt.generics.has_type_params(subst::TypeSpace) {
let struct_ty = ty::mk_struct(cx.tcx, struct_did,
subst::Substs::empty());
if !ty::type_is_sendable(cx.tcx, struct_ty) {
cx.tcx.sess.span_err(span,
"cannot implement a destructor on a \
structure that does not satisfy Send");
cx.tcx.sess.span_note(span,
"use \"#[unsafe_destructor]\" on the \
implementation to force the compiler to \
allow this");
}
} else {
cx.tcx.sess.span_err(span,
"cannot implement a destructor on a structure \
with type parameters");
cx.tcx.sess.span_note(span,
"use \"#[unsafe_destructor]\" on the \
implementation to force the compiler to \
allow this");
}
}
fn check_impl_of_trait(cx: &mut Context, it: &Item, trait_ref: &TraitRef, self_type: &Ty) {
let ast_trait_def = *cx.tcx.def_map.borrow()
.find(&trait_ref.ref_id)
.expect("trait ref not in def map!");
let trait_def_id = ast_trait_def.def_id();
let trait_def = cx.tcx.trait_defs.borrow()
.find_copy(&trait_def_id)
.expect("trait def not in trait-defs map!");
// If this trait has builtin-kind supertraits, meet them.
let self_ty: ty::t = ty::node_id_to_type(cx.tcx, it.id);
debug!("checking impl with self type {:?}", ty::get(self_ty).sty);
check_builtin_bounds(cx, self_ty, trait_def.bounds, |missing| {
cx.tcx.sess.span_err(self_type.span,
format!("the type `{}', which does not fulfill `{}`, cannot implement this \
trait",
ty_to_str(cx.tcx, self_ty),
missing.user_string(cx.tcx)).as_slice());
cx.tcx.sess.span_note(self_type.span,
format!("types implementing this trait must fulfill `{}`",
trait_def.bounds.user_string(cx.tcx)).as_slice());
});
// If this is a destructor, check kinds.
if cx.tcx.lang_items.drop_trait() == Some(trait_def_id) {
match self_type.node {
TyPath(_, ref bounds, path_node_id) => {
assert!(bounds.is_none());
let struct_def = cx.tcx.def_map.borrow().get_copy(&path_node_id);
let struct_did = struct_def.def_id();
check_struct_safe_for_destructor(cx, self_type.span, struct_did);
}
_ => {
cx.tcx.sess.span_bug(self_type.span,
"the self type for the Drop trait impl is not a path");
}
}
}
}
fn check_item(cx: &mut Context, item: &Item) {
if !attr::contains_name(item.attrs.as_slice(), "unsafe_destructor") {
match item.node {
ItemImpl(_, Some(ref trait_ref), ref self_type, _) => {
check_impl_of_trait(cx, item, trait_ref, &**self_type);
}
_ => {}
}
}
visit::walk_item(cx, item, ());
}
// Yields the appropriate function to check the kind of closed over
// variables. `id` is the NodeId for some expression that creates the
// closure.
fn with_appropriate_checker(cx: &Context,
id: NodeId,
b: |checker: |&Context, &freevar_entry||) {
fn check_for_uniq(cx: &Context, fv: &freevar_entry, bounds: ty::BuiltinBounds) {
// all captured data must be owned, regardless of whether it is
// moved in or copied in.
let id = fv.def.def_id().node;
let var_t = ty::node_id_to_type(cx.tcx, id);
check_freevar_bounds(cx, fv.span, var_t, bounds, None);
}
fn check_for_block(cx: &Context, fv: &freevar_entry,
bounds: ty::BuiltinBounds, region: ty::Region) {
let id = fv.def.def_id().node;
let var_t = ty::node_id_to_type(cx.tcx, id);
// FIXME(#3569): Figure out whether the implicit borrow is actually
// mutable. Currently we assume all upvars are referenced mutably.
let implicit_borrowed_type = ty::mk_mut_rptr(cx.tcx, region, var_t);
check_freevar_bounds(cx, fv.span, implicit_borrowed_type,
bounds, Some(var_t));
}
fn check_for_bare(cx: &Context, fv: &freevar_entry) {
cx.tcx.sess.span_err(
fv.span,
"can't capture dynamic environment in a fn item; \
use the || { ... } closure form instead");
} // same check is done in resolve.rs, but shouldn't be done
let fty = ty::node_id_to_type(cx.tcx, id);
match ty::get(fty).sty {
ty::ty_closure(box ty::ClosureTy {
store: ty::UniqTraitStore,
bounds: mut bounds, ..
}) => {
// Procs can't close over non-static references!
bounds.add(ty::BoundStatic);
b(|cx, fv| check_for_uniq(cx, fv, bounds))
}
ty::ty_closure(box ty::ClosureTy {
store: ty::RegionTraitStore(region, _), bounds, ..
}) => b(|cx, fv| check_for_block(cx, fv, bounds, region)),
ty::ty_bare_fn(_) => {
b(check_for_bare)
}
ref s => {
cx.tcx.sess.bug(format!("expect fn type in kind checker, not \
{:?}",
s).as_slice());
}
}
}
// Check that the free variables used in a shared/sendable closure conform
// to the copy/move kind bounds. Then recursively check the function body.
fn check_fn(
cx: &mut Context,
fk: &visit::FnKind,
decl: &FnDecl,
body: &Block,
sp: Span,
fn_id: NodeId) {
// Check kinds on free variables:
with_appropriate_checker(cx, fn_id, |chk| {
freevars::with_freevars(cx.tcx, fn_id, |freevars| {
for fv in freevars.iter() {
chk(cx, fv);
}
});
});
visit::walk_fn(cx, fk, decl, body, sp, ());
}
pub fn check_expr(cx: &mut Context, e: &Expr) {
debug!("kind::check_expr({})", expr_to_str(e));
// Handle any kind bounds on type parameters
check_bounds_on_type_parameters(cx, e);
match e.node {
ExprBox(ref loc, ref interior) => {
let def = ty::resolve_expr(cx.tcx, &**loc);
if Some(def.def_id()) == cx.tcx.lang_items.managed_heap() {
let interior_type = ty::expr_ty(cx.tcx, &**interior);
let _ = check_static(cx.tcx, interior_type, interior.span);
}
}
ExprCast(ref source, _) => {
let source_ty = ty::expr_ty(cx.tcx, &**source);
let target_ty = ty::expr_ty(cx.tcx, e);
check_trait_cast(cx, source_ty, target_ty, source.span);
}
ExprRepeat(ref element, ref count_expr) => {
let count = ty::eval_repeat_count(cx.tcx, &**count_expr);
if count > 1 {
let element_ty = ty::expr_ty(cx.tcx, &**element);
check_copy(cx, element_ty, element.span,
"repeated element will be copied");
}
}
_ => {}
}
// Search for auto-adjustments to find trait coercions.
match cx.tcx.adjustments.borrow().find(&e.id) {
Some(adjustment) => {
match *adjustment {
ty::AutoObject(..) => {
let source_ty = ty::expr_ty(cx.tcx, e);
let target_ty = ty::expr_ty_adjusted(cx.tcx, e);
check_trait_cast(cx, source_ty, target_ty, e.span);
}
ty::AutoAddEnv(..) |
ty::AutoDerefRef(..) => {}
}
}
None => {}
}
visit::walk_expr(cx, e, ());
}
fn check_bounds_on_type_parameters(cx: &mut Context, e: &Expr) {
let method_map = cx.tcx.method_map.borrow();
let method = method_map.find(&typeck::MethodCall::expr(e.id));
// Find the values that were provided (if any)
let item_substs = cx.tcx.item_substs.borrow();
let (types, is_object_call) = match method {
Some(method) => {
let is_object_call = match method.origin {
typeck::MethodObject(..) => true,
typeck::MethodStatic(..) | typeck::MethodParam(..) => false
};
(&method.substs.types, is_object_call)
}
None => {
match item_substs.find(&e.id) {
None => { return; }
Some(s) => { (&s.substs.types, false) }
}
}
};
// Find the relevant type parameter definitions
let def_map = cx.tcx.def_map.borrow();
let type_param_defs = match e.node {
ExprPath(_) => {
let did = def_map.get_copy(&e.id).def_id();
ty::lookup_item_type(cx.tcx, did).generics.types.clone()
}
_ => {
// Type substitutions should only occur on paths and
// method calls, so this needs to be a method call.
// Even though the callee_id may have been the id with
// node_type_substs, e.id is correct here.
match method {
Some(method) => {
ty::method_call_type_param_defs(cx.tcx, method.origin)
}
None => {
cx.tcx.sess.span_bug(e.span,
"non path/method call expr has type substs??");
}
}
}
};
// Check that the value provided for each definition meets the
// kind requirements
for type_param_def in type_param_defs.iter() {
let ty = *types.get(type_param_def.space, type_param_def.index);
// If this is a call to an object method (`foo.bar()` where
// `foo` has a type like `Trait`), then the self type is
// unknown (after all, this is a virtual call). In that case,
// we will have put a ty_err in the substitutions, and we can
// just skip over validating the bounds (because the bounds
// would have been enforced when the object instance was
// created).
if is_object_call && type_param_def.space == subst::SelfSpace {
assert_eq!(type_param_def.index, 0);
assert!(ty::type_is_error(ty));
continue;
}
debug!("type_param_def space={} index={} ty={}",
type_param_def.space, type_param_def.index, ty.repr(cx.tcx));
check_typaram_bounds(cx, e.span, ty, type_param_def)
}
}
fn check_trait_cast(cx: &mut Context, source_ty: ty::t, target_ty: ty::t, span: Span) {
check_cast_for_escaping_regions(cx, source_ty, target_ty, span);
match ty::get(target_ty).sty {
ty::ty_uniq(ty) | ty::ty_rptr(_, ty::mt{ ty, .. }) => match ty::get(ty).sty {
ty::ty_trait(box ty::TyTrait { bounds, .. }) => {
check_trait_cast_bounds(cx, span, source_ty, bounds);
}
_ => {}
},
_ => {}
}
}
fn check_ty(cx: &mut Context, aty: &Ty) {
match aty.node {
TyPath(_, _, id) => {
match cx.tcx.item_substs.borrow().find(&id) {
None => { }
Some(ref item_substs) => {
let def_map = cx.tcx.def_map.borrow();
let did = def_map.get_copy(&id).def_id();
let generics = ty::lookup_item_type(cx.tcx, did).generics;
for def in generics.types.iter() {
let ty = *item_substs.substs.types.get(def.space,
def.index);
check_typaram_bounds(cx, aty.span, ty, def)
}
}
}
}
_ => {}
}
visit::walk_ty(cx, aty, ());
}
// Calls "any_missing" if any bounds were missing.
pub fn check_builtin_bounds(cx: &Context,
ty: ty::t,
bounds: ty::BuiltinBounds,
any_missing: |ty::BuiltinBounds|) {
let kind = ty::type_contents(cx.tcx, ty);
let mut missing = ty::empty_builtin_bounds();
for bound in bounds.iter() {
if !kind.meets_bound(cx.tcx, bound) {
missing.add(bound);
}
}
if !missing.is_empty() {
any_missing(missing);
}
}
pub fn check_typaram_bounds(cx: &Context,
sp: Span,
ty: ty::t,
type_param_def: &ty::TypeParameterDef) {
check_builtin_bounds(cx,
ty,
type_param_def.bounds.builtin_bounds,
|missing| {
cx.tcx.sess.span_err(
sp,
format!("instantiating a type parameter with an incompatible type \
`{}`, which does not fulfill `{}`",
ty_to_str(cx.tcx, ty),
missing.user_string(cx.tcx)).as_slice());
});
}
pub fn check_freevar_bounds(cx: &Context, sp: Span, ty: ty::t,
bounds: ty::BuiltinBounds, referenced_ty: Option<ty::t>)
{
check_builtin_bounds(cx, ty, bounds, |missing| {
// Will be Some if the freevar is implicitly borrowed (stack closure).
// Emit a less mysterious error message in this case.
match referenced_ty {
Some(rty) => {
cx.tcx.sess.span_err(sp,
format!("cannot implicitly borrow variable of type `{}` in a \
bounded stack closure (implicit reference does not \
fulfill `{}`)",
ty_to_str(cx.tcx, rty),
missing.user_string(cx.tcx)).as_slice())
}
None => {
cx.tcx.sess.span_err(sp,
format!("cannot capture variable of type `{}`, which does \
not fulfill `{}`, in a bounded closure",
ty_to_str(cx.tcx, ty),
missing.user_string(cx.tcx)).as_slice())
}
}
cx.tcx.sess.span_note(
sp,
format!("this closure's environment must satisfy `{}`",
bounds.user_string(cx.tcx)).as_slice());
});
}
pub fn check_trait_cast_bounds(cx: &Context, sp: Span, ty: ty::t,
bounds: ty::BuiltinBounds) {
check_builtin_bounds(cx, ty, bounds, |missing| {
cx.tcx.sess.span_err(sp,
format!("cannot pack type `{}`, which does not fulfill \
`{}`, as a trait bounded by {}",
ty_to_str(cx.tcx, ty), missing.user_string(cx.tcx),
bounds.user_string(cx.tcx)).as_slice());
});
}
fn check_copy(cx: &Context, ty: ty::t, sp: Span, reason: &str) {
debug!("type_contents({})={}",
ty_to_str(cx.tcx, ty),
ty::type_contents(cx.tcx, ty).to_str());
if ty::type_moves_by_default(cx.tcx, ty) {
cx.tcx.sess.span_err(
sp,
format!("copying a value of non-copyable type `{}`",
ty_to_str(cx.tcx, ty)).as_slice());
cx.tcx.sess.span_note(sp, format!("{}", reason).as_slice());
}
}
pub fn check_static(tcx: &ty::ctxt, ty: ty::t, sp: Span) -> bool {
if !ty::type_is_static(tcx, ty) {
match ty::get(ty).sty {
ty::ty_param(..) => {
tcx.sess.span_err(sp,
format!("value may contain references; \
add `'static` bound to `{}`",
ty_to_str(tcx, ty)).as_slice());
}
_ => {
tcx.sess.span_err(sp, "value may contain references");
}
}
false
} else {
true
}
}
/// This is rather subtle. When we are casting a value to an instantiated
/// trait like `a as trait<'r>`, regionck already ensures that any references
/// that appear in the type of `a` are bounded by `'r` (ed.: rem
/// FIXME(#5723)). However, it is possible that there are *type parameters*
/// in the type of `a`, and those *type parameters* may have references
/// within them. We have to guarantee that the regions which appear in those
/// type parameters are not obscured.
///
/// Therefore, we ensure that one of three conditions holds:
///
/// (1) The trait instance cannot escape the current fn. This is
/// guaranteed if the region bound `&r` is some scope within the fn
/// itself. This case is safe because whatever references are
/// found within the type parameter, they must enclose the fn body
/// itself.
///
/// (2) The type parameter appears in the type of the trait. For
/// example, if the type parameter is `T` and the trait type is
/// `deque<T>`, then whatever references may appear in `T` also
/// appear in `deque<T>`.
///
/// (3) The type parameter is sendable (and therefore does not contain
/// references).
///
/// FIXME(#5723)---This code should probably move into regionck.
pub fn check_cast_for_escaping_regions(
cx: &Context,
source_ty: ty::t,
target_ty: ty::t,
source_span: Span)
{
// Determine what type we are casting to; if it is not a trait, then no
// worries.
if !ty::type_is_trait(target_ty) {
return;
}
// Collect up the regions that appear in the target type. We want to
// ensure that these lifetimes are shorter than all lifetimes that are in
// the source type. See test `src/test/compile-fail/regions-trait-2.rs`
let mut target_regions = Vec::new();
ty::walk_regions_and_ty(
cx.tcx,
target_ty,
|r| {
if !r.is_bound() {
target_regions.push(r);
}
},
|_| ());
// Check, based on the region associated with the trait, whether it can
// possibly escape the enclosing fn item (note that all type parameters
// must have been declared on the enclosing fn item).
if target_regions.iter().any(|r| is_ReScope(*r)) {
return; /* case (1) */
}
// Assuming the trait instance can escape, then ensure that each parameter
// either appears in the trait type or is sendable.
let target_params = ty::param_tys_in_type(target_ty);
ty::walk_regions_and_ty(
cx.tcx,
source_ty,
|_r| {
// FIXME(#5723) --- turn this check on once &Objects are usable
//
// if !target_regions.iter().any(|t_r| is_subregion_of(cx, *t_r, r)) {
// cx.tcx.sess.span_err(
// source_span,
// format!("source contains reference with lifetime \
// not found in the target type `{}`",
// ty_to_str(cx.tcx, target_ty)));
// note_and_explain_region(
// cx.tcx, "source data is only valid for ", r, "");
// }
},
|ty| {
match ty::get(ty).sty {
ty::ty_param(source_param) => {
if source_param.space == subst::SelfSpace {
// FIXME (#5723) -- there is no reason that
// Self should be exempt from this check,
// except for historical accident. Bottom
// line, we need proper region bounding.
} else if target_params.iter().any(|x| x == &source_param) {
/* case (2) */
} else {
check_static(cx.tcx, ty, source_span); /* case (3) */
}
}
_ => {}
}
});
#[allow(non_snake_case_functions)]
fn is_ReScope(r: ty::Region) -> bool {
match r {
ty::ReScope(..) => true,
_ => false
}
}
}
// Ensure that `ty` has a statically known size (i.e., it has the `Sized` bound).
fn check_sized(tcx: &ty::ctxt, ty: ty::t, name: String, sp: Span) {
if !ty::type_is_sized(tcx, ty) {
tcx.sess.span_err(sp,
format!("variable `{}` has dynamically sized type \
`{}`",
name,
ty_to_str(tcx, ty)).as_slice());
}
}
// Check that any variables in a pattern have types with statically known size.
fn check_pat(cx: &mut Context, pat: &Pat) {
let var_name = match pat.node {
PatWild => Some("_".to_string()),
PatIdent(_, ref path1, _) => Some(ident_to_str(&path1.node).to_string()),
_ => None
};
match var_name {
Some(name) => {
let types = cx.tcx.node_types.borrow();
let ty = types.find(&(pat.id as uint));
match ty {
Some(ty) => {
debug!("kind: checking sized-ness of variable {}: {}",
name, ty_to_str(cx.tcx, *ty));
check_sized(cx.tcx, *ty, name, pat.span);
}
None => {} // extern fn args
}
}
None => {}
}
visit::walk_pat(cx, pat, ());
}